Activity 4B: Concentration of diluted solutions

1. a. Calculate the concentration when 25.0 mL of $0.156 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}$ is diluted to 100 mL .
b. Calculate the concentration when 10 mL of $0.0961 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CaCl}_{2}$ solution is diluted to 250 mL of solution.
2. The main ingredient in a commercial bleach is sodium hypochlorite, NaOCl . In the analysis of the concentration of a commercial bleach solution, the original solution needed to be diluted. A 20 mL sample of the original bleach was taken and sufficient water added to make 250 mL of diluted solution. The concentration of the diluted sample was found to be $0.0432 \mathrm{~mol} \mathrm{~L}^{-1}$.

Calculate the concentration of the bleach in the original sample in $\mathrm{mol} \mathrm{L}^{-1}$ and $g \mathrm{~L}^{-1}$.
$M(\mathrm{NaOCl})=74.1 \mathrm{~g} \mathrm{~mol}^{-1}$

Activity 4B：Concentration of diluted solutions（page 17）

1．a．Dilution factor $=\frac{V_{\mathrm{O}}}{V_{\mathrm{f}}}=\frac{25 \mathrm{~mL}}{100 \mathrm{~mL}}=0.25$
New concentration $=0.25 \times 0.156 \mathrm{~mol} \mathrm{~L}^{-1}=0.0390 \mathrm{~mol} \mathrm{~L}^{-1}$
b．Dilution factor $=\frac{V_{\mathrm{O}}}{V_{\mathrm{f}}}=\frac{10 \mathrm{~mL}}{250 \mathrm{~mL}}=0.04$
New concentration $=0.04 \times 0.0961 \mathrm{~mol} \mathrm{~L}^{-1}=0.00384 \mathrm{~mol} \mathrm{~L}^{-1}$
2．＇Undilution factor＇$=\frac{V_{\mathrm{f}}}{V_{\mathrm{O}}}=\frac{250 \mathrm{~mL}}{20 \mathrm{~mL}}=12.5$
Original concentration $=12.5 \times 0.0432 \mathrm{~mol} \mathrm{~L}^{-1}=0.540 \mathrm{~mol} \mathrm{~L}^{-1}$ $0.540 \mathrm{~mol} \mathrm{~L}^{-1} \times 74.1 \mathrm{~g} \mathrm{~mol}^{-1}=40.0 \mathrm{~g} \mathrm{~L}^{-1}$

