## Activity 3F: Water of crystallisation

1. A 2.07 g sample of hydrated sodium carbonate is heated strongly to determine the water of crystallisation. The final mass of the anhydrous salt is 0.77 g .
a. Calculate the moles of sodium carbonate left after the water has been driven off. $M\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=106.0 \mathrm{~g} \mathrm{~mol}^{-1}$
b. Calculate the moles of water lost and hence the formula of the hydrated salt.
2. Calcium chloride is often used as a drying agent, since it can absorb water from the atmosphere to become hydrated (i.e. forms $\mathrm{CaCl}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ ).
5.00 g of anhydrous calcium chloride was used as a drying agent until it could absorb no more water. The hydrated crystals had a mass of 9.86 g . Calculate the formula of the hydrated salt. $M\left(\mathrm{CaCl}_{2}\right)=111.1 \mathrm{~g} \mathrm{~mol}^{-1}, M\left(\mathrm{H}_{2} \mathrm{O}\right)=18.0 \mathrm{~g} \mathrm{~mol}^{-1}$
3. To find the formula of the hydrated salt $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$, the following data were collected:

- mass of crucible and lid 20.26 g
- mass of crucible, lid and hydrated salt 25.58 g
- mass after heating to constant mass 23.66 g

Calculate the formula of the hydrated salt.
$M\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)=158 \mathrm{~g} \mathrm{~mol}^{-1}, M\left(\mathrm{H}_{2} \mathrm{O}\right)=18.0 \mathrm{~g} \mathrm{~mol}^{-1}$

## Activity 3F: Water of crystalisation (page 13)

1. a. $m\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.77 \mathrm{~g} \quad n\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\frac{0.77 \mathrm{~g}}{106 \mathrm{~g} \mathrm{~mol}^{-1}}=0.00726 \mathrm{~mol}$
b. $m\left(\mathrm{H}_{2} \mathrm{O}\right)=2.07 \mathrm{~g}-0.77 \mathrm{~g}=1.30 \mathrm{~g}$

$$
\begin{aligned}
& n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{1.30 \mathrm{~g}}{18.0 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0722 \mathrm{~mol} \\
& \begin{aligned}
n\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right): n\left(\mathrm{H}_{2} \mathrm{O}\right) & =0.00726: 0.0722 \\
& =1: 10
\end{aligned}
\end{aligned}
$$

Formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
2. $m\left(\mathrm{CaCl}_{2}\right)=5.00 \mathrm{~g} \quad n\left(\mathrm{CaCl}_{2}\right)=\frac{5.00 \mathrm{~g}}{111.1 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0450 \mathrm{~mol}$ $m\left(\mathrm{H}_{2} \mathrm{O}\right)=9.86 \mathrm{~g}-5.00 \mathrm{~g}=4.86 \mathrm{~g}$
$n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{4.86 \mathrm{~g}}{18.0 \mathrm{~g} \mathrm{~mol}^{-1}}=0.270 \mathrm{~mol}$
$n\left(\mathrm{CaCl}_{2}\right): n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.0450: 0.270$

$$
=1: 6
$$

Formula $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
3. $m\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)=23.66 \mathrm{~g}-20.26 \mathrm{~g}=3.40 \mathrm{~g}$
$n\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)=\frac{3.40 \mathrm{~g}}{158 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0215 \mathrm{~mol}$
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=25.58-23.66 \mathrm{~g}=1.92 \mathrm{~g}$
$n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{1.92 \mathrm{~g}}{18.0 \mathrm{~g} \mathrm{~mol}^{-1}}=0.107 \mathrm{~mol}$
$n\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right): n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.0215: 0.107=1: 4.98$
Formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

