
© 2022 The Board of Trustees of the University of Illinois. | Discovering Computer Science & Programming Through Scratch | Level Two	 1

Updated for Scratch 3.0

23003DD

2	 Level Three | Discovering Computer Science & Programming Through Scratch | © 2022 The Board of Trustees of the University of Illinois.

This third volume in a collection of three (so far) books on Scratch programming focuses on an interesting,
powerful, and important technique from computer science called recursion. A recursive program is one
which "calls itself.” In Scratch, this means using a block for the script within the very script that defines the
block. Recursion makes solving many problems easier, and also allows one to do some things that would be
very difficult to do without it, such as drawing intricate fractals.

While you need not have previously gone through the two earlier volumes, it will help to have done so. At the
very least, we assume you are comfortable programming in the Scratch environment, and can use blocks
from the motion category, from the control category, and that you know how to create and use variables.
More generally, because recursion can be a confusing topic, it will help if you have enough programming
experience in Scratch so that you can focus on the idea of recursion, and are not simultaneously learning to
program.

We hope you find the projects in this book interesting, illuminating, and, most of all, fun! And, that the
projects inspire you to go on to further study of topics in computer science.

Authors:

Lenny Pitt, Professor Emeritus of Computer Science, University of Illinois

Judy Rocke, Curriculum Development Specialist, Office for Mathematics, Science, and Technology Education
(MSTE), University of Illinois

Jana Sebestik, Assistant Director STEM Curriculum Design, MSTE, University of Illinois

Support for this guide is provided by the 4-H Computing Connections (CS4H) project funded by the University
of Illinois Extension and Outreach Initiative and also by the Department of Energy and the Department of
Homeland Security under Award Number DE-OE0000780.

Layout and Design:

Christina Tran, Graphic Designer, MSTE, University of Illinois, iamchristinatran.com

Copyright © 2022 The Board of Trustees of the University of Illinois. All rights reserved.
This curriculum is available for purchase from the National 4-H Supply Service, the e-commerce and mail order catalog unit of National 4-H
Council. Visit shop4-h.org or call (301) 961-2934.

About this Guide

Scratch is a project of the Lifelong Kindergarten Group at the MIT Media Lab (scratch.mit.edu). Images
of the Scratch cat are used with permission. All other screenshots and images used in this guide are
licensed under the Creative Commons Attribution-ShareAlike License.

http://iamchristinatran.com
https://shop4-h.org
https://scratch.mit.edu

© 2022 The Board of Trustees of the University of Illinois. | Discovering Computer Science & Programming Through Scratch | Level Two	 1

Table of Contents

6

6

9

11

13

13

16

19

23

26

27

29

30

34

35

36

41

42

42

42

43

43

44

 Creating with Scratch

 Parameters	

	 Creating Blocks that Accept Input

	 Generalize Further

	 Dinosaurs

 Recursion

	 The Handshake Problem with Iteration

	 The Handshake Problem with Recursion

	 Stacking Red Cups

	 Square Spirals

	 More Fun with Spirals

	 Letters

	 Many Js with Recursion

	 Drawing Recursive Trees

	 Recursive Plant

	 More Fun with Trees

	 Koch’s Curve

	 Create Your Own Koch’s Curve and Snowflake

 Other Recursive Problems

	 The Sheep Pasture

	 The Money Problem

	 Piece of Cake

	 The Guppy Problem

	 Samples of Activities Used

2	 Level Three | Discovering Computer Science & Programming Through Scratch | © 2022 The Board of Trustees of the University of Illinois.

For the Facilitator
This is the third computer science manual in a collection of three (so far). The activities in this book assume that
the user is comfortable programming in the Scratch environment and can use blocks from the motion and control
categories and knows how to create and use variables. This book focuses on an interesting, powerful, and important
technique from computer science called recursion. A recursive program "calls itself.” In Scratch, this means using a
block for the script within the very script that defines the block. Recursion makes solving many problems easier, and
also allows one to do some things that would be very difficult to do without it, such as drawing intricate fractals.

This curriculum provides youth with a series of tutorials and challenges within the Scratch environment. Some of
the activities are short and may take only thirty minutes, but others are more complex and offer opportunities to
explore. Young people can work on the activities individually, with partners, or in a guided instructional setting. If
students are working together, it is important to make sure that each student has equal time at the keyboard. It will
also be helpful if each youth has their own guidebook.

As a facilitator of this project, encourage youth to talk about what they learn as they try new scripts and find new
blocks. Youth will learn faster and more, when they discuss their projects with others. The Scratch community
encourages users to share their projects on the Scratch website and to remix others’ projects. Just be sure to give
credit to the original project creator. There are millions of registered Scratch users sharing projects. Join the fun!

This curriculum was written for youth in Grades 5-12, but may be used and adapted for younger and older audiences,
based on experience.

All three levels of Discovering Computer Science & Programming through Scratch were written using both the CSTA
(Computer Science Teachers Association) K-12 Computer Science Standards and the ISTE (International Society for
Technology in Education) Standards for Students as guidance. In addition to developing computer programming
skills and providing computing practice, these learning materials offer opportunities for collaboration and stimulate
computational thinking. Activities have been designed to promote creative design and encourage empowered
learners. The global Scratch community emphasizes positive digital citizenship and responsible collaboration.

Additionally, Using Mathematics and Computational Thinking is one of the Next Generation Science Standards
Scientific and Engineering Practices, while these lessons explicitly address the following Common Core State
Standards for Mathematical Practice:

MP1: Make sense of problems and persevere in solving them.
MP2: Reason abstractly and quantitatively
MP6: Attend to precision
MP8: Look for and express regularity in repeated reasoning.

6	 Level Three | Discovering Computer Science & Programming Through Scratch | © 2022 The Board of Trustees of the University of Illinois.

In computer science, a key concept is that of generalization. We try to find more general ways to
solve problems, so that a single solution or program can be used to solve different versions of the
same problem. Usually when you notice that you’re writing scripts that are similar, it is a good
time to consider whether there is a more general way to solve the problem so that you need only
one script.

Now look at the square __ block. We created this new block, which accepts a
value, or an argument. The argument, which is typed into the white oval before
the block is used, tells the sprite how long to make each side of the square. Type a

number (try 75 or 100) into the open oval of the square__ block. Then click on the block. Try other
numbers. Make a really big square and a very small one.

You have been using commands like this since you began using Scratch. For example, the move
and turn blocks accept arguments to tell the sprite how far to move or turn. The go to x:__ y:__
block accepts arguments to tell the sprite where to go to, and the say__ block accepts an argument
that tells the sprite what to say. Here, we’ve used an argument to tell the square block how big to
draw the square.

But how does a script like square__ tell the sprite how far to move, when the value of the
argument (say, 75) isn’t known until the script is run? We can’t put in “move 75 steps”, because a
number other than 75 might be input when the block is used.

This is solved by using a special variable called a parameter. For example, we might have a
parameter called sideLength, and then use the block move sideLength steps. The value of
sideLength will be 75 if the user enters 75 into the square__ block. Or it will be 100 if they entered
100. So, a parameter is used within the block as a placeholder for the argument that will be given
by the user when the block is used.

Creating Blocks that Accept Input
Open a new tab, and then open the Parameter activity at:				
scratch.mit.edu/projects/87534863

Parameters

Click on the smallSquare block. What do you see?
Click on the largeSquare block.
What do you notice about what the two blocks do? How are the
scripts that define them alike? How are they different?

https://scratch.mit.edu/projects/87534863

© 2022 The Board of Trustees of the University of Illinois. | Discovering Computer Science & Programming Through Scratch | Level Two	 7

This define block will appear in the script area.
Program the new square__ block as pictured so that it
can create a square of any size.

Give a parameter a name that clearly explains its meaning, just like when you name a variable.

5

6

Click the My Blocks category. Then click
Make a Block. Name the new block, square.

Click Add an input number or text.

The square block expands so you can name the
first parameter. Click inside the white oval
to change the parameter name to sideLength.

Then, click OK.

1

2

3

4

Let’s go over how to create the script define square with a parameter.

Open a new tab and a new Scratch file.

What should we fill in for the move__ steps block? This
is where the parameter comes in. When the square___
block is run, a number will be input. We don’t know
now what that number will be. We use the parameter
sideLength as a placeholder to represent that number.
Drag sideLength from the define block at the top of
the define script, and put it into the move__ steps
white circle, as shown in the picture. This tells the script
that when the script is run, the amount to be moved is
whatever value was input into the square___ block.

8	 Level Three | Discovering Computer Science & Programming Through Scratch | © 2022 The Board of Trustees of the University of Illinois.

Use the new customized square block in a script. Pull the
square block from the My Blocks category to use.

Create this script and then click the green flag.

Create a new script that uses the square block to draw squares of several sizes to look like
the squares below.

Define a new block, and then create a script that draws a triangle with a parameter for the
length of sides.

Change the input number to make a larger square. Make a square in the lower left corner of
the stage.

8

7

9

10

© 2022 The Board of Trustees of the University of Illinois. | Discovering Computer Science & Programming Through Scratch | Level Two	 9

Generalize Further

Notice the scripts shown above are very similar. Because of this, it should be no surprise that we can
create a single script that draws any polygon with any side length.

The script will have two parameters: one for the side length, and one for the number of sides.

Open a new Scratch file, click on the My Blocks
category, and Make a Block. Name the new block
polygon.

Click Add an input number or text twice and
name the two parameters sideLength and #ofSides.
Click OK.

Create the script that defines the
polygon block using these blocks.
Add other blocks if you need
them. Drag the parameters to use
as input in the repeat, turn, and
move blocks.

Predict what shape will be created when the green flag is
clicked on this script. Does it make a difference if the order of
the numbers is reversed?

Create and test the script. Change the order of the
numbers and test the script. What changes?

Remember from the Level 1 book, the
total number of turns a polygon needs to
complete is a full circle turn of 360 degrees.

A triangle makes 3 exterior angles with turns
of 120° (3 * 120 = 360), a square makes 4 turns
of 90° (4 * 90 = 360), and a octagon makes 8
turns of 45° (8 * 45 = 360).

1

2

3

4

10	 Level Three | Discovering Computer Science & Programming Through Scratch | © 2022 The Board of Trustees of the University of Illinois.

Change the input numbers in the polygon block to create a square, a pentagon, a hexagon, and
other regular polygons.

It's easier for the user when we label the
parameters so they know which numbers to
put in each space. To do this, right click on the
define polygon block and choose edit from
the drop down menu.

To delete both parameters, click on the white
oval with the parameter name. Then click the
trash can just above it.

Click Add an input number or text. Type sideLength in the pink
box. Click text Add a Label and type sideLength again. Now the
block has an input parameter and a label for the parameter.

To add a second parameter and a label for #ofSides, click Add an input number or text. Type
#ofSides in the pink box. Click text Add a Label and type #ofSides again. Then click OK.

The define polygon block and the polygon block now both
have labels for each of the parameters.

Challenge
•	 Write scripts using your new block to create multiple

polygon pictures like these:

5

7

6

8

9

10

46	 Level Three | Discovering Computer Science & Programming Through Scratch | © 2022 The Board of Trustees of the University of Illinois.

I pledge my head to clearer thinking,

my heart to greater loyalty,

my hands to larger service, and

my health to better living,

for my club, my community,
my country and my world.

