Achievement Standard 91032

Apply right-angled triangles in solving measurement problems

Diagrams are not to scale.

Question 1

A farmer has to build a ramp to load sheep onto a truck.

The ramp is to make an angle of 15° with the ground.
The horizontal distance between the beginning and the end of the ramp is 3 metres.
a. Calculate the height of the end of the ramp, h, to $2 \mathrm{~d} . \mathrm{p}$.
b. How long is the ramp?
\qquad
\qquad
\qquad
c. If the angle of 15° is doubled to 30°, and the distance of 3 metres stays the same, what can you say about the value of h ? Give a reason(s) to support your answer.

Question 2

The size of a rectangular TV screen is given by the length of its diagonal, rounded to the nearest centimetre.

a. Use the theorem of Pythagoras to calculate the size of a TV screen with a length of 45 cm and a width of 34 cm .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. A larger TV has a screen size (diagonal length) of 110 cm . If the length of the screen is 90 cm , calculate its width to the nearest centimetre.

Question 3

A man M is in a boat at sea and is rowing towards a vertical cliff $A C$ which is 3.5 km away.

The height of the cliff is 100 metres.
The angle of elevation of the top of the cliff from the position of the man at M is denoted by x°.
Calculate the value of x.

Question 4

Andrew is a keen gardener and is planning to put a square bed of flowers in his lawn. He has pegged out the diagonal of the square flower bed to be 4 metres long. He makes a scale drawing of the diagonal and pegs out the rest of the square bed. Calculate the length of the side of the square, x, in metres. Round your answer to 2 d.p.
x metres

Question 5

An upright square-based pyramid is drawn below. All the sloping edges are of length 6 cm . The square base has sides of length 5 cm .

a. The base is redrawn below.

A

Calculate the length of $A C$ to $2 \mathrm{~d} . \mathrm{p}$.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Calculate the angle the sloping edge VC makes with the square base of the pyramid. (You may find the figure here helpful.)

Solutions

Question 1

a. The side h is opposite the angle and the side of length 3 m is adjacent to the angle, so choose tangent (tan).

$$
\begin{array}{rlr}
\tan 15^{\circ} & =\frac{h}{3} & \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
h & =3 \tan 15^{\circ} & \text { multiplying by } 3 \\
& =0.8038 \ldots &
\end{array}
$$

The height of the ramp is $h=0.80 \mathrm{~m}$ (2 d.p.)
b. Using Pythagoras

$$
\begin{aligned}
x^{2} & =0.8^{2}+3^{2} \\
& =9.64 \\
x & =3.104 \ldots \quad \text { taking square root }
\end{aligned}
$$

the ramp is 3.10 m long ($2 \mathrm{~d} . \mathrm{p}$.)
c. The relationship becomes

$$
\begin{array}{rlr}
\tan 30^{\circ} & =\frac{h}{3} & \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
h & =3 \tan 30^{\circ} & \text { multiplying by } 3 \\
& =1.732 \ldots &
\end{array}
$$

So to two decimal places the value of h would be 1.73 metres, which is more than double its previous value ($2 \times 0.80=1.6$)

Question 2

a. $x=\sqrt{\left(45^{2}+34^{2}\right)}$
$=\sqrt{3181}$

$$
=56.400 \ldots
$$

The size of the screen is 56 cm (rounding to the nearest centimetre).
b. The diagonal makes a right-angled triangle with the two sides. Let x be the width of the screen.

By the theorem of Pythagoras,

$$
\begin{aligned}
x^{2}+90^{2} & =110^{2} \\
x^{2} & =110^{2}-90^{2} \quad \text { rearranging } \\
x & =\sqrt{\left(110^{2}-90^{2}\right)} \quad \\
& =\sqrt{4000} \\
& =63.24 \ldots
\end{aligned}
$$

The width of the screen is 63 cm (rounding to the nearest centimetre).

Question 3

a. All sides should be in the same unit, so convert 3.5 km to 3500 m .

100 m

The side of length 100 m is opposite the angle and the side of length 3500 m is adjacent to the angle, so choose tangent (tan).

$$
\begin{array}{rlr}
\tan x & =\frac{100}{3500} & \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
\tan x & =0.02857 & \\
x & =\tan ^{-1} 0.02857 & \text { taking inverse tan } \\
x & =1.6^{\circ} &
\end{array}
$$

Question 4

Using the theorem of Pythagoras in the right-angled triangle shown

Question 5

a. Using the theorem of Pythagoras in the right-angled triangle $A B C$:

$$
\begin{aligned}
\mathrm{AC}^{2} & =5^{2}+5^{2} \\
& =50 \\
\mathrm{AC} & =\sqrt{50} \\
\mathrm{AC} & =7.07 \mathrm{~cm}(2 \text { d.p. })
\end{aligned}
$$

b. Draw a perpendicular line from V to the side AC to form the right-angled triangle shown below. The required angle is marked θ on the diagram.

The base of the triangle is of length half $A C$
Base length $=7.07 \div 2 \quad$ since triangle VAC is isosceles

$$
=3.54 \mathrm{~cm}(2 \mathrm{~d} . \mathrm{p} .)
$$

The base is adjacent and the side of length 6 cm is the hypotenuse, so choose cosine (\cos).
$\cos \theta=\frac{3.54}{6} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$

$$
\theta=\cos ^{-1}\left(\frac{3.54}{6}\right)
$$

$$
=53.8^{\circ}
$$

VC makes an angle of 53.8° with the square base.

