
   

 

   

 

 

 

 

TELL-Seq™ Data Analysis Software User Guide 

for 
 

Tell-Read 

 

 

 

 

 

 

 

 

 

 

 

For Research Use Only. Not for use in diagnostic procedures. 

Document # 100023 Version 1.1.2 

March 2024 

 



   

 

 100023-USG V1.1.2 1 

 
 

Table of Contents 
 
 

 
 

1. Introduction 2 

2. Tell-Read Pipeline 4 

3. Installation 6 

4. Run Tell-Read Pipeline 9 

➢ Run Tell-Read on BCL Raw Data 9 

➢ Run Tell-Read on FASTQ Raw Data 11 

➢ Prepare Genome Reference Directory 13 

➢ The genomes.json file 14 

➢ Run Tell-Read pipeline without a reference 15 

➢ Typical layout of a result directory 16 

➢ Sample index names 17 

5. Run Tell-Read with Singularity 18 

6. Tell-Seq Run Analysis Report 19 

 

  



   

 

 100023-USG V1.1.2 2 

1. Introduction 
 

This document describes instructions on how to use TELL-Seq Data Analysis software “Tellysis” 
accompanied with the TELL-Seq WGS Library Prep Kit.  

The TELL-Seq WGS library prep kit uses an innovative Transposase Enzyme Linked Long-read 
Sequencing (TELL-Seq™) technology to prepare a paired-end library to generate barcoded linked 
reads from an Illumina sequencing system. Linked reads can then be processed and analyzed by 
Tellysis for genome wide variant calling, haplotype phasing, metagenomic studies, de novo 
sequencing assembly, etc. 

Tellysis software comes in the form of three main pipelines:  

● Tell-Read  

a set of pipeline processes that takes as input the sequencing output from an NGS 

sequencing instrument and generates linked-read FASTQ data, as well as QC reports. 

● Tell-Sort 

a set of pipeline processes that takes as input the linked-read data from Tell-Read and 

performs variant calling and phasing. 

● Tell-Link 

a set of de novo assembly pipeline processes that build barcode-aware assembly graph, 

assembles contigs and performs scaffolding.  



   

 

 100023-USG V1.1.2 3 

 

  



   

 

 100023-USG V1.1.2 4 

2. Tell-Read Pipeline 
 

Tell-Read pipeline processing steps can be summarized in the following diagram. 
 

 

 
 

 

The following is a brief description of major components in the pipeline. 

 

BCL to FASTQ Transformation and Sample Demultiplexing 

The pipeline can take either raw BCL run data or already-converted FASTQ files as input. When raw 
BCL run data is the input, the pipeline uses bcl2fastq tool to convert and demultiplex BCL data 
into sample-separated FASTQ files, I1, R1 and R2. When the input is in FASTQ format, the pipeline 
runs demultiplex to generate per-sample read files, I1, R1 and R2. I1 reads are the TELL-Seq 
barcode sequences. For each sequencing library construction, a set of unique barcode sequences 
was randomly chosen from a 2.4 billion-barcode pool. These sample-demultiplexed FASTQ files are 
saved as the raw data output files.  

 

I1,(I2),R1,R2Raw BCLs

bcl2fastq demultiplexingI1,R1,R2 fastq

R1, R2 adapter trim

I1 1mm correct R1, R2 fastqc

I1 filter

linked reads: I1, R1, R2 fastq

subsampling

bwa alignment

bam files

read distance SLF analysis barc perf analysis

reports

Input can be 
raw data 

directory with 
RunInfo.xml

Input can be 
preprocessed 

fastq reads 
I1, (I2), R1, R2

QC reporting



   

 

 100023-USG V1.1.2 5 

Reads Clean Up 

The next step of the pipeline is the QC processing of I1, R1 and R2 files. Read sequencing quality is 
processed by fastqc. Adapter sequences in R1 and R2 are trimmed using the cutadapt utility. 
The adapter-trimmed reads are then further processed. Unique barcodes associated with only one 
read are most likely caused by sequencing errors in the barcode. These barcodes are first identified 
if they are 1-base mismatched with another barcode associated with multiple reads, and then error-
corrected. Barcodes with uncorrected errors after this step are filtered out. The erroneous barcodes 
along with their associated reads are removed and excluded from the rest of the analyses.  
The remaining R1 and R2 reads, along with their associated I1 reads (barcodes) are the TELL-Seq 
linked reads. They are the input for downstream analyses, such as phasing, variant calling, SV 
detections and de novo assembly. 
 

 

QC Reporting 

  

Subsampling for Performance Analysis 

The rest of the Tell-Read pipeline uses a randomly selected subset (12,000) of unique I1 reads along 

with their R1 and R2 reads to evaluate the library and linked read performance. The subsampled 

reads are mapped to the reference genome using bwa. Various barcode and read statistics can then 

be assessed, such as, total mapped reads, duplicate rate, raw barcode statistics, barcode processing 

statistics, distribution of barcode and barcode associated reads. 

  
Read Distance 

One important property to pay attention to is the distribution of distances between the nearest 
alignments of the same barcode for all mapped reads. The bimodal distribution can be used to 
gauge the quality of the linked reads. A good library should have a high linked read peak (1st peak) 
and smaller (ideally less than half of the 1st peak by height) distal peak (2nd peak). This is usually 
achieved by the proper DNA to TELL bead ratio and sufficient sequencing depth. 
  

SLF Analysis 

Super Long Fragment (SLF): identified by sequencing as the original fragments which generate linked 
barcoded reads. It can be used as a representation of the gDNA fragments (DNA input). This sheds 
light on the input DNA quality and linked read performance. Since multiple SLFs can be tagged by 
the same barcode, a maximum distance threshold of 50kb is used allocate reads separated longer 
than this threshold value to different SLFs. 
 
 

  



   

 

 100023-USG V1.1.2 6 

Understand Output 

 
Following main artifacts of the pipeline can be found in the output directory. 
 

• Raw FASTQ files can be found in <output>/1_demult/Raw directory. 

• Final error-corrected FASTQ files are in <output>/Full directory. 

• The QC summary report QC_Analysis_<run>.html. A detailed description of this report is given in 
Chapter 6. 

 

 

3. Installation 
 

The Tellysis pipelines are delivered as Docker images for consistent installations and executions to 
minimize any potential issues arising from user environment. As such, a Docker running 
environment is required. For Docker engine installation instructions, user is referred to the Docker 
web site https://docs.docker.com/install/. 
 
If a Docker running environment is not already available on the system, it will need to be installed. 
Docker is available in two editions: Community Edition (CE) and Enterprise Edition (EE). The 
following is an example for getting and installing Docker CE for Ubuntu/Debian systems. If a Docker 
running environment is already available on the system, these steps can be skipped and only the 
Tell-Read docker image would need to be installed. 
 
Step 1: Update Software Repositories 
As usual, it is a good idea to update the local database of software to make sure you’ve got access to 
the latest revisions. 
 
Therefore, open a terminal window and type: 

sudo apt-get update 

 
Allow the operation to complete. 
 
Step 2: Uninstall Old Versions of Docker 
Next, it’s recommended to uninstall any old Docker software before proceeding. 
 
Use the command: 

sudo apt-get remove docker docker-engine docker.io 

 
  

https://docs.docker.com/install/


   

 

 100023-USG V1.1.2 7 

Step 3: Install Docker 
To install Docker on Ubuntu, in the terminal window enter the command: 
 

sudo apt install docker.io 

 
Step 4: Start and Automate Docker 
The Docker service needs to be set up to run at startup. To do this, type in each command followed 
by enter: 
 

sudo systemctl start docker 

sudo systemctl enable docker 

 
Step 5: Running Docker as a non-root user 
If you don’t want to preface the docker command with sudo, create a Unix group called docker 
and add users to it: 
 

sudo groupadd docker 

sudo usermod -aG docker $USER 

 
Step 6: Log out and log back in 
After logging back in, run Docker as a non-root user. 
 
After the installation of Docker or if you already have a Docker environment, follow the steps below 
to install the Tell-Read docker image. 
 
1) Download the Tell-Read docker image package tellread.tar.gz. 
 
2) Unzip tellread.tar.gz, and this will create a directory tellread-release which 

contains the docker image of the pipeline called docker-tellread, and three Unix shell 

scripts: generateGenomeIndexBed.sh, run_tellread.sh, and 

run_tellread_fq.sh.  
 

$ tar xzvf tellread.tar.gz 

 
3) Load the docker image 

 



   

 

 100023-USG V1.1.2 8 

$ cd tellread-release 

$ docker load -i docker-tellread  

 
 

4) Check image docker-tellread is loaded 

 

$ docker images 

 

 REPOSITORY     TAG         IMAGE ID         CREATED        SIZE 
 docker-tellread   latest       9996bd6089c9    8 seconds ago    3.05GB 
 

 
 

5) (Optional) To remove the image docker-tellread to upgrade to a newer version 
 

$ docker image rm -f 9996bd6089c9 

  



   

 

 100023-USG V1.1.2 9 

 

4. Run Tell-Read Pipeline 
 

The Tell-Read pipeline can take as input either one of the two types of raw data: 1) bcl files and 2) 
fastq data converted from bcl data by bcl2fastq. 
 
The Tell-Read pipeline is delivered as a docker image. The Tell-Read package provides wrapper 
scripts so users can avoid the docker details. 

➢ Run Tell-Read on BCL Raw Data 

A wrapper script run_tellread.sh is provided to simplify the command line invocation. Bash 

shell script run_tellread.sh takes the following format. 
 

$ run_tellread.sh \ 

 -i <path/to/raw/data> \ 

  -l s_<lane> 

 -o <path/to/output> \ 

 -f <path/to/reference> \ 

 -s <comma separated sample list> \ 

 -g <comma separated genome list>  

 

The command line options are explained in the table below. 
 

-i 
This specifies the path to the raw data directory. For example, for a MiniSeq sequencing run, 
this would be /data/MiniSeq/raw/180718_MN00867_0016_A000H2JVYN. 

-l 
Use s_<lane> to select lane number 1-8. For example, to select lane 1, 3, use s_[13]; lanes 1 
through 4, use s_[1-4]. 

-o 
This specifies the output directory to store the results. For example, 
/data/Run_Analysis/run180718. 

-f 
This specifies the directory that contains all genome reference files. For example, 
/data/genome. See Prepare Genome Reference Directory section below on setting up the 
genome reference directory for the Tell-Read pipeline. 

-s 
This is a comma-delimited sample index list. For example, T501,T502,T503. Note: No spaces 
between sample names. If the run has only one sample, this parameter is not necessary, and 
the result is identified by the default sample name T500.  

-g 
This is a comma-delimited genome reference list. For example, DH10B,Arab,Fly. These 
reference names are used to retrieve specific genome FASTA files and are specified during 



   

 

 100023-USG V1.1.2 10 

the preparation of the genome reference directories. Detailed steps on how to prepare 
these reference files are discussed in the Prepare Genome Reference Directory section 
below. Note: No spaces between genome names. 

 
 
Example 1: multiple samples 
 

$ run_tellread.sh \ 

 -i /data/MiniSeq/raw/180718_MN00867_0016_A000H2JVYN \ 

 -o /data/run180718 \ 

 -f /data/genome \ 

 -s T501,T502,T504,T508 \ 

 -g Arab,Arab,Arab,Arab  

 
In this specific case, the raw data contains 4 samples, T501, T502, T504, T508, and all will use Arab 
as the reference.  
 
Example 2: single sample 
 

$ run_tellread.sh \ 

 -i /data/MiniSeq/raw/180718_MN00867_0016_A000H2JVYN \ 

 -o /data/run180718 \ 

 -f /data/genome \ 

 -g Arab  

 

In this specific case, the raw data contains single sample. By default, the sample name is T500. 
 
Example 3: de novo samples 
 

$ run_tellread.sh \ 

 -i /data/MiniSeq/raw/180718_MN00867_0016_A000H2JVYN \ 

 -o /data/run180718 \ 

 -s T501,T502,T504,T508 \ 

 -g NONE,NONE,NONE,NONE  

 

In this specific case, the raw data contains 4 samples and the genome references are not available. 
When running in this mode, genome reference directory option -f can be omitted, and the genome 
name should be specified as “NONE”. 
 



   

 

 100023-USG V1.1.2 11 

➢ Run Tell-Read on FASTQ Raw Data 

 
The wrapper script to run Tell-Read pipeline on raw FASTQ data is run_tellread_fq.sh. The 

command line looks like following, 
 

$ run_tellread_fq.sh \ 

 -i1 </path/to/I1_read.fastq.gz> \ 

 -i2 </path/to/I2_read.fastq.gz> \ 

 -r1 </path/to/R1_read.fastq.gz> \ 

 -r2 </path/to/R2_read.fastq.gz> \ 

 -o <path/to/output> \ 

 -f <path/to/reference> \ 

 -s <comma separated sample list> \ 

 -g <comma separated genome list>  

 
 
Example 1: multiple samples 

$ run_tellread_fq.sh \ 

 -i1 ~/runTraining190704/Test_I1_001.fastq.gz \ 

 -i2 ~/runTraining190704/Test_I2_001.fastq.gz \ 

 -r1 ~/runTraining190704/Test_R1_001.fastq.gz \ 

 -r2 ~/runTraining190704/Test_R2_001.fastq.gz \ 

 -o /data/runTraining190704_test \ 

 -f /data/genome \ 

 -s T501,T506,T516 \ 

 -g hg38,hg38,hg38  

 
In this example, the input fastq file includes multiple samples. The -s option is needed to 
demultiplex samples. 
 
 
Example 2: single sample 

$ run_tellread_fq.sh \ 

 -i1 ~/runTraining/Test_I1_T501_raw.fastq.gz \ 

 -i2 ~/runTraining/Test_I2_T501_raw.fastq.gz \ 

 -r1 ~/runTraining/Test_R1_T501_raw.fastq.gz \ 

 -r2 ~/runTraining/Test_R2_T501_raw.fastq.gz \ 

 -o /data/runTraining_test \ 

 -f /data/genome \ 

 [-s T501 \] 

 -g hg38  

 



   

 

 100023-USG V1.1.2 12 

In this example, the input fastq file is already sample-demultiplexed, the -s option is not needed. 
However, if -s option is omitted, the result will be given default sample name T500. If -s T501 is 
specified, the result will show sample name T501. 
 
 
Example 3: de novo samples 

$ run_tellread_fq.sh \ 

 -i1 ~/runTraining190704/Test_I1_001.fastq.gz \ 

 -i2 ~/runTraining190704/Test_I2_001.fastq.gz \ 

 -r1 ~/runTraining190704/Test_R1_001.fastq.gz \ 

 -r2 ~/runTraining190704/Test_R2_001.fastq.gz \ 

 -o /data/runTraining190704_test \ 

 [-f /data/genome \] 

 -s T501,T506,T516 \ 

 -g NONE,NONE,NONE  

 
In this example, the pipeline is running in de novo mode with genome names specified as “NONE”. 

Genome reference directory is not needed. So -f option can be omitted. 
 
 
The command line options are explained in the table below. 
 

-i1 This is a required parameter. It specifies the I1 read file in fastq.gz format. 

-i2 This is an optional parameter. It specifies the sample index I2 read file in fastq.gz format. 
If there is only one sample in the run dataset, this parameter is not needed. 

-r1 This is a required parameter. It specifies the R1 read file in fastq.gz format. 

-r2 This is an optional parameter. It specifies the R2 read file in fastq.gz format in a pair-end 
run. 

-o This is a required parameter. It specifies the output directory for analysis results. 

-f This is a required parameter. It specifies the directory where genome reference files are 
located. 

-s This parameter specifies a comma-delimited sample index list. See Sample Index Names 
below. If there is only one sample in the dataset, this parameter is not needed. In the 
output, result is identified by the default sample name T500. Note: No spaces between 
sample names. 

-g This is a comma-delimited ref_name list. For example, DH10B, Arab, Fly. These reference 
names are used to retrieve specific genome FASTA files. Detailed steps on to make these 



   

 

 100023-USG V1.1.2 13 

reference files will be discussed in the Prepare Genome Reference Directory section 
below. Note: No spaces between genome names.  

 

 Prepare Genome Reference Directory  

 
Genome Reference Directory is the root reference directory that contains individual genome 
subdirectories. 
 
If the genome reference is known for the sequenced samples, detailed performance report on Tell-
Seq library can be generated. To this end, Tell-Read pipeline randomly selects a subset of 
sequencing reads and barcodes to align with the reference genome. To prepare the genome 
reference for this purpose, genome indexes and bed files need to be created. For each genome 
reference, a subdirectory within the root Reference Directory is created that will hold the genome’s 
indexes and bed files.  
 
A script called “generateGenomeIndexesBed.sh” in the package helps users generate the reference 
subdirectory. This script takes 3 inputs: the genome reference in FASTA format, the full path to the 
root reference directory, and the genome reference name. Note, the genome reference name is 
specified by user. A subdirectory of this name should be created in the root reference directory. This 
name will be used later to reference the genome when running the pipeline. The created indexes 
will be in the same directory as the input FASTA file, and the bed files will be in the sub-directory 
called “bed”. 
 
To run this script, type the following in the command line:  
 
/path/to/generateGenomeIndexBed.sh MyGenome.fasta ReferenceDir GenomeRefName 

 

MyGenome.fasta -- use only file name, no preceding path information 

ReferenceDir   -- use full path name 

GenomeRefName  -- use name only, no path info; this will be a subdirectory 
under ReferenceDir 

 
Depending on the genome size, this script running time varies, from a couple of seconds (e.g., some 
bacteria genomes), to a couple of hours (e.g., human genome).  
 
The following example goes through a process of generating a reference for E. coli strain DH10b 
under the root reference directory /data/genome. It starts with the user creating a sub-directory 

named DH10b and copying a FASTA file ecoli_dh10b.fasta into that directory. 
 

$ cd /data/genome # root reference directory contains multiple individual 

genome reference subdirectories 



   

 

 100023-USG V1.1.2 14 

$ mkdir DH10b 

$ cp /path/to/ecoli_dh10b.fasta DH10b/ 

$ /path/to/generateGenomeIndexBed.sh ecoli_dh10b.fasta /data/genome DH10b 

[bwa_index] Pack FASTA... 0.03 sec 

[bwa_index] Construct BWT for the packed sequence... 

…… 

$ ls -al DH10b 

total 17348 

drwxrwxr-x 4 ubuntu ubuntu    4096 Jun 10 13:49 . 

drwxrwxr-x 4 ubuntu ubuntu    4096 Jun 10 13:46 .. 

drwxrwxr-x 2 ubuntu ubuntu    4096 Jun 10 13:49 bed 

-rw-rw-r-- 1 ubuntu ubuntu      37 Jun 10 13:49 ChromNameLinks.txt 

-rw-rw-r-- 1 ubuntu ubuntu     104 Jun 10 13:49 ecoli_dh10b.dict 

-rw-rw-r-- 1 ubuntu ubuntu 4753176 Jun 10 13:49 ecoli_dh10b.fasta 

-rw-rw-r-- 1 ubuntu ubuntu      33 Jun 10 13:49 ecoli_dh10b.fasta.amb 

-rw-rw-r-- 1 ubuntu ubuntu     119 Jun 10 13:49 ecoli_dh10b.fasta.ann 

-rw-rw-r-- 1 ubuntu ubuntu 4686216 Jun 10 13:49 ecoli_dh10b.fasta.bwt 

-rw-rw-r-- 1 ubuntu ubuntu      22 Jun 10 13:49 ecoli_dh10b.fasta.fai 

-rwxrwxr-x 1 ubuntu ubuntu 4753176 Jun 10 13:47 ecoli_dh10b.fasta.original 

-rw-rw-r-- 1 ubuntu ubuntu 1171536 Jun 10 13:49 ecoli_dh10b.fasta.pac 

-rw-rw-r-- 1 ubuntu ubuntu 2343120 Jun 10 13:49 ecoli_dh10b.fasta.sa 

drwxrwxr-x 2 ubuntu ubuntu    4096 Jun 10 13:49 ecoli_dh10b_LAM 

 

 

 

➢ The genomes.json file 

Under the root genome reference directory, there is a file named genomes.json. Each individual 
genome reference is represented by an entry in the file. When a new genome reference is created, a 
corresponding entry is added to this file automatically by script generateGenomeIndexBed.sh. 
When this script is run first time, the genomes.json will be created. In the subsequent runs, it 

will be updated with new genome entry being added. 
 
The genomes.json looks like, 

[ 

  { 

   "ref_name": "DH10b", 

   "ref_fa":    "DH10b/ecoli_dh10b.fasta", 

   "ref_bed":  "DH10b/bed/ecoli_dh10b_45kby5k.bed", 

   "num_chrom": "1" 

  }, 

  …… 

] 

 
In each entry, user specifies following items, 
 



   

 

 100023-USG V1.1.2 15 

“ref_name” A user defined reference name to be used in the pipeline command. By 
convention, it is the same name as the subdirectory name 

“ref_fa” Path to genome fasta file starting from the top level of the genome reference 
directory 

“ref_bed” Path to bed file starting from the top level of the genome reference directory 

“num_chrom” Number of chromosomes of the genome 

 
After genome subdirectories are generated for all genomes, the genome reference directory should 
look something like this, 
 

$ls -al /data/genome 

drwxrwxr-x 4  ubuntu ubuntu 4096 Jun 10 14:39 ./ 

drwxr-xr-x 17 ubuntu ubuntu 4096 Jun 10 15:05 ../ 

drwxrwxr-x 4  ubuntu ubuntu 4096 Jun  9 22:50 Arab/ 

drwxrwxr-x 4  ubuntu ubuntu 4096 Jun 10 13:49 DH10b/ 

-rw-rw-r-- 1  ubuntu ubuntu 3480 Jun 10 14:39 genomes.json 

 
The name and location of the genome reference directory is set by the user. However, in order for 
the Tell-Read pipeline to locate it, the full path needs to be supplied to the -f option of the 
run_tellread.sh script. 

 

➢ Run Tell-Read pipeline without a reference 

 
If the user runs the analysis with de novo samples, specify the genome reference name used for -g 
option as “NONE”.  

 
Currently, the Tell-Read analysis pipeline supports two modes for -g option:  
 

1.) All samples with a known genome reference. In this case -g is followed by a list of 

reference names, one for each sample; The reports will have mapping statistics for the 
samples. 

2.) All samples with unknown genome reference. In this case -g is followed by a list of string 

“NONE”, one for each sample.  
 
As of this release, the pipeline does not support the mixed mode where some of the samples’ 
reference is known, and the other samples’ reference is unknown. For users with the mixed 
samples, users can use a fake reference such as DH10b in the corresponding place of -g reference 



   

 

 100023-USG V1.1.2 16 

list. This will generate irrelevant mapping results in the reports that users can ignore. The other 
option is to run separate analysis for de novo samples. 
 

➢ Typical layout of a result directory 

 
A typical result directory looks like following. 
 

$ls -al run190530 
drwxrwxr-x 17 ubuntu ubuntu    4096 Jun 15 18:17 ./ 

drwxrwxrwx 69   root   root    4096 Jun 15 13:48 ../ 

drwxrwxr-x  4 ubuntu ubuntu    4096 May 31 19:55 0_fastq/ 

drwxrwxr-x  2 ubuntu ubuntu    4096 May 31 19:53 10_genomecov/ 

drwxrwxr-x  2 ubuntu ubuntu    4096 May 31 19:53 12_long_fragment/ 

drwxrwxr-x  2 ubuntu ubuntu    4096 May 31 19:53 14_SLFs/ 

drwxrwxr-x  4 ubuntu ubuntu    4096 May 31 19:55 1_demult/ 

drwxrwxr-x  2 ubuntu ubuntu    4096 May 31 19:49 2_barcode_indiv/ 

drwxrwxr-x  3 ubuntu ubuntu    4096 May 31 19:53 3_bwa/ 

drwxrwxr-x  2 ubuntu ubuntu    4096 May 31 19:54 4_gc_bias/ 

drwxrwxr-x  3 ubuntu ubuntu    4096 May 31 19:53 5_read_dist/ 

drwxrwxr-x 20 ubuntu ubuntu    4096 May 31 19:54 benchmarks/ 

drwxrwxr-x  2 ubuntu ubuntu    4096 May 31 19:54 download/ 

-rw-rw-r--  1 ubuntu ubuntu     299 May 31 19:54 emptyplot.png 

drwxrwxr-x  3 ubuntu ubuntu    4096 May 31 22:02 Full/ 

-rw-rw-r--  1 ubuntu ubuntu   23840 May 31 19:54 QC_Analysis_2.md 

-rw-rw-r--  1 ubuntu ubuntu   13817 May 31 19:54 QC_Analysis_2.Rmd 

-rw-rw-r—-  1 ubuntu ubuntu 2781127 May 31 19:54 QC_Analysis_run190530.html 

-rw-rw-r--  1 ubuntu ubuntu     404 May 31 19:51 run190530_correction_filter_report.txt 

-rw-rw-r--  1 ubuntu ubuntu    3279 May 31 19:54 run190530_report.txt 

-rw-rw-r--  1 ubuntu ubuntu      28 May 31 19:45 sample_index_list_run190530.txt 

 

 
In addition to some intermediate result directories marked by step numbers, the QC report for the 
run is summarized in the html file QC_Analysis_run190530.html. The barcode I1, read R1 
and read R2 fastq files are saved in the Full directory, as,  
 

run190530_I1_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq 

run190530_R1_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq 
run190530_R2_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq  

 

These linked reads in FASTQ format will be the input for downstream phasing and/or de novo 
assembly pipeline processes. 
 

$ ls -al Full 

drwxrwxr-x  3 ubuntu ubuntu      4096 May 31 22:02 ./ 

drwxrwxr-x 17 ubuntu ubuntu      4096 Jun 15 18:17 ../ 

drwxrwxr-x  2 ubuntu ubuntu      4096 May 31 19:49 fastqc/ 

-rw-rw-r--  1 ubuntu ubuntu 168216924 May 31 19:51 run190530_I1_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq.gz 

-rw-rw-r--  1 ubuntu ubuntu       210 May 31 19:51 run190530_I1_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq.log 

-rw-rw-r--  1 ubuntu ubuntu       162 May 31 19:48 run190530_I1_T503.fastq.gz.corrected.log 

-rw-rw-r--  1 ubuntu ubuntu 654829938 May 31 19:51 run190530_R1_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq.gz 

-rw-rw-r--  1 ubuntu ubuntu 694160936 May 31 19:51 run190530_R2_T503.fastq.gz.corrected.fastq.err_barcode_removed.fastq.gz 

 

 



   

 

 100023-USG V1.1.2 17 

➢ Sample index names 

• TELL-Seq library kit provides C-series and T-series index 2 primers for pooling samples 
together. The following are two lists of primer names . 

• T-series: T500,T501,…, T524 

• C-series: C501,C502,…,C596 
 
 



   

 

 100023-USG V1.1.2 18 

Run Tell-Read with Singularity 
 

This chapter outlines steps to run Tell-Read pipeline using Singularity. If you need to learn more 
about Singularity container, please check out resources, such as, Singularity Tutorial on GitHub, 
Singularity at the NIH HPC. 
 
1) Download and install Singularity 
 
Follow the installation steps in the GitHub tutorial to install Singularity. 
 
2) Running Tell-Read with Singularity 
 

The Tell-Read package includes a singularity image for Tell-Read as well as wraper scripts to run the 
pipeline in Singularity. The scripts are, run_tellread_sing.sh and run_tellread_fq_sing.sh. They take 
exactly the same command line options as their docker counterparts. For detailed descriptions of 
how to run pipeline with different types of input dataset, please refer to Chapter 4. 
  

https://singularity-tutorial.github.io/
https://hpc.nih.gov/apps/singularity.html
https://singularity-tutorial.github.io/01-installation/


   

 

 100023-USG V1.1.2 19 

 

5. Tell-Seq Run Analysis Report 
 
This chapter gives an explanation on major sections of the QC report. 
 
 
FastQC 
 
This is standard FastQC tool. We extract some of FastQC analysis output in our report. 
 
 Index 1  Standard fastqc report for sample demultiplexed barcode reads (I1) 
 Read 1  Standard fastqc report for sample demultiplexed reads (R1) 
 Read 2  Standard fastqc report for sample demultiplexed reads (R2) 
 
Overrepresented Sequences 
 
We use this to monitor adapter dimer level. For each sample, we add these percentage value 
together, if it is <3%, the library is considered as clean.  
 
 
Read Distance 
 
Mapped read distance (All) 
 
The plot of distribution of distances between the nearest alignments of same barcode for all 
mapped reads. 
 
The bimodal distribution can be used to gauge the quality of the linked reads. A good library should 
have a high linked read peak (1st peak) and smaller (ideally less than half of the 1st peak by height) 
distal peak (2nd peak). This is usually achieved by the proper DNA to TELL bead ratio and sufficient 
sequencing depth. 
 
In the plot label, used_reads (a,b), a is the percentage of reads over unique reads, b is the 
percentage of reads over total reads. 
 
 
PE Insert Length 
 
The insert length is taken from alignment file. 
 
 
 



   

 

 100023-USG V1.1.2 20 

 
Raw Barcode Statistics 
 

total_reads The total number of reads for the sample specified 

reads_with_barcode_all_Gs  Number of reads with the barcode whose sequence is all 
Gs 

reads_with_correct_barcode Number of reads with the barcode that passed raw filters 

reads_with_error_barcode Number of reads with the barcode that didn’t passe raw 
filters 

%reads_with_correct_barcode [>94%] reads_with_correct_barcode / total_reads x 100% 

%reads_with_error_barcode [<6%] reads_with_error_barcode / total_reads x 100% 

unique_barcode  The total number of unique barcodes for the specified 
sample 

unique_correct_raw_barcode  The total number of unique barcodes that passed raw 
filters for the specified sample 

mean_#reads/correct_barcode [>5] reads_with_correct_barcode / 
unique_correct_raw_barcode 

 
 
 
Barcode Processing Statistics 
 

barcode_with_single_read  The total number of barcodes with only 
one read 

barcode_with_more_than_3_reads  The total number of barcodes with more 
than 3 reads. This value gives us an 
estimate on the number of barcodes used 
in the reaction. It is probably still larger 
than the actual number of barcodes, but 
not too far off. 

reads_related_to_barcode_with_more_than_3_reads  The total number of reads associated 
with the barcodes in the previous row 

1mismatch_barcode_corrected  Number of 1 Hamming distance barcodes 
corrected. Many single count barcodes 
are generated due to sequencing errors. 
We are able to correct some of them. 

error_barcode_number  Number of barcodes that don’t pass 
filters. The reads associated with these 
barcodes will be excluded from the 
downstream analyses. 

final_correct_barcode_number  Number of barcodes after removal of 
erroneous barcodes 



   

 

 100023-USG V1.1.2 21 

final_reads_number  The total number of reads associated 
with correct barcodes and will be used for 
downstream analyses. 

 
 
 
 
Subsampling Analysis Using Reads Associated with 12,000 Unique Barcodes 
 
For the rest of report, we used subset of data from 12,000 unique barcodes to evaluate library and 
sequencing performance. 
 
Read Alignment Statistics 
 

read_type  Single-ended (SE) or pair-ended (PE) reads 

read_length  Number of bps in read sequences 

cluster_number  Total number of read pairs 

reads_mapped (R1 + R2)  

 

Number of mapped R1 reads + number of R2 reads 

reads_mapped (R1 + R2)  

[ideally >95%, acceptable >90%] 

Reads_mapped / (cluster_number x 2) x 100% 

read1_reads_mapped  Number of mapped R1 reads 

read1_reads_mapped_percentage  

[ideally >95%, acceptable >90%] 

read1_reads_mapped / cluster_number 

read2_reads_mapped  Number of mapped R2 reads 

read2_reads_mapped_percentage  

[ideally >95%, acceptable >90%] 

Read2_reads_mapped / cluster_number 

duplicates  Total number of duplicate reads 

duplication rate  

[10% - 60%] 

Duplicates / cluster_number. TELL-Seq runs normally see this 
value around 25% - 35%. 

read1_reads_total  Number of records in R1 fastq file 

read1_duplicates  Number of duplicate R1 reads 

read1_duplicate_rate  

[10% - 60%] 

read1_duplicates / read1_reads_total x 100% 

read2_reads_total  Number of records in R2 fastq file 

read2_duplicates  Number of duplicate R2 reads 



   

 

 100023-USG V1.1.2 22 

read2_duplicate_rate  

[10% - 60%] 

Read2_duplicates / read2_reads_total x 100% 

 
Read/Barcode Statistics 
 
This table displays some statistics on the distribution of barcode and barcode associated reads 
 

total_reads  The total number of aligned read pairs with correct 
barcode 

unique_reads  The total number of unique mapped read pairs 

total_uniq_barcodes_genome  The total number of unique barcodes 

barcode_with_single_read_count  

[25% - 50%] 

Number of unique barcodes with single read 

barcode_with_2-3_read_count  

[15% - 25%] 

Number of unique barcodes with 2 or 3 reads 

barcode_with_4ormore_read_count  

[>40%] 

Number of unique barcodes with at least 4 reads 

single-read-barc_reads_unique  

[2% - 10%] 

Number of unique reads associated with single-read 
barcodes 

2-3-read-barc_reads_unique  

[2% - 10%] 

Number of unique reads associated with 2- or 3-read 
barcodes 

4ormore-read-barc_reads_unique  

[>80%] 

Number of unique reads associated with multiple-reads 
(>=4) barcodes 

single-read-barc_reads_all  

[2% - 10%] 

Number of all reads associated with single-read barcodes 

2-3-read-barc_reads_all  

[2% - 10%] 

Number of all reads associated with 2- or 3-read barcodes 

4ormore-read-barc_reads_all  

[>80%] 

Number of all reads associated with multiple-reads (>=4) 
barcodes 

 
 
 
SLFs Analysis 



   

 

 100023-USG V1.1.2 23 

Super Long Fragment (SLF): identified by sequencing as the original fragments which generate linked 
barcoded reads. It can be used as a representation of the gDNA fragments (DNA input). This table 
sheds a light on the input DNA quality and linked read performance.  

Mean Value 
 

Reads_number_in_SLFs(>=1 read)  

[>1] 

Mean number of reads per SLF  

Reads_number_in_SLFs(>=2 reads)  

[>3] 

Mean number of reads per SLF when single-read 
SLFs are excluded 

Size_of_SLFs (including 1 read SLF)  

[>2kbp, ideally >4kbp] 

Mean SLF size when single-read SLFs are 
included. If this metrics is close to 10,000bp, it 
will indicate there were very little low molecular 
weight DNA in the input. 

Size_of_SLFs (only >4kbp)  

[small genome: >15kbp; large genome: 
>30kbp] 

Mean SLF size when SLFs larger than 4kbp are 
included in calculation 

Number_of_SLFs_for_each_barcode  

[small genome: 2-6; large genome: 8-16] 

Mean number of SLFs for each barcode.  
High number of SLFs for barcode is a major 
contributor to the high level of distal reads in the 
Read Distance plot. 
For human size genome, we target 10-12.  

Number_of_Chromosomes_for_each_barcode  

[for human, ~8] 

Mean number of chromosomes for each barcode 

  



   

 

 100023-USG V1.1.2 24 

This document is proprietary to Universal Sequencing Technology Corporation and is intended solely 

for the use of its customers in connection with the use of the products described herein and for no 

other purposes. 

The instructions in this document must be followed precisely by properly trained personnel to 

ensure the proper and safe use of the TELL-Seq kit. 

UNIVERSAL SEQUENCING TECHNOLOGY CORPORATION DOES NOT ASSUME ANY LIABILITY 

OCCURING AFTER INCORRECT USE OF THE TELL-SEQ KIT. 

©2021 Universal Sequencing Technology Corporation. All rights reserved. 

TELL-Seq is a trademark of Universal Sequencing Technology Corporation. All other names, logos 

and other trademarks are the property of their respective owners. 

 

Revision History 

Document # Version DCR Reference and Comment 

100023-USG 1.0.3 DCR-210082 Initial Release 

100023-USG 1.1 DCR-220058 New version of SW 

supporting new TELL-Beads product 

100023-USG 1.1.1 DCR-220085 

This version will support the following 

products: 
100035 KIT, TELL-Seq Library Reagent Box 1 V1 

RUO 

100036 KIT, TELL-Seq Library Reagent Box 2 V1 

RUO (TELL Bead Plex option) 

100043 TELL-Seq™ Library Multiplex Primer C-

series (1-96) Plate 

Added acceptable ranges for QC report and 

User Guide in Chapter 6 for reference 

 

100023-USG 1.1.2 DCR-240004 

This version added following changes: 

Allow user to select raw data by lanes in 

Run directory; 

Added support for NovaSeqX and iSeq. 

 

 

 

 


