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Abstract

Here, we report the discovery of a novel Sediminibacterium sequenced from laboratory cultures of freshwater stream cyanobacteria from
sites in Southern California, grown in BG11 medium. Our genome-wide analyses reveal a highly contiguous and complete genome (97%
BUSCO) that is placed within sediminibacterial clades in phylogenomic analyses. Functional annotation indicates the presence of genes
that could be involved in mutualistic/commensal relationship with associated cyanobacterial hosts.
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Introduction
The genus Sediminibacterium, first described by Qu and Yuan
(2008), is a member of the Chitinophagaceae family within the
Bacteroidetes phylum. These gram-negative bacteria that are
most closely related phylogenetically to Terrimonas and Niabella
(Qu and Yuan 2008) are actively mobile by gliding and can be
strict or facultative anaerobes, or obligate aerobes (Kim et al.
2013). Currently, 8 species of Sediminibacterium have been isolated
from sediments derived from freshwater reservoirs, sewage, acti-
vate sludge, soil from ginseng fields, and fishbowls (Ayarza et al.
2014; Kang et al. 2014; Kim et al. 2013, 2016; Song et al. 2017;
Garc�ıa-López et al. 2019; Wu et al. 2021). During the study of 2
freshwater cyanobacteria (blue-green algae), the genome of a
Sediminibacterium resident in the phycosphere of the blue-green
algae was sequenced. The diffusive boundary layer immediately
surrounding cyanobacterial cells or colonies (Ramanan et al.
2016), otherwise known as the phycosphere, is a resource-rich en-
vironment for bacterial colonizers such as sediminibacteria.
Microalgae secrete 5–40% of their total photosynthate into the
phycosphere, and of this mucilage, 30–90% can be utilized by het-
erotrophic bacteria (Kaplan and Bott 1982; Haack and McFeters

1982; Stevenson et al. 1996). The nutrients, metabolites, and sig-

naling molecules that are exchanged between the bacteria and

the microalgae in this microenvironment dictate the nature of

their relationship which can be mutualistic, commensal, antago-

nistic, parasitic, or competitive. Bacteria and their association

with cyanobacterial hosts from lakes and streams, particularly

with respect to the phycosphere, is profoundly understudied. The

genomes reported here of sediminibacterial residents in the phy-

cosphere of 2 benthic freshwater cyanobacteria will shed light on

the nature of the relationship between the organisms, the specif-

icity of their interactions, and the effector molecules that trigger

their affiliation. The availability of the genome sequence, more-

over, promises to open new avenues for research.

Materials and methods
Samples and collection sites
The novel bacterium was isolated from laboratory cultures

of 2 stream benthic cyanobacterial strains, Coccoid

cyanobacterium_CKK01 and Filamentous cyanobacterium

LYN-RS (hereon referred to using their strain names). Coccoid
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cyanobacterium_CKK01 was collected epiphytically on green
alga Cladophora on August 30, 2018, from Escondido Creek, an
urban perennial stream subject to intense agricultural runoff,
increased salinity, and nutrients. Filamentous cyanobacterium
LYN-RS was isolated from large visible filamentous mats on the
bottom of a nearly completely dry intermittent creek in Anza
Borrego Desert on December 12, 2019. Both samples consisting
of large visible filamentous algae were collected by forceps,
placed in plastic bags with water from the habitat, and trans-
ported in coolers to the California Algae Lab at CSU San Marcos
for cyanobacteria isolation. Coccoid cyanobacterium_CKK01
were detected during the observation of Cladophora filaments
with an Olympus SZ61 Stereomicroscope (Olympus America
Inc., Center Valley, Pennsylvania). The cells of this coccoid cya-
nobacterium were grouped in colonies attached to the surface
of Cladophora. Coccoid cyanobacterium_CKK01 cells were re-
moved by fine forceps and initially cultured on a solid 1% BG-11
medium (Sigma-Aldrich, Inc., St. Louis, MO) until dispersed col-
onies developed and these were used for monoclonal strain
isolation and growth in liquid BG-11. A single filament of
Filamentous cyanobacterium LYN-RS was isolated directly in
liquid BG-11. Both nonaxenic cyanobacterial strains grew for
50 days at 20–23�C with an irradiance of 80 mmol photons m–2

s–2 and a 12:12 h light:dark cycle2. The cyanobacterial cultures
were grown until dense biofilm was formed to provide enough
biomass for high molecular weight DNA extraction to obtain
both cyanobacterial and bacterial genomes. Both cultures were
also tested for production of cyanotoxins microcystins, anatox-
ins, saxitoxins, and cylindrospermopsins by liquid chromatog-
raphy–tandem mass spectrometry as described in Conklin et al.
(2020).

Transmission electron microscopy
Transmission electron microscopy (TEM, Fig. 1a) was performed
with fresh cultured material from both cyanobacterial strains as
described in Stancheva et al. (2019). Briefly, cells were fixed with
2% glutaraldehyde in 0.1 M cacodylate buffer and postfixed in 1%
OsO4 in 0.1 M cacodylate buffer for 1 hr on ice. The colonies were
dehydrated in graded series of ethanol (50–100%) while remaining
on ice. They were then subjected to 1 wash with 100% ethanol
and 2 washes with acetone (10 min each) and embedded with
Durcupan. Sections were cut at 60 nm on a Leica UCT ultramicro-
tome and picked up on 300 mesh copper grids. Sections were
post-stained with 2% uranyl acetate for 5 min and Sato’s lead
stain for 1 min. Cells were viewed using FEI Tecnai Spirit G2
BioTWIN TEM and photographed with a bottom mount Eagle 4k
(16 MP) camera (Hillsboro, OR) at the Department of Cellular and
Molecular Medicine at University of California San Diego.

DNA extraction and genome sequencing
High molecular weight genomic DNA was isolated using a stan-
dard CTAB chloroform extraction protocol followed by cesium
chloride gradient centrifugation (Wilson 2001) from the whole cul-
ture containing both cyanobacterial host and the phycosphere sed-
iminibacteria. The purity of the DNA was verified using
absorbance ratios at A260/280 and A260/230 while quantity was
determined by the absorbance at A260 on a nanodrop spectropho-
tometer. The integrity of the DNA was assessed using a 0.8% aga-
rose gel. Sequencing libraries were prepared using the Transposase
Enzyme Linked Long-read Sequencing (TELL-Seq) Whole Genome
Sequencing (WGS) Library Prep Kit from Universal Sequencing
(Carlsbad, CA). Briefly, 500 ng of genomic DNA was barcoded with
8 million TELL beads. After capture, barcoded DNA underwent 14

cycles of PCR amplification. The libraries were pooled and se-
quenced at the Scripps Research Institute (San Diego, CA) on an
Illumina TC NextSeq 500/550 Mid Output Kit V2.5 (150 cycles) plat-
form, which generated of 210 Gb of raw data for each of the 2 li-
braries. Demultiplexed raw reads were subjected to quality control
using FastQC (FastQC 2016), and bases with a PHRED Q score of
<30 were trimmed.

Assembly
Raw sequence output was processed using the Tell-Read pipeline
(Universal Sequencing, Carlsbad, CA); adaptor sequences were re-
moved and BCL data were converted to linked read FASTQ files.
Thereafter, the Tell-Link de novo assembly pipeline (Universal
Sequencing) was applied. Barcode information was used to un-
ravel complex structures in the de Bruijn assembly graphs at the
global level. A local assembly process was then initiated to re-
solve the global graph by identifying sets of reads that share barc-
odes between 2 edges. This collection of reads was used to
reconstruct de Bruijn graphs in local assemblies. To arrive at the
best assembly, different combinations of k-mer sizes were tested
whereby global k-mer sizes ranged from 45 to 55, and local k-mer
sizes varied between 27 and 31. The optimal k-mer combination
was determined to be 55 and 31 for the global and local assem-
blies, respectively.

Assembly quality, annotation, and phylogeny
Quality and completeness of the assemblies were assessed us-
ing QUAST v. 5.0.2 (Gurevich et al. 2013) and BUSCO v. 5.3.2
(Seppey et al. 2019) against the odb_bacteria10 gene family data-
base followed by automated gene calling and functional analy-
ses using the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP; Tatusova et al. 2016) and KEGG (Kanehisa et al. 2008) us-
ing the BlastKOALA web interface (Kanehisa et al. 2016), query-
ing against the genus_prokaryotes database. GapMind (Price
et al. 2020) was then utilized to identify amino acid biosynthesis
pathways in our PGAP-annotated genome. For phylogenetic
analyses, all annotated protein-coding nucleotide sequences
were used as queries against the nr database in NCBI using
BLASTP (Altschul et al. 1990), and the top 50 hits were obtained
as multiple sequence alignments with Mview (Brown et al. 1998).
Thereon, we identified single-copy gene markers by (1) filtering
out alignments with species that were only present in one of the
queries and (2) retaining only alignments where a particular
species hit was present in more than 90% of queries. RAxML
v.8.0 (Stamatakis 2014) with the PROTGAMMAAUTO option was
then used to generate single-copy gene trees from a random set
of 100 single-copy genes. These gene trees were then pooled to
generate a consensus species tree using ASTRAL v.5.1.1
(Mirarab et al. 2014). A BLASTN homology search was also per-
formed to compare and establish the novelty of our genome
against sister species of sediminibacteria identified in the
ASTRAL species tree. To resolve the phylogenomic position of
Coccoid cyanobacterium_CKK01 and Filamentous cyanobacte-
rium LYN-RS within sediminibacteria, we also utilized GToTree
(Lee 2019) against all available sediminibacterial genomes in
GTDB (Parks et al. 2022). Briefly, we searched GTDB for
“Sediminibacterium,” which produced a total of 65 accession
hits. GToTree then automates (1) querying and downloading
all genomes from GenBank, (2) translating the Coccoid
cyanobacterium_CKK01 and Filamentous cyanobacterium LYN-
RS in all open reading frames, (3) filtering all genomes for 90
single-copy genes against the Bacteroidetes HMM-gene set,
retaining only single-copy genes present in at least 90% of all
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genomes, (4) performing multiple sequence alignments, fol-
lowed by (5) phylogenetic reconstruction of the concatenated
multiple sequence alignment. Furthermore, we also utilized
GTDB-TK v.1.7.0 (Chaumeil et al. 2020) via the kbase.us web in-
terface to place our genome assemblies among all available
bacterial genomes in GTDB (Parks et al. 2020) using classification
of bacterial Operational Taxonomic Units (OTUs).

Results and discussion
Genome assemblies of sediminibacteria derived from the phy-
cosphere of Coccoid cyanobacterium_CKK01 and Filamentous
cyanobacterium LYN-RS revealed the presence of a single spe-
cies of bacterium (99% Average Nucleotide Identity between as-
semblies). The most contiguous of the assemblies comprised a
single contig of length 3.34 Mbps, with 43.06% GC, while the
other assembly was split into several smaller contigs (Table 1).
Both assembled genomes have been submitted to NCBI Project
SAMN23222054 and are also accessible via the project’s GitHub
page. The novelty of these genomes was established using geno-
mic similarity with 28 other sediminibacterial genomes, with
the highest BLASTN identity (81.46%) to NCBI Accession IDs:
GCA_013391385.1, GCA_019264545.1, and GCA_019264645.1.
Annotation using PGAP identified 3,009 genes, including 2,964
coding sequences, 2 pseudogenes, and 45 RNA sequences (3
rRNA, 39 tRNA, 3 ncRNA) with overall coding density of 752
genes per Mbps. The genome was identified to be 97% complete
(BUSCO, bacterial-odb10—Table 1), with 1% of duplications, and

2% of missing families. Forty-seven percentage of all annotated
genes were functionally classified using KEGG (Fig. 1b). Species
tree reconstruction using ASTRAL placed our novel bacterium
as sister to sediminibacteria, with hot-spring chitinobacteria
within the same super-clade (Fig. 2). Further phylogenomic res-
olution using GToTree (Fig. 3) placed the sister sediminibacte-
rial novel genomes of Coccoid cyanobacterium_CKK01 and
Filamentous cyanobacterium LYN-RS strains as monophyletic
with Sediminibacterium_sp013391385 (GCA_013391385.1) and
Sediminibacterium_sp012270485 (GCA_012270485.1), and sister
to the monophyly consisting of Sediminibacterium_sp003526435
(GCA_003526435.1) and Sediminibacterium goheungense
(GCF_004361915.1). These results were also recapitulated by our
GTDB-Tk analyses, which place the new assemblies closest to
GCA_013391385.1 (93.4% ANI), GCA_012270485.1 (94.16% ANI),
Sediminibacterium goheungense (GCF_004361915.1, 79.28% ANI),
Sediminibacterium_sp003526435 (GCA_003526435.1, 78.75% ANI),
and Sediminibacterium_sp009996675 (GCA_009996675.1, 77.84%
ANI).

Analyses of the genomic sequence indicates that, in the absence
of a lactate dehydrogenase and the presence of genes encoding
oxidase, superoxidase dismutase, and catalase, the novel
Sediminibacterium is strictly aerobic like Sediminibacterium salmoneum
(Kim et al. 2013). While complete pathways for glycolysis, the citric
acid cycle, pentose phosphate shunt, beta-oxidation, and the elec-
tron transport chain are present, there is no support for the
Entner–Douroroff pathway, or the metabolism of formate, meth-
ane, or sulfate reduction. In addition, unlike many of the other

Fig. 1. a) (L) TEM micrograph showing our novel Sediminibacterium sp. within the phycosphere of the cultured Coccoid cyanobacterium_CKK01. b) (R)
KEGG functional classification of approximately 47% of all annotated genes.
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sediminibacterial species where menaquinone-7 is the major elec-
tron carrier (Kim et al. 2013; Kang et al. 2014; Song et al. 2017), genes
encoding key enzymes for the biosynthesis of both menaquinones
(mqnA, mqnB, mqnC, mqnD, mqnE, mqnX, menI, ubiE) and ubiqui-
nones (ubiA, ubiD, ubiE, ubiG, ubiH, ubiX) are present in this strain,
indicating that both may be functional. When GapMind (Price et al.
2020) was used to curate amino acid biosynthetic pathways,
enzymes for the synthesis of nearly all 20 amino acids were identi-
fied with high confidence. Proline and serine pathways, however,
could not be resolved, with enzymes for N-acetylornithine amino-
transferase, N-acetylornithine deacetylase, and phosphoserine
phosphatase either missing or highly divergent. Complete path-
ways, moreover, could not be identified when using BlastKOALA
(Kanehisa et al. 2016), for the biosynthesis cobalmin, thiamin, bio-
tin, and tetrafolate suggesting either the presence of variant path-
ways and enzymes or that this strain of Sediminibacterium is
auxotrophic for these vitamins and cofactors. Notable among the
65 identified transporters were those for starch (TonB, SusD), malt-
ose (MalY), futose (fucP), arabinose (araE), lipopolysaccharide (lptF,
lptG, lptB), aquaglyceroporin (GLPF), nucleoside (Yhhq, xapB, yhhQ),
and several different forms of iron (ccmB, ccmC, feoA, VIT,
TC.FEV.OM).

Sediminibacteria are affiliated with microalgae in environ-
mental samples and in laboratory cultures. For example, bacte-
rial commensals have been described in the phycosphere of
bloom-forming cyanobacterium Microcystis aeruginosa in lakes
(Kim et al. 2019) and in the phycosphere of laboratory cultures of
Micrasterias (Zygnematophyceae) (Krohn-Molt et al. 2013). Media
for culturing cyanobacteria generally contains high concentra-
tions of inorganic nutrients (N, P, Fe) but no added carbon sour-
ces, and hence bacteria must rely on the transport of organic
matter either actively secreted by the microalgae or passively
released during cell death or phage lysis. Exoenzymes including
alkaline phosphatase, ß-glucosidase, glucosaminidase, and
aminopeptidases encoded in the genome of the Sediminibacterium
colonizers here may provide access to these macromolecules in
batch cultures, but could also do so in freshwater streams and
lakes, where the concentration of organic matter in the
phycosphere of microalgae is often elevated compared to that of
the surrounding waters (Seymour et al. 2017).

The ability to reach the phycoshpere enables sedminibacteria
to escape nutrient starvation in the bulk water, while the ability

to detect molecules and move toward them provides a competi-
tive advantage for this motile and chemotactic bacteria over non-
motile nonchemotactic species. The lack of most commonly
produced freshwater cyanotoxins in the phycosphere of both
hosts may facilitate the penetrations of sediminibacteria. The
importance of motility and chemotaxis in the ecology of
Sediminbacteria is supported by genomic evidence for many oth-
ologous genes involved in chemotaxis, motility, attachment, and
quorum sensing discovered in our annotation. Chemotaxis genes
include those that encode a histidine kinase (CheA) and an adap-
tor protein (CheW) that assemble into signaling complexes; a re-
sponse regulator that interacts with the flagellar motor (CheY);
and 2 methyltransferases (CheB and CheR). Flagellar structural
and the motor component genes (flgN, flgG, flgJ, motB, and motA/
tolQ/exbB) are also detected, in addition to those that encode pro-
teins conferring rapid gliding motility over surfaces (gldC, gldG,
gldH, sprA, sprF, sprT) and elements of the type IX secretion sys-
tem T9SS. Together these genes likely enable sediminibacteria to
move toward favorable environments rich in compatible hosts
and/or dissolved organic carbon, and away from detrimental con-
ditions. Genomic evidence also suggests that Sediminibacterium
has evolved elaborate biofilm and quorum sensing mechanisms
for attaching to and colonizing surfaces. More than 30 biofilm for-
mation and quorum sensing genes involved in processes such as
signal transduction and secretion (uvrY, gacA, varA, secE, SecG,
SecY, SecDF, ftsY, yajC, yidC, spoIIIJ, OXA1, ccfA), transcription (crp/
fnr, ribD, oxyR/Lsy R), carbohydrate metabolism (pslH, glgP, glgA,
glgC, pgaC, icaA), surface adhesion proteins (BapA), and multidrug
resistance (oprM, emhC, ttgC, cusC, adeK, smeF, mtrE, cmeC, gesC),
are present in these genomes.

The extent to which freshwater algal–bacteria interactions are
specific and/or how the bacterial colonizers are selected by, or
choose their microalgal hosts is not well understood. Mutualism
whereby bacteria provide essential vitamins and phytohormones
(Croft et al. 2005; Grant et al. 2014), antimicrobial defense
(Seyedsayamdost et al. 2011; Seymour et al. 2017), recycled
nutrients (Christie-Oleza et al. 2017), and/or protection from oxi-
dative stress (Hünken et al. 2008; Morris et al. 2011) in exchange
for nutrients and shelter has been documented for several bacte-
rial microalgal affiliations. While it is tempting to speculate that
a mutualistic relationship exists between the sediminibacteria
and the cyanobacteria in this study, experimental evidence of

Table 1. Genome assembly summary and completeness statistics from QUAST v.5.0.2 and BUSCO v.5.3.2 for both sediminibacterial
assemblies derived from Coccoid cyanobacterium_CKK01 and Filamentous cyanobacterium LYN-RS.

Statistics Coccoid cyanobacterium_CKK01 Filamentous cyanobacterium LYN-RS

Largest contig 2,242,242.0 3,342,270.0
Total length 5,062,689.0 5,117,762.0
Total length (�0 bp) 5,062,689.0 5,117,762.0
Total length (�1,000 bp) 4,415,391.0 4,276,438.0
N50 875,205.0 3,342,270.0
N75 2,734.0 2,470.0
L50 2.0 1.0
L75 134.0 154.0
GC (%) 42.12 43.06
#N’s 1,500 1,428
#N’s per 100 kbp 29.63 27.9
BUSCO groups searched against odb_bacteria10

Complete BUSCOs (C) 120 (96.8%) 121 (97.6%)
Complete and single-copy BUSCOs (S) 119 (96%) 120 (96.8%)
Complete and duplicated BUSCOs (D) 1 (0.8%) 1 (0.8%)
Fragmented BUSCOs (F) 0 (0.0%) 1 (0.8%)
Missing BUSCOs (M) 4 (3.2%) 2 (1.6%)
Total BUSCO groups searched 124 (100%) 124 (100%)
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Fig. 2. Phylogenomic reconstruction of the evolutionary history of our novel sediminibacterial strains (Coccoid cyanobacterium_CKK01 and
Filamentous cyanobacterium LYN-RS) through consensus species tree reconstruction using 100 randomly selected single-copy gene trees. Both strains
are sister to each other, and placed within a clade comprising other sediminibacterial strains.
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Fig. 3. Phylogenomic reconstruction of the evolutionary history of our novel sediminibacterial strains (Coccoid cyanobacterium_CKK01 and
Filamentous cyanobacterium LYN-RS) using GToTree, showing its monophyletic relationship amongst sediminibacterial strains GCA013391385 and
GCA012270485. This reconstruction specifically utilized single-copy genes across all sediminibacterial genomes present in GenBank.
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this nature awaits further investigation. Although genes encom-

passing the complete pathways for the synthesis of vitamins

(B12, thiamin, and biotin) often supplied by cyanobacterial sym-

bionts were not identified, genomic evidence suggests that the

Sediminibacterium may offer protection against colonization of op-

portunistic bacteria by producing bacteriocin and toxoflavin. In

return, the cyanobacteria provide a stable microhabitat and nu-

trient supply for the bacteria.

Data availability
The genome will be made publicly available via NCBI BioSample:

SAMN23222054. All assemblies, scripts utilized in assembly, an-

notation, and phylogenetic reconstruction can be accessed at

www.github.com/arunsethuraman/sediminibacterium.
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Garc�ıa-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T,
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