Activity 3E：Percentage composition，empirical and molecular formulae Ans p． 11

1．What is the percentage composition of each element in potassium nitrate， KNO_{3} ？
2．a．Find the percentage of carbon in acetylene， $\mathrm{C}_{2} \mathrm{H}_{2}$ ．
b．Calculate the percentage，by weight，of magnesium in magnesium chloride．
3．Find the empirical formulae of the substances with the following percentage compositions：
a． 80% copper， 20% oxygen
b． 53% aluminium， 47% oxygen
c． 1.6% hydrogen， 22.2% nitrogen， 76.2% oxygen
4．a．Calculate the empirical formula of the oxide of sulfur which is 40% sulfur by weight．
b．A hydrocarbon contains 90% carbon．Calculate the empirical formula of the hydrocarbon．
5．a．An oxide of silicon was produced from 0.28 g of silicon．The mass of the oxide was 0.60 g ．
Calculate the empirical formula of the oxide．
b． 10.2 g of vanadium is combined with 21.3 g of chlorine to make vanadium chloride．
Calculate the empirical formula of the vanadium chloride．
6．a．The empirical formula of a substance is CH_{2} ．Its molar mass is $84 \mathrm{~g} \mathrm{~mol}^{-1}$ ．Find the molecular formula of the substance．
b．A hydrocarbon contains 82.7% carbon and 17.3% hydrogen by weight．
i．Work out the empirical formula．
ii．The molar mass of the compound is $58 \mathrm{~g} \mathrm{~mol}^{-1}$ ．What is its molecular formula？
c．A gaseous hydrocarbon was found to contain 80% carbon and 20% hydrogen by mass．
The hydrocarbon was found to have a molar mass of $30 \mathrm{~g} \mathrm{~mol}^{-1}$ ．Use this value to work out the molecular formula of the hydrocarbon．

Activity 3E: Percentage composition, empirical and molecular formulae (page 10)

1. $M\left(\mathrm{KNO}_{3}\right)=101.1 \mathrm{~g} \mathrm{~mol}^{-1}$
$\% K=\frac{39.1}{101.1} \times 100=38.7 \%$
$\% N=\frac{14.0}{101.1} \times 100=13.9 \%$
$\% \mathrm{O}=\frac{3 \times 16.0}{101.1} \times 100=47.5 \%$
2. a. $M\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=26 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\% C=\frac{2 \times 12}{26} \times 100=92.3 \%
$$

b. $M\left(\mathrm{MgCl}_{2}\right)=95.3 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\% \mathrm{Mg}=\frac{24.3}{95.3} \times 100=25.5 \%
$$

3. a. $n(\mathrm{Cu})=\frac{80}{63.6}=1.26$

$$
n(\mathrm{O})=\frac{20}{16.0}=1.25
$$

Ratio $\mathrm{Cu}: \mathrm{O}=1.26: 1.25=\frac{1.26}{1.25}: \frac{1.25}{1.25}=1: 1$, i.e. CuO
b. $n(\mathrm{Al})=\frac{53}{27.0}=1.96$

$$
\begin{aligned}
& n(\mathrm{O})=\frac{47}{16.0}=2.94 \\
& \mathrm{Al}: \mathrm{O}=1.96: 2.94=\frac{1.96}{1.96}: \frac{2.94}{1.96}=1: 1.5=2: 3, \text { i.e. } \mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
$$

c. $n(H)=\frac{1.6}{1.0}=1.6$

$$
\begin{aligned}
& n(\mathrm{~N})=\frac{22.2}{14.0}=1.59 \\
& n(\mathrm{O})=\frac{76.2}{16.0}=4.76 \\
& \mathrm{H}: \mathrm{N}: \mathrm{O}=1.6: 1.59: 4.76=\frac{1.6}{1.59}: \frac{1.59}{1.59}: \frac{4.76}{1.59}=1: 1: 3, \text { i.e. } \mathrm{HNO}_{3}
\end{aligned}
$$

4. a. $n(\mathrm{~S})=\frac{40}{32.1}=1.25 \mathrm{~mol}$

$$
\begin{aligned}
& n(\mathrm{O})=\frac{60}{16.0}=3.75 \mathrm{~mol} \\
& n(\mathrm{~S}): n(\mathrm{O})=1: 3, \text { i.e. } \mathrm{SO}_{3}
\end{aligned}
$$

b. $n(\mathrm{C})=\frac{90}{12.0}=7.5$

$$
\begin{aligned}
& n(\mathrm{H})=\frac{10}{1}=10.0 \\
& n(\mathrm{C}): n(\mathrm{H})=7.5: 10=\frac{7.5}{7.5}: \frac{10.00}{7.5}=1: 1.33=1: \frac{4}{3}=3: 4, \text { i.e. } \mathrm{C}_{3} \mathrm{H}_{4}
\end{aligned}
$$

5. a. $(\mathrm{Si})=\frac{0.28 \mathrm{~g}}{28.1 \mathrm{~g} \mathrm{~mol}^{-1}}=0.00996 \mathrm{~mol}$

$$
\begin{aligned}
& m(\mathrm{O})=0.60 \mathrm{~g}-0.28 \mathrm{~g}=0.32 \mathrm{~g} \\
& n(\mathrm{O})=\frac{0.32 \mathrm{~g}}{16.0 \mathrm{~g} \mathrm{~mol}^{-1}}=0.02 \mathrm{~mol} \\
& n(\mathrm{Si}): n(\mathrm{O})=1: 2 \text {, i.e. } \mathrm{SiO}_{2}
\end{aligned}
$$

b. $n(\mathrm{~V})=\frac{10.2 \mathrm{~g}}{50.9 \mathrm{~g} \mathrm{~mol}^{-1}}=0.200 \mathrm{~mol}$

$$
\begin{aligned}
& n(\mathrm{Cl})=\frac{21.3 \mathrm{~g}}{35.5 \mathrm{~g} \mathrm{~mol}^{-1}}=0.600 \mathrm{~mol} \\
& n(\mathrm{~V}): n(\mathrm{Cl})=1: 3 \text {, i.e. } \mathrm{VCl}_{3}
\end{aligned}
$$

6. a. $M\left(\mathrm{CH}_{2}\right)=14 \mathrm{~g} \mathrm{~mol}^{-1} \quad M($ compound $)=84 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\frac{M\left(\text { compound }^{2}\right)}{M\left(\mathrm{CH}_{2}\right)}=\frac{84}{14}=6
$$

Molecular formula $=6\left(\mathrm{CH}_{2}\right)=\mathrm{C}_{6} \mathrm{H}_{12}$
b. i. $n(\mathrm{C})=\frac{82.7}{12.0}=6.89 \quad n(\mathrm{H})=\frac{17.3}{1.0}=17.3$

$$
n(\mathrm{C}): n(\mathrm{H})=1: 2.5=2: 5
$$

$$
\mathrm{EF}=\mathrm{C}_{2} \mathrm{H}_{5} \quad M\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=29 \mathrm{~g} \mathrm{~mol}^{-1}
$$

ii. $M($ compound $)=58 \mathrm{~g} \mathrm{~mol}^{-1}$ molecular formula $=2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{C}_{4} \mathrm{H}_{10}$
c. $n(\mathrm{C})=\frac{80}{12.0}=6.67 \quad n(\mathrm{H})=\frac{20}{1.0}=20$

$$
n(\mathrm{C}): n(\mathrm{H})=1: 3 \quad \mathrm{EF}=\mathrm{CH}_{3}
$$

