Activity 7B: Complex ion equations

Ans p. 32

- 1. Complete the following equations for the formation of complex ions:

 - **b.** $Pb(OH)_{2}(s) + 2OH^{-} \longrightarrow$
 - c. $Zn^{2+}(aq) + 4NH_3(aq) \longrightarrow$
 - **d.** ___ + ___ \longrightarrow [Al(OH)₄]⁻
 - **e.** $Fe^{3+}(aq) + SCN^{-}(aq) \longrightarrow \underline{\hspace{1cm}}$
 - **f.** \longrightarrow [Ag(NH₃)₂]⁺
- **2.** Write balanced equations for all the reactions described in each of the following observations using the information in the table *Appearance and solubility of compounds formed from cations and anions* on pages 75 and 76.
 - **a.** Sodium hydroxide is added to a precipitate of zinc hydroxide. The precipitate disappears.
 - **b.** A solution of copper sulfate has a small amount of ammonia solution added to it. A blue precipitate forms. When excess ammonia solution is added, the precipitate disappears.
 - c. A solution of lead nitrate has a small amount of aqueous sodium hydroxide added to it. A precipitate forms which disappears when excess of the hydroxide solution is added.
 - **d.** When silver nitrate is added to aqueous potassium chloride, a white precipitate forms. When aqueous ammonia is added, the precipitate disappears.
 - **e.** When a small amount of sodium hydroxide solution is added to a solution of aluminium nitrate, a white precipitate is observed. On the addition of excess sodium hydroxide solution, the precipitate dissolves.
 - **f.** When a few drops of potassium thiocyanate solution are added to a solution of iron(III) nitrate, a blood red colour is observed.

Activity 7B: Complex ion equations (page 31)

- 1. a. $Cu^{2+} + 4NH_3$
 - **b.** $[Pb(OH)_4]^{2-}$
 - c. $[Zn(NH_3)_4]^{2+}$
 - **d.** $Al^{3+} + 4OH^{-}$ or $Al(OH)_3 + OH^{-}$
 - e. [FeSCN]²⁺
 - **f.** $Ag^+ + 2NH_3$
- **2. a.** $Zn(OH)_2 + 2OH^- \longrightarrow [Zn(OH)_4]^{2-}$
 - **b.** $Cu^{2+} + 2OH^{-} \longrightarrow Cu(OH)_{2}(s)$ $Cu^{2+} + 4NH_{3} \longrightarrow [Cu(NH_{3})_{3}]^{2+}$

or
$$Cu(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+} + 2OH^{-}$$

- c. $Pb^{2+} + 2OH^{-} \longrightarrow Pb(OH)_{2}$ $Pb(OH)_{2} + 2OH^{-} \longrightarrow Pb(OH)_{4}^{2-}$
- **d.** $Ag^+ + Cl^- \longrightarrow AgCl$ $AgCl^- + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^$ $or \quad Ag^+ + 2NH_3 \longrightarrow [Ag(NH_3)_3]^+$
- e. $A|^{3+} + 3OH^{-} \rightarrow Al(OH)_{3}(s)$ $Al(OH)_{3} + OH^{-} \rightarrow [Al(OH)_{4}]^{-}$ $Or: A|^{3+} + 4OH^{-} \rightarrow [Al(OH)_{4}]^{-}$
- **f.** $Fe^{3+} + SCN^- \rightarrow [FeSCN]^{2+}$