

TELL-Seq™ Data Analysis Software User Guide

for

Tell-Link

For Research Use Only. Not for use in diagnostic procedures.

Document # 100025 Version 1.1.1

December 2022

1
 100025-USG V1.1

Table of Contents

1. Introduction 2

2. Tell-Link Pipeline 4

3. Installation 6

4. Run Tell-Link Pipeline 9

➢ Run Tell-Link on Linked Read FASTQ Data 9

➢ Optimal k-mer size recommendations 11

5. Run Tell-Link with Singularity 12

2
 100025-USG V1.1

1. Introduction

This document describes instructions on how to use TELL-Seq Data Analysis software “Tellysis”

accompanied with the TELL-Seq WGS Library Prep Kit.

The TELL-Seq WGS library prep kit uses an innovative Transposase Enzyme Linked Long-read

Sequencing (TELL-Seq™) technology to prepare a paired-end library to generate barcoded linked

reads from an Illumina sequencing system. Linked reads can then be processed and analyzed by

Tellysis for genome wide variant calling, haplotype phasing, structural variation detection,

metagenomic studies, de novo sequencing assembly, etc.

Tellysis software comes in the form of three main pipelines:

● Tell-Read

a set of pipeline processes that takes as input the sequencing output from an NGS

sequencing instrument and generates linked-read FASTQ data, as well as QC reports.

● Tell-Sort

a set of pipeline processes that takes as input the linked-read data from Tell-Read result and

performs variant calling, phasing and SV.

● Tell-Link

de novo assembly pipeline processes that build barcode-aware assembly graph, assembles

contigs and performs scaffolding.

3
 100025-USG V1.1

4
 100025-USG V1.1

`

2. Tell-Link Pipeline

Tell-Link pipeline processing steps can be summarized in the following diagram.

The following is a brief description of major components in the pipeline.

I1, R1, R2

contigs

full scaff.

reports

add_bx

scaffolding

local assembly

quast

construct graph

k-mer counting

scaffolds

5
 100025-USG V1.1

Add Barcode

Barcode sequences are first added to the comment section of the read name of the FASTQ files for their

associated read pairs.

K-mer Counting

We use kmer-counting function of KMC library to read fastq reads into memory and obtain the kmer

sequence and its frequency.

Construct Graph

For each k+1 mer, we extract one kmer prefix and one kmer suffix to create two nodes in the de

Bruijn graph. We then add this k+1 mer as the edge between these two nodes to the graph. We

simplify the assembly graph iteratively by performing these procedures: tip removal, chimeric edges

removal, bubble and loop removal and bulges removal. We stop the iteration when there is no more

simplifying operation that can be executed.

Scaffolding

We use both read pair information, which is useful in connecting contigs disjoint by small gaps, and

barcode sharing information, which is helpful in connecting contigs disjointed by large gaps, to

construct scaffolds.

Local Assembly

For two contigs that are predicted to be consecutive on the genome, finding the path between them
on the assembly graph is not straightforward. This region usually comprises similar k-mer
compositions from many copies of a repetitive sequence in the genome. Rather than ignoring it and
filling ambiguous characters between the two consecutive contigs, we attempt to de novo assemble
the repeat region between them locally using linked-read information. We use a local k-mer to build
the de Bruijn graphs in local (gap) regions.

Quast

After the final scaffolds are done, we use Quast to evaluate assembly performance.

6
 100025-USG V1.1

3. Installation

The Tellysis pipelines are delivered as Docker images for consistent installations and executions to

minimize any potential issues arising from user environment. As such, a Docker running

environment is required. For Docker engine installation instructions, user is referred to the Docker

web site https://docs.docker.com/install/.

If a Docker running environment is not already available on the system, it will need to be installed.

Docker is available in two editions: Community Edition (CE) and Enterprise Edition (EE). The

following is an example for getting and installing Docker CE for Ubuntu/Debian systems. If a Docker

running environment is already available on the system, these steps can be skipped and only the Tell-Read

docker image would need to be installed.

Step 1: Update Software Repositories

As usual, it’s a good idea to update the local database of software to make sure you’ve got access to

the latest revisions.

Therefore, open a terminal window and type:

sudo apt-get update

Allow the operation to complete.

Step 2: Uninstall Old Versions of Docker

Next, it’s recommended to uninstall any old Docker software before proceeding.

Use the command:

sudo apt-get remove docker docker-engine docker.io

Step 3: Install Docker

To install Docker on Ubuntu, in the terminal window enter the command:

sudo apt install docker.io

https://docs.docker.com/install/

7
 100025-USG V1.1

Step 4: Start and Automate Docker

The Docker service needs to be setup to run at startup. To do this, type in each command followed

by enter:

sudo systemctl start docker

sudo systemctl enable docker

Step 5: Running Docker as a non-root user

If you don’t want to preface the docker command with sudo, create a Unix group called docker and add

users to it:

sudo groupadd docker

sudo usermod -aG docker $USER

Step6: Log out and log back in

After logging back in, run Docker as a non-root user.

After the installation of Docker or if you already have a Docker environment, follow the steps below

to install the Tell-Link docker image.

1. Download the Tell-Link docker image package tellink.tar.gz.

2. Unzip tellink.tar.gz, and this will create a directory called tellink-release which

contains the docker image of the pipeline called docker-tellink and a Unix shell script

called run_tellink.sh.

$ tar xzvf tellink.tar.gz

3. Load the docker image

$ docker load -i tellink-release

8
 100025-USG V1.1

4. Check image docker-tellink is loaded

$ docker images

 REPOSITORY TAG IMAGE ID CREATED SIZE
 docker-tellink latest 607af6111097 About an hour ago 1.09GB

5. (Optional) To remove the image docker-tellinkt to upgrade to a newer version

$ docker image rm -f 607af6111097

9
 100025-USG V1.1

4. Run Tell-Link Pipeline

The Tell-Link pipeline takes as input from processed FASTQ data resulted from the Tell-Read pipeline

(See TELL-Seq Data Analysis Software User Guide for Tell-Read).

The Tell-Link pipeline is delivered as a docker image. The Tell-Link package provides wrapper scripts

to run the pipeline so users can avoid the docker details.

➢ Run Tell-Link on Linked Read FASTQ Data

The wrapper script to run Tellink is run_tellink.sh. The command line looks like following,

$ run_tellink.sh \

 -r1 /path/to/R1/data \

 -r2 /path/to/R2/data \

 -i1 /path/to/I1/data \

 -r <genome reference file in fasta> \

 <-d metagenomics> \

 -o <path/to/output> \

 -k <k-mer size selected to build assembly graph> \

 -lc <local k-mer size selected to build assembly graph> \

 -p <prefix name>

-r1 This parameter specifies read 1 fastq file in gz compressed format.

-r2 This parameter specifies read 2 fastq file in gz compressed format..

-i1 This parameter specifies index 1 fastq file in gz compressed format.

-r This parameter specifies genome reference file in fasta format. This parameter is
optional.

-d metagenomics is the only value for this parameter. This parameter is optional and
can be set for assembling a metagenomics sample.

-o This parameter specifies the output directory.

-k This parameter specifies k-mer length for constructing global assembly graph.

-lc This parameter specifies local k-mer length for constructing local assembly graph.
See section Local Assembly below for more details.

10
 100025-USG V1.1

-p This parameter specifies a prefix name for identifying a result set.

-j This optional parameter specifies number threads to run.

An example is shown below,

$ run_tellink.sh \
 -r1 runTest/Full/runTest_R1_A501.fastq.gz.corrected.fastq.err_barcode_removed.fastq.gz \
 -r2 runTest/Full/runTest_R2_A501.fastq.gz.corrected.fastq.err_barcode_removed.fastq.gz \

 -i1 runTest/Full/runTest_I1_A501.fastq.gz.corrected.fastq.err_barcode_removed.fastq.gz \

 -r /data/genome/DH10b/ecoli_dh10b.fasta \

 -o runTestResult \

 -k 45 \

 -lc 31 \

 -p 501 \

 -j 30

The output directory runTestResult will be created and assembly results will be stored in the

directory.

$ ls -al runTestResult/
drwxrwxr-x 5 ubuntu ubuntu 6144 Jun 19 15:15 ./

drwxr-xr-x 83 ubuntu ubuntu 14336 Jun 19 15:15 ../

drwxrwxr-x 3 ubuntu ubuntu 6144 Jun 19 15:18 501/

drwxrwxr-x 14 ubuntu ubuntu 6144 Jun 19 15:15 .snakemake/

The directory view for the resulted assembly graph, contigs and scaffolds are stored in directory

501.

$ ls -al runTest/501/
drwxrwxr-x 3 ubuntu ubuntu 6144 Jun 19 15:18 ./

drwxrwxr-x 5 ubuntu ubuntu 6144 Jun 19 15:15 ../

drwxrwxr-x 7 ubuntu ubuntu 6144 Jun 19 15:18 501-eval/

drwxrwxr-x 5 ubuntu ubuntu 22528 Jun 19 15:18 __skipping/

-rw-rw-r-- 1 ubuntu ubuntu 36166 Jun 19 15:18 aligned.paf

-rw-rw-r-- 1 ubuntu ubuntu 6306 Jun 19 15:18 dotplot.eps

-rw-rw-r-- 1 ubuntu ubuntu 4693277 Jun 19 15:18 scaffolds.fasta

-rw-rw-r-- 1 ubuntu ubuntu 4654220 Jun 19 15:17 scaffolds.full.fasta

-rw-rw-r-- 1 ubuntu ubuntu 0 Jun 19 15:18 tengicungduoc

11
 100025-USG V1.1

The QUAST reports for assembly performance is stored in the evaluation directory under the label

501-eval.

$ ls -al runTest/501/501-eval/
drwxrwxr-x 7 ubuntu ubuntu 6144 Jun 19 15:18 ./

drwxrwxr-x 3 ubuntu ubuntu 6144 Jun 19 15:18 ../

drwxrwxr-x 2 ubuntu ubuntu 6144 Jun 19 15:18 aligned_stats/

drwxrwxr-x 2 ubuntu ubuntu 6144 Jun 19 15:18 basic_stats/

drwxrwxr-x 3 ubuntu ubuntu 6144 Jun 19 15:18 contigs_reports/

drwxrwxr-x 2 ubuntu ubuntu 6144 Jun 19 15:18 genome_stats/

-rw-rw-r-- 1 ubuntu ubuntu 53735 Jun 19 15:18 icarus.html

drwxrwxr-x 2 ubuntu ubuntu 6144 Jun 19 15:18 icarus_viewers/

-rw-rw-r-- 1 ubuntu ubuntu 4934 Jun 19 15:18 quast.log

-rw-rw-r-- 1 ubuntu ubuntu 376398 Jun 19 15:18 report.html

-rw-rw-r-- 1 ubuntu ubuntu 39481 Jun 19 15:18 report.pdf

-rw-rw-r-- 1 ubuntu ubuntu 2111 Jun 19 15:18 report.tex

-rw-rw-r-- 1 ubuntu ubuntu 1071 Jun 19 15:18 report.tsv

-rw-rw-r-- 1 ubuntu ubuntu 2200 Jun 19 15:18 report.txt

-rw-rw-r-- 1 ubuntu ubuntu 1720 Jun 19 15:18 transposed_report.tex

-rw-rw-r-- 1 ubuntu ubuntu 1071 Jun 19 15:18 transposed_report.tsv

-rw-rw-r-- 1 ubuntu ubuntu 1918 Jun 19 15:18 transposed_report.txt

➢ Optimal k-mer size recommendations

Tell-Link uses barcode-aware reads to construct assembly graph, compute contigs and build

scaffold. The choice of k-mer size is essential for an assembly graph and can affect assembly result.

Genome repeats can cause great difficulty for de novo assembly processes. They tangle the
assembly graph and shorten contigs. Tell-Link first utilizes barcode information to resolve complex
structures in the assembly graph at the global level. It then uses an additional local assembly
process to simplify the assembly graph by collecting a set of reads that shared the same barcodes
between two edges and reconstructing local assembly from that set. The local assembly graph is
simpler than the global assembly graph and therefore, easier to be untangled using read-pair
information.

Tell-Link pipeline gives users options to specify k-mer sizes for both global assembly graph and local
assembly graph for achieving optimal assembly result. Usually for each sequencing dataset, one
tests with different combinations of k-mer sizes to arrive at the best assembly.

In general, we recommend following combinations of k-mer sizes for different library read lengths.

12
 100025-USG V1.1

• For read length < 100bp, the global k-mer size range: 35-55, with local k-mer size: 23-31

• For read length between 100bp and 130bp, the global k-mer size range: 55-85, with local k-
mer size 35-45

• For read length ~150bp, the global k-mer size range: 99-115, with local k-mer size: 69-79.

In the latest Tell-Link pipeline, Tell-Link executes local assembly process by applying an optimal k-

mer for each individual gap instead of same k-mer size for all gaps. The selected local k-mer size by

user now becomes the seed k-mer. Tell-Link pipeline searches and applies optimal local k-mer size

around seeded k-mer size to try to fill the gaps in an iterative manner.

Tell-Link uses following formula to select a k-mer size for each iteration,

For example, when user set , the pipeline will use following k-mer sizes, 45, 41, 49, 37, 53, 33, 57, for
up to 7 iterations of local assemblies for yet unfilled gaps. The iteration can stop before all 7 rounds
are complete when pipeline determines no further improvement can be achieved.

In release V1.1.1, to make sure assembly can finish within a reasonable timeframe, the number of k-
mer iterations is further limited depending on complexity of contig scaffolding.

5. Run Tell-Link with Singularity

This chapter outlines steps to run Tell-Link pipeline using Singularity. If you need to learn more about

Singularity container, please check out resources, such as, Singularity Tutorial on GitHub, Singularity

at the NIH HPC.

1) Download and install Singularity

Follow the installation steps in the GitHub tutorial to install Singularity.

2) Runing Tell-Read with Singularity

The Tell-Link package includes a singularity image for Tell-Link as well as a wrapper script to run the pipeline

in Singularity. The script is, run_tellink_sing.sh. It takes exactly the same command line options as its

https://singularity-tutorial.github.io/
https://hpc.nih.gov/apps/singularity.html
https://hpc.nih.gov/apps/singularity.html
https://singularity-tutorial.github.io/01-installation/

13
 100025-USG V1.1

docker counterpart. For detailed descriptions of how to run pipeline with different types of input dataset,

please refer to Chapter 4.

14
 100025-USG V1.1

This document is proprietary to Universal Sequencing Technology Corporation and is intended solely

for the use of its customers in connection with the use of the products described herein and for no

other purposes.

The instructions in this document must be followed precisely by properly trained personnel to

ensure the proper and safe use of the TELL-Seq kit.

UNIVERSAL SEQUENCING TECHNOLOGY CORPORATION DOES NOT ASSUME ANY LIABILITY

OCCURING AFTER INCORRECT USE OF THE TELL-SEQ KIT.

©2021 Universal Sequencing Technology Corporation. All rights reserved.

TELL-Seq is a trademark of Universal Sequencing Technology Corporation. All other names, logos

and other trademarks are the property of their respective owners.

Revision History

Document # Version DCR Reference and Comment

100025-USG 1.0.3 DCR-210082 Initial Release

100025-USG 1.1 DCR-220058 New version of SW

supporting new TELL-Beads product

100025-USG 1.1.1 DCR-220085

This version will support the following

products:

100035 KIT, TELL-Seq Library Reagent Box 1 V1

RUO

100036 KIT, TELL-Seq Library Reagent Box 2 V1

RUO (TELL Bead Plex option)

100043 TELL-Seq™ Library Multiplex Primer C-

series (1-96) Plate

	1. Introduction
	2. Tell-Link Pipeline
	3. Installation
	4. Run Tell-Link Pipeline
	➢ Run Tell-Link on Linked Read FASTQ Data
	➢ Optimal k-mer size recommendations

	5. Run Tell-Link with Singularity

