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ABSTRACT15

De novo assembly of metagenomic sequencing data plays an essential role in elucidating the genomes of unculturable
microbes. Linked-reads, in which short-reads are linked together by barcodes that mark a long original DNA fragment, are a
promising method for cost-effective metagenome assembly. Recently, the original linked-read sequencing platform from 10X
genomics was discontinued; however, single-tube Long Fragment Read (stLFR) and Transposase Enzyme-Linked Long-read
Sequencing (TELL-Seq) are another two linked-read sequencing platforms, which are designed with high barcode specificity
and have the potential to efficiently deconvolve complex microbial communities.
We developed Pangaea, a metagenome assembler that assembles linked-reads with high barcode specificity using deep
learning. It adopts a fast binning strategy to group linked-reads using a variational autoencoder, followed by rescue of low-
abundance microbes with multi-thresholding reassembly. We sequenced a 20-strain-mixed mock community using 10x, stLFR,
and TELL-Seq, and stool samples from two healthy human subjects using stLFR. We compare the performance of Pangaea
with Athena, Supernova, and metaSPAdes. For the mock community, we observed that the assemblies from Pangaea on stLFR
and TELL-Seq linked-reads achieved substantially better contiguity than the assemblies on 10x linked-reads, indicating that
barcode specificity is a critical factor in metagenome assembly. We also observed Pangaea outperformed the other three tools
on both stLFR and TELL-Seq linked-reads. For the human gut microbiomes, Pangaea still achieved the highest contiguity
and considerably more near-complete metagenome-assembled genomes (NCMAGs) than the other assemblers. For the two
human stool samples, Pangaea generated more NCMAGs than metaFlye on PacBio long-reads, as well as two complete and
circular NCMAGs, demonstrating its ability to generate high-quality microbial reference genomes.

16

Introduction17

Metagenome assembly is a common approach used to reconstruct microbial genomes from culture-free metagenomic sequencing18

data1. Inexpensive short-read sequencing approaches have been widely applied to generate high-quality microbial reference19

genomes from large cohorts of human gut metagenomic sequencing data2–4, but the short read lengths (100-300 bp) limit20

their ability to achieve complete genomes, or to resolve intra-species repetitive regions and inter-species conserved regions5.21

Alternatively, long-read sequencing technologies, such as Oxford Nanopore long-reads6, PacBio continuous (CLR)7 and HiFi822

long-reads, have shown superiority to short-reads in generating complete and circular microbial genomes from metagenomic23

sequencing data9–11. However, the low base quality, high cost, and requirement of a large amount of input DNAs still prevent24

long-read sequencing from being applied to population-scale or clinical studies. In our previous study12, we observed that long-25

reads generated fewer high-quality metagenome-assembled genomes (MAGs) than short-reads due to insufficient sequencing26

depth, suggesting that considerable loss of information occurred when using long-reads in current sequencing settings, despite27

the assemblies having high contiguity.28

Linked-read sequencing technologies combine merits of both short- and long-read sequencing, providing low base errors29

and long-range DNA information. They tag identical barcodes to short-reads derived from the same long DNA fragment.30
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Before its discontinuation, 10x Chromium was the most widely used linked-read sequencing platform, generating contigs31

with high contiguity and producing more near-complete metagenome-assembled genomes (NCMAGs; Methods) than short-32

read sequencing13. Two assemblers have been developed for metagenome assembly using 10x linked-reads: (i) Athena13,33

which fills the gaps between contigs by recruiting the co-barcoded reads for local assembly, and (ii) cloudSPAdes14, which34

reconstructs the long DNA fragments in the assembly graph by solving the shortest superstring problem to improve contiguity.35

Although 10x linked-reads have shown significant potential for metagenome assembly, the inherent technical issues complicate36

the deconvolution of complex microbial communities. 10x Chromium assigns long DNA fragments into droplets through37

a microfluidic system, wherein the number of fragments per droplet or barcode (NF/B) follows a Poisson distribution. In38

other words, reads with identical barcodes may be derived from long DNA fragments (NF/B=16.61; Supplementary Note39

1) corresponding to different microbes. This characteristic would introduce off-target reads in local assembly (for Athena)40

and complicate the reconstruction of long fragments in the assembly graph (for cloudSPAdes). In addition, 10x Genomics41

has discontinued support for its genome product, posing a pressing requirement to devise alternative linked-read sequencing42

platforms with high barcode specificity.43

Recently, MGI and Universal Sequencing Technology (UST) released their linked-read sequencing platforms, single-tube44

Long Fragment Read (stLFR)15 and Transposase Enzyme-Linked Long-read Sequencing (TELL-Seq)16, respectively. These45

platforms have shown comparable performance to 10x Chromium in human variant phasing and genome assembly15, 16.46

However, unlike 10x Chromium, the reactions in stLFR and TELL-Seq occur in polymerase chain reaction (PCR) tubes without47

the need for expensive instrumentation. Essentially, the barcoding reactions occur on billions of microbeads in a single tube,48

leading to high barcode specificity (NF/B=1.54 for stLFR, NF/B=4.26 for TELL-Seq; Figure 1 a; Supplementary Note 1).49

MetaTrass17 was recently developed for metagenome assembly on stLFR linked-reads; this tool groups the linked-reads by50

taxonomic annotation and applies Supernova18 to assemble the genome of each identified species. Such a reference-based51

assembly tool is sensitive to the qualities of reference genomes and thus has a restricted ability to discover novel species. There52

is still a lack of an efficient tool that could fully exploit the high barcode specificity and long-range DNA information of stLFR53

and TELL-Seq linked-reads to improve the de novo metagenome assembly.54

In this paper, we present Pangaea (Figure 1 b), a metagenome assembler developed to assemble linked-reads with high55

barcode specificity using deep learning. Pangaea is inspired by the reads binning strategy, which has been proven to facilitate56

short-read metagenome assembly19–21. However, existing short-read binning tools are unable to process millions of short-reads,57

and the features used for binning are unstable. To cope with these problems, Pangaea applies barcode binning instead of58

grouping short-reads and uses the k-mer frequencies and tetranucleotide frequency (TNF) from the co-barcoded reads as the59

inputs to a variational autoencoder (VAE) for learning low-dimensional latent embeddings in linear time. Pangaea applies a60

random projection hashing based k-means algorithm (RPH-kmeans22) to the latent embeddings to group the co-barcoded reads.61

In practice, the linked-reads from the same species could be assigned to different bins, which may result in poor assembly62

for low-abundance microbes. Therefore, Pangaea adopts a multi-thresholding reassembly strategy to refine the contigs by63

reassembling the linked-reads with different abundance thresholds (Methods).64

To validate our approach, we sequenced a 20-strain-mixed mock community (ATCC-MSA-1003) using 10x Chromium,65

TELL-Seq, and stLFR to generate linked-reads, and compared the performance of Pangaea with that of two linked-read66

de novo assemblers – Athena and Supernova, and a short-read assembler – metaSPAdes. We found that Pangaea achieved67

substantially better contiguity than the second-best assembler Athena on both stLFR and TELL-Seq linked-reads. Pangaea68

on stLFR and TELL-Seq linked-reads produced contigs with higher contiguity than the other linked-read assemblers on 10x69

linked-reads. We also sequenced human gut microbiomes from two stool samples (S1 and S2) using stLFR and showed70

that Pangaea significantly outperformed Athena, Supernova, and metaSPAdes. Further, Pangaea produced significantly more71

near-complete metagenome-assembled genomes (NCMAGs) than the other three assemblers and generated two complete and72

circular microbial genomes that were not found in the assemblies generated by the other assemblers. Pangaea even produced73

many more NCMAGs than metaFlye on PacBio CLR long-reads from the human stool samples.74

Results75

Metagenome assembly of linked-reads using Pangaea76

Pangaea is designed for metagenome assembly of linked-reads with high barcode specificity (e.g. stLFR and TELL-Seq77

linked-reads) using deep learning (Figure 1 b; Methods). It collects all of the linked-reads with the same barcodes and represents78

them using k-mer frequencies and TNFs (Methods) to overcome feature instability in grouping short-reads individually. These79

features enable the VAE to represent barcodes in low-dimensional latent space, where the latent variable follows a standard80

Gaussian distribution (Methods; Supplementary Note 2). We observed that the number of barcodes per species was highly81

correlated with the species’ abundance, which may lead to the VAE being dominated by high-abundance species. Pangaea82

adopts a weighted sampling strategy to balance the number of co-barcoded reads from different species in each training batch83

based on their k-mer frequencies (Methods). It groups the co-barcoded reads in the latent space using RPH-kmeans, which is84

2/16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.07.506963doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.506963
http://creativecommons.org/licenses/by-nc/4.0/


scalable to large binning tasks by random projection hashing. Pangaea assembles the linked-reads in each cluster independently85

using MEGAHIT. We observed that linked-reads from the same microbe may be dispersed into multiple bins, which may86

substantially influence the assembly of low-abundance microbes. Thus, we designed a multi-thresholding reassembly approach87

(Figure 1 b) to improve the assemblies of low-abundance microbes. This approach aligns the linked-reads to the contigs and88

removes them if they are from contigs with abundances above certain thresholds (Methods). The remaining reads are used to89

reassemble the contigs of low-abundance microbes, which are finally combined with the contigs assembled for each cluster, and90

the local assembly contigs from Athena (Methods).91

Barcode specificity of linked-reads is critical for metagenome assembly92

We validated Pangaea on a mock microbial community, ATCC-MSA-1003, containing 20 strains mixed at different loadings93

(from 0.02% to 18%; Supplementary Table 1). ATCC-MSA-1003 was sequenced using stLFR and TELL-Seq linked-94

read sequencing, yielding 132.95 Gb and 173.28 Gb raw reads, respectively (Supplementary Table 2; Methods). We95

also used 10x linked-reads of ATCC-MSA-1003 from our previous study23 (Supplementary Table 2). To assess barcode96

specificity, we aligned the linked-reads to the reference genomes, reconstructed the physical long fragments, and calculated97

NF/B (Supplementary Note 1; Methods). stLFR linked-reads yielded the lowest NF/B (NF/B=1.54), and TELL-Seq linked-98

reads yielded a slightly higher number (NF/B=4.26), although both numbers were much lower than that obtained from 10x99

linked-reads (NF/B=16.61).100

The contigs of Pangaea from the stLFR and TELL-Seq linked-reads had substantially higher N50s (24.84 times on average;101

Table 1; Figure2 c) and overall higher NA50s (11.81 times on average; Table 1) than the contigs of Athena and Supernova from102

10x linked-reads. For the 15 strains with abundance ≥ 0.18% (Supplementary Table 3), Pangaea on stLFR and TELL-Seq103

linked-reads also achieved significantly higher per-strain NA50 (Figure 2 f) and NGA50 (Figure 2 i) than the assemblies of104

Athena and Supernova from 10x linked-reads. For the remaining 5 strains with abundance = 0.02%, Pangaea on stLFR (average105

genome fraction: 33.50%) and TELL-Seq (average genome fraction: 23.57%) linked-reads obtained much higher genome106

fractions than Athena (average genome fraction: 3.99%) and Supernova (average genome fraction: 6.29%) on 10x linked-reads107

(Supplementary Table 4). These results suggest that the linked-read technologies with high barcode specificity, stLFR and108

TELL-Seq, produce better metagenome assemblies with Pangaea than 10x Chromium.109

Pangaea generated high-quality assembly on ATCC-MSA-1003110

We compared Pangaea with Athena, Supernova, and metaSPAdes on the barcode-stripped TELL-Seq and stLFR linked-reads of111

the ATCC-MSA-1003 mock community (Supplementary Table 2). For TELL-Seq (Table 1; Figure 2 a), Pangaea achieved the112

highest N50 (1195.44 Kb) and NA50 (601.41 Kb) when compared with the statistics achieved by Athena (N50: 466.50 Kb;113

NA50: 361.57 Kb), Supernova (N50: 102.76 Kb; NA50: 97.31 Kb), and metaSPAdes (N50: 112.34 Kb; NA50: 105.63 Kb).114

When considering those 15 strains with abundance ≥ 0.18% (Supplementary Table 3), Pangaea still generated a significantly115

higher per-strain NA50 (Figure 2 d; Methods) and NGA50 (Figure 2 g) than Athena (NA50: p-value = 8.36e-3; NGA50:116

p-value = 8.36e-3), Supernova (NA50: p-value = 3.05e-4; NGA50: p-value = 3.05e-4), and metaSPAdes (NA50: p-value =117

6.10e-5; NGA50: p-value = 6.10e-5). A comparable trend was observed for the assemblies of stLFR and TELL-Seq linked-reads118

(Table 1; Figure 2 b, e, and h), suggesting that Pangaea using linked-reads with high barcode specificity significantly improves119

contiguity compared to the other assemblers. For the strains with the lowest abundance (0.02%), the assemblies of Pangaea had120

much higher genome fractions than those of Athena (8.12 times on average) and Supernova (54.64 times on average) on stLFR121

and TELL-Seq linked-reads (Supplementary Table 4).122

Pangaea generated high-quality assembly on the human gut microbiomes123

We collected DNAs from two healthy Chinese individual stool samples and sequenced their gut microbiomes (S1 and S2)124

using stLFR, obtaining 136.6 Gb and 131.6 Gb raw reads, respectively (Supplementary Table 2; Supplementary Figure125

1; Methods). The assemblies generated by Pangaea had the highest total assembly length among all of the benchmarked126

assemblers on both S1 (Pangaea = 488.79 Mb, Athena = 469.28 Mb, Supernova = 311.97 Mb, metaSPAdes = 452.60 Mb;127

Table 1) and S2 (Pangaea = 414.46 Mb, Athena = 393.69 Mb, Supernova = 290.60 Mb, metaSPAdes = 374.17 Mb; Table 1).128

Moreover, Pangaea achieved substantially higher N50s than the other three assemblers for both S1 (1.44 times of Athena; 1.06129

times of Supernova; 4.50 times of metaSPAdes; Table 1) and S2 (1.61 times of Athena; 2.64 times of Supernova; 8.18 times of130

metaSPAdes; Table 1).131

We grouped the contigs into MAGs and annotated NCMAGs for comparison (Methods). Pangaea generated 24 and 18132

NCMAGs from S1 and S2 (Figure 3 a and e), which were much more than those generated by Athena (S1: 13 and S2: 12;133

Figure 3 a and e), Supernova (S1: 14 and S2: 10; Figure 3 a and e), and metaSPAdes (S1: 0 and S2: 1; Figure 3 a and e).134

Counting of the NCMAGs at different minimum values of N50 revealed that Pangaea obtained more NCMAGs than the other135

three assemblers at almost all N50 thresholds (Figure 3 b and f), demonstrating the high contiguity of NCMAGs generated136

by Pangaea. Pangaea also outperformed the other assemblers by counting the NCMAGs at different maximum values of the137
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abundance (Figure 3 c and g). Especially when the N50 of NCMAG was larger than 1 Mb (Figure 3 d and h), Pangaea achieved138

substantially more NCMAGs (S1: 8, S2: 4) than any of the other three assemblers at all abundance thresholds, while the second139

best assembler Athena only produced 3 and 1 NCMAG on S1 and S2, respectively.140

Pangaea achieved high quality MAGs for different microbes141

We annotated the MAGs using kraken2 with a custom database built from the Nucleotide (NT) database of the National Center142

for Biotechnology Information (NCBI; Methods). There were 43 selected microbes (S1: 26 and S2: 17) annotated from143

Pangaea’s MAGs; 39 of them (S1: 23 and S2: 16) achieved the highest N50 (Figure 4) and 24 microbes had two-fold higher144

N50 than the second best assemblers (S1: 16 and S2: 8). For the remaining 4 microbes for which Pangaea did not get the145

highest N50 (Figure 4), it generated comparable N50s with the second best assembler on Alistipes indistinctus, Oscillospiraceae,146

and Ruminococcus bicirculans from S1; and achieved a lower N50 but substantially higher completeness than Supernova on147

Roseburia hominis from S2 (Pangaea: completeness = 96.54%, contamination = 0.48%; Supernova: completeness = 64.91%,148

contamination = 0.00%; Supplementary Table 5).149

Moreover, the MAGs generated by Pangaea had higher MAG quality than those generated by Athena, Supernova, and150

metaSPAdes. There were 11 microbes (S1: 7 and S2: 4; Figure 4) that had NCMAGs generated by Pangaea where all the151

other assemblers only generated MAGs with lower quality or could not generate the matching MAGs. Pangaea generated the152

NCMAGs with N50s over 1 Mb for 13 microbes, where Athena, Supernova and metaSPAdes generated 4 ,1 and 0 microbes,153

respectively (Figure 4). In addition, Pangaea generated four unique microbes (Bacteriophage sp. and Dialister from S1,154

Prevotella copri, and Parabacteroides from S2) that were not generated by any other assemblers, and two of them were155

represented by NCMAGs (Dialister from S1 and Parabacteroides from S2; Figure 4). These results demonstrate that our156

barcode binning and assembly approach has the capability to recover high-quality unique genomes that might be lost by the157

off-the-shelf tools.158

Strong collinearities between NCMAGs and their corresponding reference genomes159

We aligned the NCMAGs assembled by Pangaea to their closest reference genomes to examine their collinearities (Figure 5;160

Supplementary Figure 2; Methods). The NCMAGs from Pangaea and their closest reference genomes had high alignment161

identities (average 98.04%), a stable alignment fraction (average 87.17%), and strong collinearity (Figure 5; Supplementary162

Table 6), suggesting that Pangaea generated assemblies with high base accuracy.163

Inversions and genome rearrangements relative to reference sequences appeared in some bacterial genomes for both S1 and164

S2, including A. communis (S1; Supplementary Figure 2 a), Siphoviridae sp. (S1; Supplementary Figure 2 j), Alistipes165

sp. (S2; Figure 5 b) and A. indistinctus (S2; Figure 5 h). Pangaea-assembled NCMAGs for Alistipes sp. from both S1 and S2166

(Figure 5 a and b) had comparable total sequence lengths (S1: 2.84 Mb and S2: 2.75 Mb; Supplementary Table 5), but better167

N50 was achieved in S1 (N50: 2344.71 Kb for S1 and 513.55 Kb for S2; Supplementary Table 5). This result might be due to168

the different abundance of Alistipes sp. in these two samples (read depth: 210.87x for S1 and 69.82x for S2; Supplementary169

Table 5).170

Pangaea could generate NCMAGs with higher quality and larger N50 than the other assemblers, such as Sutterella171

wadsworthensis from S1 and P. copri from S2 (Figure 5 i and d Supplementary Table 5). Further, evaluation of the read depths172

and GC-skew of the MAGs revealed that Pangaea recovered the regions with extremely low read depths and high GC-skew,173

such as the region at approximately 1,100 Kb of R. hominis from S2 (Figure 5 f). This indicates that Pangaea has potential to174

reveal hard-to-assemble genomic regions.175

Pangaea generated complete and circular MAGs176

We next examined if there existed completed and circularized genomes in NCMAGs from the four tools using the circularization177

module in Lathe24 (Methods). We found that only Pangaea generated two circular NCMAGs, which were annotated as B.178

adolescentis and Myoviridae sp. (Figure 5 e and g), respectively. For both of the two microbes, Pangaea generated a gapless179

contig with perfect collinearity with the closest reference genomes (Figure 5 e and g).180

Athena generated three and two contigs for B. adolescentis and Myoviridae sp., with substantially lower contig N50 than181

those of the contigs obtained by Pangaea (B. adolescentis: Pangaea = 2167.94 Kb, Athena = 744.54 Kb; Myoviridae sp.:182

Pangaea = 2137.66 Kb, Athena = 1709.63 Kb; Supplementary Table 5). Supernova and metaSPAdes could only generate183

incomplete MAGs or could not assemble these two species, and the completeness of their candidate MAGs was significantly184

lower than that of MAGs generated by Pangaea (Supplementary Table 5).185

Pangaea generated more NCMAGs than PacBio long-read sequencing186

We compared the assemblies from Pangaea with those from metaFlye on PacBio CLR long-reads of S1 and S2 (Supplementary187

Table 2; Supplementary Figure 1; Methods). Although metaFlye generated contigs with higher N50s, Pangaea produced188

a substantially greater total assembly length for both S1 (Pangaea = 488.19 Mb, metaFlye = 243.88 Mb) and S2 (Pangaea =189
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414.46 Mb, metaFlye = 256.78 Mb; Supplementary Table 7). Moreover, Pangaea generated significantly more NCMAGs than190

metaFlye (Pangaea = 42, metaFlye = 16; Figure 3 i), especially those with N50s < 1 Mb (Pangaea = 30, metaFlye = 4; Figure 3191

j and l) and read depths < 300x (Pangaea = 26, metaFlye = 0; Figure 3 k), whereas Pangaea and metaFlye obtained comparable192

numbers of NCMAGs with N50 > 1 Mb (Pangaea = 12, metaFlye = 12; Figure 3 j).193

Discussion194

Short-read sequencing of short metagenomic fragments has proven to be an important approach for analyzing human gut195

microbiota from large sequencing cohorts. However, its lack of long-range information makes assembling conserved sequences,196

intra- and inter-species repeats, and ribosomal RNAs (rRNAs) difficult5. As a result, it has limitations in producing complete197

microbial genomes. Cost-effective linked-read sequencing platforms, which attach barcodes to short-reads to provide long-198

range DNA connectedness, have achieved great success in improving contiguity in metagenome assembly13, 14. Unlike 10x199

linked-reads, stLFR15 and TELL-Seq linked-reads16 have high barcode specificity, but a dedicated assembler that could make200

full use of high barcode specificity to improve metagenome assembly is lacking.201

In this study, we developed Pangaea to improve metagenome assembly of linked-reads with high barcode specificity202

based on deep learning. Pangaea includes two key steps: co-barcoded read binning and multi-thresholding reassembly for203

low-abundance microbes. Inspired by long-read binning tools, Pangaea considers the co-barcoded linked-reads as long-reads204

and extracts their k-mer frequencies and TNFs for linked-read clustering. This strategy significantly reduces the complexity in205

metagenome sequencing and makes the assembly more efficient. Because clustering is sensitive to data sparsity and noise25,206

Pangaea represents the input features in low-dimensional latent space using a VAE, which has been proven to be successful in207

contig binning. We also designed a weighted sampling strategy to generate a balanced training set for microbes with different208

abundances. The low-abundance species may have only a few reads in raw sequencing data, assembly of which greatly relies209

on the binning accuracy. Losing a small number of reads could result in fragmented contigs and low genome coverage. Pangaea210

adopts a multi-thresholding reassembly strategy to rescue the incorrectly assigned reads from low-abundance microbes.211

Several studies have attempted to apply the read binning strategy to short-read / short fragment metagenomic sequencing19–21,212

but it is exceedingly difficult in practice. The fragments are too short to allow the extraction of stable sequence abundance and213

composition features from the individual reads. Therefore, existing reads binning tools have to identify the overlap between214

every pair of reads for binning. However, the millions or even billions of short-reads make the overlap-based reads binning215

algorithm extremely slow and highly memory intensive. Overlap Graph-based Read clustEring (OGRE) was developed to216

improve the computational performance of reads binning, but it still consumed 2,263 CPU hours even for the low-complexity217

dataset of CAMI19. We tested OGRE on our mock community sequenced by stLFR (664.77M read pairs) and observed that218

OGRE crashed due to insufficient memory if 100 threads were applied. If fewer threads were applied, the binning time would219

become extremely long. In comparison, Pangaea with 100 threads only took 64.06 hours in real time and 514.63 hours in220

CPU time and consumed 281.99 Gb of random-access memory (RAM) to group and assemble the linked-reads from the mock221

community sequenced by stLFR.222

The VAE was successfully applied to contigs and long-reads binning25, 26 and showed better binning performance than223

classical dimensional reduction algorithms such as principal component analysis (PCA; Supplementary Figure 3). For224

clustering linked-reads in the latent space of VAE, the classical k-means was not optimized to process the highly imbalanced225

metagenomic data due to its instability to choose proper initial centroids. We adopted RPH-kmeans22 that used a random226

projection hashing strategy to solve this problem and was also time-efficient when dealing with large datasets. We applied227

RPH-kmeans, k-means and the Gaussian mixture model to group co-barcoded reads in the latent space of VAE using stLFR228

linked-reads from the mock community (Supplementary Figure 4). We observed RPH-k-means achieved a better overall F1229

score and adjusted rand index (ARI) than the other two algorithms. Large k may result in higher binning precision and lower230

recall (Supplementary Figure 5). However, the values of k have little effect on the final assembly (Supplementary Figure 6),231

suggesting the performance of Pangaea was robust to the number of clusters.232

We compared Pangaea with two other linked-read assemblers, Athena13 and Supernova18. Athena was developed for 10x233

linked-reads and improved contiguity by local assembly. Linked-read sequencing technologies with high barcode specificity,234

such as stLFR and TELL-Seq, can reduce off-target reads in local assembly but might not strongly influence the performance235

of Athena, which was only designed with a focus on connecting the contigs with sufficient depths. Supernova was originally236

designed for human genome assembly, with some internal parameters optimized for assembling diploid genomes. Another237

tool, cloudSPAdes14, was developed for metagenome assembly of linked-reads with comparable performance to Athena.238

cloudSPAdes was not included for comparison because it required over 2 TB of memory to assemble stLFR linked-reads from239

our mock community. This was probably because stLFR includes considerably more barcodes than 10x Chromium, which240

could overload and crash cloudSPAdes.241

Long-read sequencing has received increasing attention due to its ability to generate complete microbial genomes from242

complex communities. However, it is limited by a high cost and huge amount of initial DNA. In contrast, linked-read243
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sequencing is cost-effective and only requires a tiny amount of input DNA, and can thus be a complementary solution to244

long-read sequencing. In our experiments, we found that long-read assemblies had 61.90% fewer NCMAGs than linked-read245

assemblies from Pangaea, indicating that important microbes might be lost due to insufficient long-read sequencing depth.246

Similar observations have been reported in previous studies24. Although stLFR (NF/B=1.54) and TELL-Seq (NF/B=4.26)247

linked-reads had high barcode specificity in the mock community, we observed that a considerable fraction of barcodes248

still contained more than one fragment (stLFR = 37.02%, TELL-Seq = 72.95%), which could complicate the deconvolution249

of barcodes for existing linked-read assemblers. We believe that further protocol improvement for these technologies (e.g.250

increasing the number of beads) may further improve their metagenome assembly performance.251

Methods252

DNA preparation and linked-read sequencing253

For the mock community, the microbial DNAs were extracted directly from the 20 Strain Staggered Mix Genomic Material254

(ATCC MSA-1003) without size selection using a QIAamp DNA stool mini kit (Qiagen, Valencia, CA, USA). For the human255

gut microbiomes, microbial DNAs from stool samples of two individuals (S1 and S2) were extracted using the QIAamp DNA256

stool mini kit (Qiagen) and size-selected using a BluePippin instrument targeting the size range of 10-50 Kb according to the257

manufacturer’s protocol. The stLFR libraries were prepared using the stLFR library prep kit (16 RXN), followed by 2×100258

paired-end short-read sequencing using BGISEQ-500. The TELL-Seq library for the mock community was prepared using the259

TELL-Seq Whole Genome Sequencing library prep kit, followed by 2×146 paired-end sequencing on an Illumina sequencing260

system.261

Extract k -mer frequencies and TNFs from co-barcoded linked-reads262

We extracted k-mer frequencies and TNFs from the co-barcoded linked-reads if their total lengths were longer than 2 Kb263

to ensure feature stability. The k-mer frequencies were calculated from the histogram of global k-mer occurrences, which264

followed a Poisson distribution with the mean equals the microbial abundance. We adopted k = 15 the same as previous265

studies27, 28 and built a 15-mer frequency table using all reads and stored it in an unordered_map data structure of C++ for266

fast searching. We removed all 15-mers with frequencies higher than 4,000 (to avoid duplicated sequences) and divided the267

remaining 15-mers into 400 bins with equal sizes. For each barcode, we sheared the co-barcoded linked-reads into 15-mers and268

assigned them to these 400 bins. We calculated the number of k-mers falling in each bin and generated a count vector with 400269

dimensions as the k-mer frequencies of candidate barcode. A TNF vector was constructed by calculating the frequencies of270

all 136 non-redundant 4-mers for co-barcoded linked-reads. The k-mer frequencies and TNF vectors were L1-normalized to271

eliminate the bias introduced by the different lengths of co-barcoded linked-reads.272

Binning co-barcoded linked-reads with a VAE273

The normalized k-mer frequencies (XA) and TNF vectors (XT ) were concatenated into a vector with 536 dimensions as the input274

to a VAE (Figure 1 b; Supplementary Note 2). The encoder of VAE consisted of two fully connected layers with 512 hidden275

neurons, and each layer was followed by batch normalization29 and a dropout layer30 (P = 0.2). The output of the last layer was276

fed to two parallel latent layers with 32 hidden neurons for each to generate µ and σ of a Gaussian distribution N(µ,σ2), from277

which the embedding Z was sampled. The decoder also contained two fully connected hidden layers of the same size as the278

encoder layers to reconstruct the input vectors (X̂A and X̂T ) from the latent embedding Z. We applied the softmax activation279

function on X̂A and X̂T to achieve the normalized output vectors, because the input features XA and XT were both L1-normalized.280

The loss function (Loss) was defined as the weighted sum of three components: the reconstruction loss of k-mer frequencies281

(LA), the reconstruction loss of TNF vectors (LT ), and the Kullback-Leibler divergence loss (LKL) between the latent and prior282

standard Gaussian distributions. We adopted cross-entropy loss for LA and LT to deal with probability distributions, and all of283

the loss terms were formularized as follows:284

LA = ∑ ln(X̂A +10−9)XA (1)

LT = ∑ ln(X̂T +10−9)XT (2)

LKL =−∑
1
2
(1+ lnσ −µ

2 −σ) (3)

Loss = wALA +wT LT +wKLLKL (4)

where the weights of the three loss components were wA = α/ ln(dim(XA)), wT = (1−α)/ ln(dim(XT )), and wKL = β/dim(Z).285

We adopted 0.1 and 0.015 for the parameters α and β , respectively. The VAE was trained with early stopping to reduce286

the training time and avoid overfitting. We used the RPH-kmeans22 algorithm with random projection hashing to group the287
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co-barcoded linked-reads using their latent embeddings obtained from µ . The numbers of clusters for the mock community,288

and the human gut microbiomes were set to 15 and 30, respectively.289

Balancing the training dataset with weighted sampling290

We designed a weighted sampling strategy to balance the training set of co-barcoded linked-reads from microbes with different291

abundances. Theoretically, the abundances of co-barcoded linked-reads can be estimated by a Poisson distribution from292

global k-mer occurrences. In practice, the distribution is not perfect due to sequencing errors. To infer the abundances293

from k-mer frequencies, we designed a time-efficient heuristic function, H(XA) = 1/Max(XA)
2, to estimate the abundances294

and used 1/H as the sampling weight for co-barcoded linked-reads. The sampling weights were automatically used by the295

WeightedRandomSampler of PyTorch to create a balanced dataset in each training batch.296

Multi-thresholding reassembly for low-abundance microbes297

We designed a multi-thresholding reassembly strategy (Figure 1 b) to improve the assembly qualities of low-abundance microbes298

by collecting the reads from the same microbes that were misclustered into different bins. We assembled all reads (contigsori)299

using metaSPAdes (v3.15.3)31 and the reads from each cluster (contigsbin) using MEGAHIT (v1.2.9)32. Then, we aligned300

all of the linked-reads to contigsbin using BWA (v0.7.17)33 to calculate the read depth for each contig. The read depth was301

calculated using "jgi_summarize_bam_contig_depths" in MetaBat2 (v2.12.1)34. We next extracted the linked-reads that could302

not be mapped to the contigsbin with read depth > ti and assembled them using metaSPAdes (v3.15.3) with contigsori as the –303

"--untrusted-contigs". We repeated this procedure with a range of thresholds (T = {ti|i = 1,2, ...}) and collected the resultant304

contigs as contigslow. Finally, we used metaFlye (v2.8) "--subassemblies"35 to merge contigsbin, contigslow, and the local305

assembly contigs from contigsori to integrate the merits of all three contig sets. We also used quickmerge (v0.3)36 to optimize306

the resulting contigs with the contigs from Athena using contigsori
13, as they were observed to be complementary. We used307

T = {10,30,50,70,90}, T = {10,30} and T = {10,30,50,70} for ATCC-MSA-1003, S1, and S2, respectively.308

Circularization of Pangaea assembly309

We used the circularization module of Lathe24 to analyze the assemblies from Pangaea by regarding the contigs before metaFlye310

merging as pseudo long-reads (including contigsbin, contigslow, and contigsori after local assembly). These pseudo long-reads311

were used to circularize the merged contigs and generate the final assembly of Pangaea.312

Reconstructing physical long fragments based on reference genomes313

We reconstructed the physical long fragments from linked-reads of the mock community to calculate NF/B. The linked-reads314

were mapped to the reference genomes using BWA (v0.7.17)33 with option "-C" to retain the barcode information in the315

alignment file, followed by sorting based on read alignment coordinates using SAMtools (v1.9)37. We connected the co-316

barcoded reads into long fragments if their coordinates were within 10 Kb on the reference genome. Each fragment was317

required to include at least two read pairs and to be no shorter than 1 Kb.318

Assembly of 10x, TELL-Seq, and stLFR linked-reads and PacBio CLR long-reads319

The 10x, stLFR, and TELL-Seq sequencing datasets were demultiplexed to generate raw linked-reads using Long Ranger320

(v2.2.0)38, stLFR_read_demux39 and LRTK40, respectively. 10x and TELL-Seq linked-reads were assembled using metaSPAdes321

(v3.15.3)31, Athena (v1.3)13, and Supernova (v2.1.1)18. stLFR link-reads were assembled using metaSPAdes (v3.15.3), Athena322

(v1.3), and stlfr2supernova_pipeline41 from BGI, because Supernova does not accept raw stLFR linked-reads as input. The323

scaffolds produced by Supernova were broken into contigs at successive Ns that were longer than 10 bp before evaluation.324

PacBio CLR long-reads from the two human gut microbiomes were assembled using metaFlye (v2.8)35.325

Benchmarking on the mock microbial community326

The reference genomes of ATCC-MSA-1003 were downloaded from the NCBI reference databases (Supplementary Table 1).327

The contigs assembled from the mock community were assessed using MetaQUAST (v5.0.2)42, with the option "--fragmented328

--min-alignment 500 --unique-mapping" to enable the alignment of fragmented reference genomes and discard ambiguous329

alignments. The p-values of differences in the NA50 and NGA50 of different assemblers were obtained using the Wilcoxon330

signed-rank test performed by the wilcox.test function of R with "paired=TRUE".331

Contig binning and quality evaluation332

We aligned the linked-reads to the contigs generated from the assemblers using BWA (v0.7.17)33 and calculated the read depths333

using "jgi_summarize_bam_contig_depths" in MetaBat2 (v2.12.1)34. The contigs with read depths were binned into MAGs334

using MetaBat2 (v2.12.1) with default parameters. CheckM43 was used to report the completeness and contamination of the335

MAGs. ARAGORN (v1.2.38)44 and barrnap (v0.9)45 were used to annotate the transfer RNAs (tRNAs) and rRNAs (5S, 16S,336
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and 23S rRNAs), respectively. According to the standard of minimum information about MAGs46, we classified the MAGs into337

near-complete (completeness > 90%, contamination < 5%, and could detect 5S, 16S, and 23S rRNAs and at least 18 tRNAs),338

high-quality (completeness > 90%, contamination < 5%), medium-quality (completeness ≥ 50%, contamination < 10%), and339

low-quality (the others).340

Annotation of the MAGs and the closest reference genomes341

The contigs were annotated using kraken247 with the custom database built from the NT database of NCBI. We used the342

"--fast-build" option of kraken2-build to reduce the database construction time. Subsequently, the "assign_species.py" script343

from "metagenomics_workflows"13, 24 was used to annotate MAGs as species (if the fraction of contigs belonging to the species344

was more than 60%) or genus (otherwise) based on contig annotations. The closest reference genomes of the NCMAGs that345

can be annotated at species-level were identified using GTDB-Tk (v2.1.0)48, which also reported the alignment identities and346

alignment fractions between them.347

Availability of data and materials348

The 10x linked-reads of ATCC-MSA-1003 mock community was downloaded from NCBI run SRR12283286. The stLFR and349

TELL-Seq sequencing data of ATCC-MSA-1003 was uploaded to NCBI BioProject PRJNA875547. The stLFR sequencing350

data of the two human gut microbiomes was deposited in China National GeneBank (CNGB) project CNP0003432. Codes of351

Pangaea and all the command lines are available at https://github.com/ericcombiolab/Pangaea.352
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ATCC-MSA-1003 (stLFR)
Pangaea Athena Supernova metaSPAdes

Total assembly length 58,259,182 52,159,846 35,226,545 57,225,487
Genome fraction (%) 85.05 77.12 52.21 83.99
Longest alignment 2,853,175 2,281,647 1,105,108 883,552
Overall N50 1,833,445 875,747 243,194 132,556
Overall NA50 732,394 677,911 215,052 125,586
Strain average NGA50 677,348.60 575,370.80 137,023.30 133,977.90
Strain average NA50 677,716.10 576,620.90 145,645.60 134,476.55

ATCC-MSA-1003 (TELL-Seq)
Pangaea Athena Supernova metaSPAdes

Total assembly length 59,488,595 60,847,375 56,748,937 60,648,311
Genome fraction (%) 80.01 81.99 76.46 82.46
Longest alignment 4,968,167 4,968,084 1,096,372 776,102
Overall N50 1,195,435 466,498 102,757 112,342
Overall NA50 601,408 361,569 97,312 105,630
Strain average NGA50 795,662.60 485,195.60 121,656.85 118,390.75
Strain average NA50 803,392.25 483,734.00 123,276.80 119,252.65

ATCC-MSA-1003 (10x)
Pangaea stLFR Pangaea TELL-Seq Athena Supernova

Total assembly length 58,259,182 59,488,595 52,159,979 89,828,047
Genome fraction (%) 85.05 80.01 77.20 75.08
Longest alignment 2,853,175 4,968,167 2,278,020 974,529
Overall N50 1,833,445 1,195,435 596,076 32,128
Overall NA50 732,394 601,408 437,889 30,194
Strain average NGA50 677,348.60 795,662.60 338,609.40 89,993.55
Strain average NA50 677,716.10 803,392.25 337,372.75 93,097.65

Human gut microbiome (S1)
Pangaea Athena Supernova metaSPAdes

Total assembly length 488,785,611 469,284,964 311,971,769 452,598,342
Longest contig 2,394,379 2,394,379 2,400,768 697,064
Overall N50 64,394 44,759 60,619 14,325

Human gut microbiome (S2)
Pangaea Athena Supernova metaSPAdes

Total assembly length 414,455,014 393,685,495 290,599,879 374,166,135
Longest contig 3,264,340 1,903,088 1,152,844 443,089
Overall N50 192,489 119,620 72,947 23,546

Table 1. Assembly statistics for different assemblers on the ATCC-MSA-1003 mock community and human gut microbiomes.
The highest values are in bold.
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Figure 1. Workflow of Pangaea on stLFR and TELL-Seq linked-reads. (a) High barcode specificity for stLFR and TELL-Seq
linked-reads. (b) Pangaea extracts the k-mer frequencies and TNF features from co-barcoded reads. The features are
concatenated and used to represent data in low-dimensional latent space using a variational autoencoder. The embeddings of
co-barcoded reads are clustered by RPH-kmeans. Pangaea assembles the linked-reads from each bin independently and adopts
a multi-thresholding reassembly strategy to improve the assemblies for low-abundance microbes.

12/16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.07.506963doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.506963
http://creativecommons.org/licenses/by-nc/4.0/


**

****
***

1

2

3

metaSPAdes Supernova Athena

N
A5

0 
(M

b)

**

****
***

1

2

3

metaSPAdes Supernova Athena

N
G

A5
0 

(M
b)

**

****
***

1

2

3

metaSPAdes Supernova Athena

N
A5

0 
(M

b)

**

****
***

1

2

3

metaSPAdes Supernova Athena

N
G

A5
0 

(M
b)

ba c

ed

hg

Nx (Kb)Nx (Kb)

0

800

1600

2400

3200

20 40 60 80 1000 20 40 60 80 100

1000

2000

3000

4000

5000

metaSPAdes Supernova AthenametaSPAdes Supernova Athena

f

i

0

1000

2000

3000

4000

5000

20 40 60 80 100

Nx (Kb)

Supernova Athena Pangaea
TELL-Seq

Pangaea
stLFR

***
ns

****

***
ns

****

N
A5

0 
(M

b)
N

G
A5

0 
(M

b)
1

2

3

4

1

2

3

4

Supernova Athena Pangaea
TELL-Seq

Pangaea
stLFR

Supernova Athena Pangaea
TELL-Seq

Pangaea
stLFR

Pangaea
TELL-Seq

Pangaea
stLFR

Pangaea
TELL-Seq

Pangaea
TELL-Seq

Pangaea
stLFR

Pangaea
stLFR

Figure 2. Nx, with x ranging from 0 to 100, on TELL-Seq (a), stLFR (b), and 10x linked-reads (c). NA50 and NGA50 for the
15 strains with abundance ≥ 0.18% assembled by metaSPAdes, Supernova, Athena, and Pangaea using the TELL-Seq (d and g),
stLFR (e and h) and 10x (f and i) linked-reads from the ATCC-MSA-1003 mock community. The p-values are reported using
the wilcox.test function of R with "paired=TRUE". **, ***, and ns denote p < 0.01, p < 0.001, and no statistically significant
difference, respectively.
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Figure 3. The number of NCMAGs generated using different assembly tools (a, e, and i). The number of NCMAGs by
thresholding minimum N50 (b, f, and j) and maximum read depth (c-d, g-h, and k-l). We compared the performances of
Pangaea, Athena, Supernova, and metaSPAdes on stLFR linked-reads from S1 (a-d) and S2 (e-h). The performance of Pangaea
on stLFR linked-reads was also compared with that of metaFlye on PacBio CLR long-reads (i-l).
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Figure 4. The annotated microbes of the MAGs produced by Pangaea, Athena, Supernova, and metaSPAdes from S1 (a) and
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Figure 5. Genome collinearity analysis between the selected NCMAGs produced by Pangaea and their closest reference
genomes (dot plots), and comparison of the corresponding MAGs produced by different assemblers (circos plots) from S1 and
S2. e and g are species for which Pangaea obtained complete and circular MAGs. Colors are used in the dot plots to distinguish
different contigs. The six rings in the circos plots from outside to inside denote the Pangaea MAGs (green), Athena MAGs
(orange), Supernova MAGs (blue), metaSPAdes MAGs (purple), GC-skew of Pangaea MAGs, and read depth of Pangaea
MAGs, respectively. If the same species was annotated by more than one MAG from the same assembler, the one with the
highest N50 is shown here. The remaining NCMAGs produced by Pangaea are shown in Supplementary Figure 2.
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