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Abstract 
Summary: 
Linked-read sequencing technologies offering reads with both high base quality and long-range DNA con-
nectedness have shown great success in genomic studies. The mainstream platforms include 10x Ge-
nomics linked-read (10x), Single Tube Long Fragment Read (stLFR) and Transposase Enzyme-Linked 
Long-read Sequencing (TELL-Seq). The existing data analysis pipelines, e.g., Long Ranger, have been 
developed to process sequencing data from particular platforms and so are unable to fully utilize the unique 
characteristics of other platforms; thus, users have limited tools to choose for downstream analysis. To 
address these limitations, we present Linked-Read ToolKit (LRTK), a unified and versatile toolkit to process 
linked-read sequencing data from different platforms. LRTK provides flexible functions to perform data sim-
ulation, format conversion, data preprocessing, barcode-aware read alignment, variant calling and phasing. 
It also allows multi-sample batch processing and generates a HTML report with key statistics and plots. We 
applied LRTK to the linked-read data of NA24385 obtained from all three platforms, where the results 
showed the advancement of LRTK in structural variation recall rate for 10x linked-reads and in increasing 
phase block N50 for 10x and stLFR linked-reads. 
Availability: Source codes are available at https://github.com/ericcombiolab/LRTK. Anaconda supports the 
installation of LRTK and its dependencies. 
Contact: ericluzhang@hkbu.edu.hk 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  
Linked-read sequencing provides data with high base quality and long-
range DNA connectedness and has shown significant advancement in 
human genome and metagenome research (Eisenstein, 2015; Wang et al., 
2019; Chen et al., 2020). It circumvents the lack of long-range DNA 

information by short-read sequencing; and the high error rates and large 
initial DNA load requirements of long-read sequencing (e.g., Oxford 
Nanopore and Pacific Bioscience). These advantages of linked-read 
sequencing are valuable in dealing with some challenging cases of low-
input clinical samples, such as cancer tissues and infectious disease 
samples. Further, the low cost of linked-read sequencing enables its 
application to large cohort studies.  
In the past decades, several commercially available linked-read sequenc-
ing platforms, such as 10x Genomics linked-read (10x; now discontin-

ued) and the newly developed stLFR (Wang et al., 2019) and TELL-Seq 
(Chen et al., 2020), have been applied to many genomic studies. Some 

pipelines have been developed to analyze the linked-read sequencing 
data generated by these platforms. For example, Long Ranger (Zheng et 

al., 2016) performs barcode-aware read alignment and implements mod-
ules for variant calling and phasing using 10x linked-reads. It requires 
large storage to save intermediate outputs. Tell-Sort (Chen et al., 2020) 
is a Docker-based pipeline to process raw TELL-Seq reads, and its 
source codes are not publicly available. For stLFR (Wang et al., 2019), a 
customized pipeline has been developed to first convert its raw reads into 
a 10x-compatible format, after which Long Ranger is applied for down-

stream analysis. This pipeline commonly requires a lot of RAM, and its 
data format conversion process is time consuming. There is a lack of a 
unified and open-source toolkit that works compatibly with different 
platforms.  
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Here, we present Linked-Read ToolKit (LRTK), a unified and versatile 
toolkit to analyze linked-read sequencing data from any of the three 
platforms. LRTK delivers a suite of utilities to perform data simulation, 
format conversion, data preprocessing, barcode-aware read alignment, 
quality control, variant detection and phasing. In particular, LRTK is 

open-source and can generate a HTML report to calculate the key pa-
rameters for library preparation and summarize the quality statistics of 
sequenced reads. We applied LRTK to analyze 10x linked-reads, stLFR 
and TELL-Seq from NA24385 and found that LRTK outperformed Long 
Ranger in structural variation (SV) detection recall rate for 10x linked-
reads and increased phase block N50 for 10x linked-reads and stLFR. 

 
 
Figure 1. (A) Overview of LRTK; (B) Quality matrices for different 
platforms; (C) Performance of SNV and INDEL calls using FreeBayes; 
(D) Phase block N50; (E) SV detection in 10x linked-reads. The detailed 
descriptions are provided in Supplementary Figure 1 and Supplemen-
tary Notes. 

2 Methods 
LRTK integrates several widely used off-the-shelf tools and implements 
utility scripts to facilitate linked-read analysis. It consists of two mod-
ules: (1) raw read analysis module that performs data simulation, format 
conversion, data preprocessing, barcode-aware read alignment and quali-

ty control; and (2) variant analysis module that performs detection and 
phasing of single nucleotide variations (SNVs), small insertions and 
deletions (INDELs) and SVs (Supplementary Figure 1 and Figure 1A). 
The raw read analysis module converts the format of linked-reads from 
any of the three platforms into a unified FASTQ format (Supplementary 
Figure 2), which contains a new field “BX:Z:” to store 16 bp (10x 
linked-reads), 18 bp (TELL-Seq) and 30 bp (stLFR) barcode sequences. 
For 10x and stLFR linked-reads, the barcodes are compared to corre-
sponding barcode whitelists to remove any potential errors. Due to the 

lack of a barcode whitelist for TELL-Seq, LRTK adopts the approach 
described by Chen et al. (Chen et al., 2020) to correct the barcode errors. 
For data preprocessing, LRTK adopts fastp (Chen et al., 2018)  to re-
move low-quality reads and adapter contamination rapidly. We modified 
EMA (Shajii et al., 2018) to perform barcode-aware read alignment and 
make it compatible for the barcodes with various lengths.The duplicated 
reads are marked using MarkDuplicates with the “BARCODE_TAG” 
parameter in Picard (https://broadinstitute.github.io/picard/). LRTK also 
supports linked-reads simulation from 10x and stLFR platforms. 

The variant analysis module integrates six well-known variant callers 
and three phasing tools to detect and phase SNVs, INDELs and SVs 

(Supplementary Figure 1). Users can either run these functions inde-
pendently or use the “WGS” command to run the whole pipeline in an 
end-to-end manner, which has been optimized for multi-sample batch 
analysis. LRTK can generate a standalone HTML report to show the key 
statistics and essential plots for raw reads, read alignments, reconstructed 

physical long fragments and genomic variants (Supplementary Figure 
3). LRTK reconstructs long DNA fragments using the read coordinates 
from alignments and calculates several key statistics such as the number 
of fragments per barcode, weighted/unweighted average fragment length, 
and read depth per fragment (Supplementary Figure 4) (Zhang et al., 
2019). LRTK and its dependents are compatible and can be easily in-
stalled using Anaconda. The detailed user mannuals are added in the 
Supplementary Notes. 

3 Results 
We used LRTK to analyze 10x linked-reads, stLFR and TELL-Seq of 
NA24385 (Supplementary Table 1). We obtained 4.5 M, 38 M, and 41 
M error-corrected barcodes for 10x linked-reads, stLFR and TELL-Seq, 
respectively. Of these barcodes, 2.3 M, 13 M and 6.9 M barcodes were 

eligible to reconstruct long DNA fragments (Supplementary Table 2). 
LRTK detected approximately 7.36, 1.22 and 3.09 fragments per barcode 
and achieved an average fragment length of 50.19 kb, 62.28 kb and 
80.04 kb for 10x linked-reads, stLFR and TELL-Seq, respectively (Fig-
ure 1B and Supplementary Table 3). We further evaluated the variants 
detected by LRTK benchmarked with the gold standard from Genome in 
a Bottle (Zook et al., 2020). LRTK (FreeBayes) achieved average recall 
rates of 94% for SNVs and 73% for INDELs (Figure 1C and Supple-
mentary Table 4). We observed that nearly 98% (10x linked-reads), 

96% (stLFR), and 95% (TELL-Seq) of the SNVs and INDELs could be 
phased by LRTK (HapCUT2), suggesting that the linked-reads from the 
three platforms had comparable variant phasing performance (Supple-
mentary Figure 5C). Compared to Long Ranger, LRTK increased phase 
block N50 up to 26.1 Mb (Long Ranger: 4.9Mb) and 19.4 Mb for 10x 
linked-reads and stLFR (Long Ranger: 7.4 Mb, Figure 1D). LRTK (Aq-
uila) outperformed Long Ranger with respect to the recall of SVs, espe-
cially the deletions (Aquila: 81%, Long Ranger: 47%) (Figure 1E). 
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A.

B.

Supplemental Figure 2. (A). Illustration of the unified FASTQ format. Each read contains
the barcode field “BX:Z:barcode” following the read id. The length of barcode sequence
are 16 bp, 30bp and 18bp for 10x, stLFR and TELL-Seq, respectively. (B). Illustration of
the barcode information in the alignment file. The barcode information is presented using
the “BX:Z:barcode” format in the optional filed of alignment files.
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