Activity 4C: Standard solutions

Ans p. 20

- Name the particles present and calculate the amount, in mol, of each present in the following aqueous solutions. (Note: All solutions contain water molecules. Do not include these in the answers.)
 - a. 5 mL of 0.1 mol L⁻¹ sodium chloride solution.
 - **b.** 10 mL of 0.2 mol L⁻¹ sodium carbonate solution.
 - **c.** 35 mL of 0.25 mol L⁻¹ iron(III) chloride solution.
 - **d.** 30 mL of 0.01 mol L⁻¹ calcium hydroxide solution.
 - e. 20 mL of 0.25 mol L⁻¹ sulfuric acid.
- 2. A student has been asked to prepare 250 mL of standard 0.200 mol L⁻¹ sodium carbonate solution.

An empty beaker was weighed (116.48 g) and *anhydrous* sodium carbonate, Na_2CO_3 , was added until the combined mass of beaker and sodium carbonate was 122.05 g. The solid was transferred to a 250 mL volumetric flask. The sodium carbonate was dissolved in deionsed water and the volume made up to the mark. [M (Na_2CO_3) = 106.0 g mol⁻¹]

- a. i. Find the mass of sodium carbonate that was weighed out.
 - ii. Calculate the amount of sodium carbonate in this mass.
- **b.** Calculate the concentration of the standard solution in mol L⁻¹.
- **c.** If a 20.00 mL sample of this solution is used, what amount (mol) of carbonate ions would be present in the sample?
- **3.** 5.30 g of sodium carbonate, Na₂CO₃, is dissolved in water to make 250.0 mL of solution.

 $[M(Na_2CO_3) = 106.0 \text{ g mol}^{-1}]$

- **a.** Find the amount of Na₂CO₃ in 5.30 g of the solid.
- **b.** Find the concentration in mol L⁻¹ of the sodium carbonate solution.
- **c.** What amount of CO₃²⁻ is present in 20.0 mL of this solution?
- **4.** 0.160 g of anhydrous sodium hydroxide is dissolved in enough distilled water to form 50.0 mL of solution.
 - **a.** Find the concentration of this solution. $[M(NaOH) = 40.0 \text{ g mol}^{-1}]$
 - **b.** What amount of $OH^{-}(aq)$ is present in 75.00 mL of this solution?
 - **c.** Explain why this solution would not make a good primary standard.

Activity 4C: Standard solutions (page 19)

- 1. a. NaCl: sodium ions, 0.0005 mol; chloride ions, 0.0005 mol
 - **b.** Na₂CO₂: sodium ions, 0.004 mol; carbonate ions, 0.002 mol
 - c. FeCl₃: iron(III) ions, 0.0088 mol; chloride ions 0.026 mol
 - d. Ca(OH)₂: calcium ions, 0.0003 mol; hydroxide ions, 0.0006 mol
 - e. H₂SO₄: hydrogen ions, 0.01 mol; sulfate ions, 0.005 mol
- **2. a. i.** 122.05 116.48 g = 5.57 g **ii.** $n = \frac{m}{M} = \frac{5.57 \text{ g}}{106 \text{ g mol}^{-1}} = 0.0525 \text{ mol}$
 - **b.** $c = \frac{n}{V} = \frac{0.0525 \text{ mol}}{0.250 \text{ L}} = 0.210 \text{ mol L}^{-1}$
 - **c.** $n = cV = 0.210 \text{ mol } L^{-1} \times 0.02000 L = 0.00420 \text{ mol}$
- **3. a.** $n = \frac{m}{M} = \frac{5.30 \text{ g}}{106 \text{ g mol}^{-1}} = 0.0500 \text{ mol}$
 - **b.** $c = \frac{n}{V} = \frac{0.0500 \text{ mol}}{0.250 \text{ L}} = 0.200 \text{ mol L}^{-1}$
 - **c.** $n = cV = 0.200 \text{ mol } L^{-1} \times 0.02000 \text{ L}$ = 0.004 mol
- **4. a.** $n = \frac{m}{M} = \frac{0.160 \text{ g}}{40.0 \text{ g mol}^{-1}} = 0.00400 \text{ mol}$
 - $c = \frac{n}{V} = \frac{0.00400 \text{ mol}}{0.0500 \text{ L}} = 0.0800 \text{ mol L}^{-1}$
 - **b.** $n = cV = 0.0800 \text{ mol } L^{-1} \times 0.07500 \text{ L}$ = 0.00600 mol
 - **c.** The NaOH does not have a constant composition. It can absorb water from the air, so its mass can change between the time it is weighed and the time when the solution is made up.