Acknowledgments – Junk Drawer Robotics

Authors
Richard L. Mahacek, University of California – ANR, County Director and 4-H Youth Development Advisor
Steven M. Worker, University of California – ANR, 4-H Science, Engineering, and Technology Coordinator
Anne Mahacek, Santa Clara University, Graduate Student, Mechatronics

Project Director
Bradley Barker, PhD, University of Nebraska–Lincoln, Science and Technology Specialist

4-H Robotics Curriculum Development Team
Carl Nelson, PhD, University of Nebraska–Lincoln, Associate Professor, Department of Mechanical Engineering
Daniel Leong, University of California – Merced, Undergraduate Student, Mechanical Engineering
David Gibson, EdD, Arizona State University, Associate Research Professor
Ernesto Mora, University of California – Merced, Undergraduate Student, Mechanical Engineering
K Chico, University of California – Merced, Undergraduate Student, Environment Engineering
Linda R. Horn, University of Connecticut, College of Agriculture & Natural Resources, 4-H Program Specialist
Megan Reese, University of California – Davis, Undergraduate Student, International Agricultural Development
Michelle Kreibiel, PhD, University of Nebraska–Lincoln, Youth Development Specialist
Neal Grandgenett, PhD, University of Nebraska at Omaha, College of Education, Professor of Education, Haddix Chair in STEM Education
Paul Clark, University of Nebraska at Omaha, Assessment Coordinator
Saundra Wever Frerichs, PhD, University of Nebraska–Lincoln, Instructional Designer
Timothy G. Ewers, PhD, University of Idaho Extension, 4-H Youth Development Specialist
Viacheslav I. Adamchuk, PhD, University of Nebraska–Lincoln, Adjunct Associate Professor

Layout and Design Team
Jan Cejka, University of Nebraska–Lincoln Educational Media, Communications Specialist
Gary Goodding, University of Nebraska–Lincoln Educational Media, Graphic Design Specialist
Anne Moore, University of Nebraska–Lincoln Educational Media, Desktop Publishing Specialist
Linda Ulrich, University of Nebraska–Lincoln Educational Media, Communications Specialist

Support for this publication was provided by jcpenney.

Support for this publication was provided by Lockheed Martin.

For ordering information contact National 4-H Supply Service at (301) 961-2934 or visit www.4-hmall.org.
Copyright 2011 National 4-H Council. All rights reserved. ISBN: 978-1-936582-08-2
National 4-H Council Product 08435
The 4-H Name and Emblem is protected under 18 USC 707.
Support for this publication does not imply endorsement by 4-H of any firm, product or service.
Table of Contents

Level 1 — Give Robots a Hand .. 4
Module 1: Parts Is Parts ... 5
Module 2: In Arm’s Reach ... 19
Module 3: Get a Grip ... 28

Level 2 — Robots on the Move .. 34
Module 1: Get Things Rolling ... 35
Module 2: Watt’s Up? .. 43
Module 3: Get a Move on .. 47
Module 4: Under the Sea ROV ... 54

Level 3 — Mechatronics ... 60
Module 1: Circuit Training ... 61
Module 2: Come to Your Senses ... 69
Module 3: It’s Logical ... 74
Module 4: Do What I Say! .. 84
Module 5: Ready, SET, Go! .. 89
Junk Drawer Robotics

The robotic exercises, activities, and use of this notebook will allow you to examine the communication skills that are used by scientists and engineers in technical writing, sketching, and drawing. You will have a chance to practice your own writing and drawing techniques in this 4-H Robotics Notebook. The notebook is a place for you to record your thoughts, ideas, and experiences as you examine the world of robotics. Your notebook should become like a formal diary that you will want to review yourself and share with others. This 4-H Robotics Notebook covers all three levels of the Junk Drawer Robotics curriculum. You’ll want to continue keeping notes of what you do in all levels and refer back to them often.

Robotics Notebook

Level 1

Give Robots a Hand

In the beginning Junk Drawer Robotics level, “Give Robots a Hand,” you will explore the function and design of robotic arms. You will investigate robotic hands, grippers, and other end effectors by studying their movements and power sources.

Module 1 – Parts Is Parts

You will start with activities to practice using your notebook and how to design and communicate like an engineer. As you begin to design and build, you will apply ideas about form and function. You will explore the design, manufacturing, and assembly of items. These objects will then be used to build your own robots.

Module 2 – In Arm’s Reach

Module 2 will allow you to examine different robotic arms and their uses. This knowledge will help you design and build a robot arm. You also will study air pressure and its ability to provide power and movement.

Module 3 – Get a Grip

In these activities, you will discover how various end effectors pick up and hold items. This module will conclude when you assemble your robotic arm and hand, and use it to move and grip items using air power!
To Learn

Activity A – Think Like a Scientist

Sort all of your items. To fill out the table, count the amount of items you have that fit within that category. Add up your items for totals of each color.

Sorting 1 – Color and Shapes

<table>
<thead>
<tr>
<th>Color</th>
<th>Shape</th>
<th>Square</th>
<th>Triangle</th>
<th>Circle</th>
<th>Rectangle</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can take your total data (numbers) above and make a visual chart or graph. Try to make a bar graph or a pie graph using the forms below. How does the data look different in each type?

Graph 1 – Number by Color

<table>
<thead>
<tr>
<th>Color</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1</td>
</tr>
<tr>
<td>Blue</td>
<td>2</td>
</tr>
<tr>
<td>Green</td>
<td>3</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
</tr>
</tbody>
</table>

Pie Graph 1A – By Color
Activity A – Think Like a Scientist

Resort the parts with a different criteria. Then create a new table below that matches your criteria. You can use as many cells as needed; if you need more, draw a new table on a separate sheet.

<table>
<thead>
<tr>
<th>______</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
</tr>
<tr>
<td>______</td>
</tr>
<tr>
<td>______</td>
</tr>
<tr>
<td>______</td>
</tr>
<tr>
<td>______</td>
</tr>
</tbody>
</table>

After resorting all of your objects and filling out the table, use the data to create a graph to visually show the results. Label the graph so others can read the data.

Graph 2 – ________________
To Learn

Activity A – Think Like a Scientist

Function –
The purpose of the object; holds things, provides shelter, moves stuff, etc.

Form –
The appearance of the object; how it looks, colors, shapes, materials, etc.

Fill out the table. You should list: the object, its form and its function.

Clothespin – Example

Function – To hold cloth to a wire or cord.

Form 1 –
Two pieces of shaped wood
One metal wire spring
Spring holds wood pieces together
Natural wood color

Form 2 –
One piece of shaped wood
Slot allows pin to slip over cord
Natural wood color

Sorting 3 – Form and Function

<table>
<thead>
<tr>
<th>Item</th>
<th>What is its Function?</th>
<th>What is its Form?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity B – Communicate Like an Engineer – 2-D Drawing

Look around and select an object in the room, but don’t let anyone know what it is. Study the item and think about how it looks; pretend you are looking at it from above, at the side of it, and in front of it. Then use the grids below to sketch the object in full detail.

You should draw your object from three different perspectives; the front, side, and top.

Note how dotted lines were used to show surface changes hidden in some views.

Then exchange your Drawing with the next player so that person can try to locate the same item using your drawing to find the item.
Activity B – Communicate Like an Engineer – Description

After trading notebooks, you will look at the drawing and try to locate the item in the room but not let anyone else know which item it is. Then use the space below to use words to describe that object. Do not use the name of the object in describing the item. Describe the form, not the function of the object. If you do not know what the object is, just describe the object from the pictures drawn by your partner.

Author of Description: ____________________________

Descriptors

Size
Colors
Textures
Shape
Measurements
Patterns
Materials
Surface
Other

Then exchange your Description with the next player. Have that person find the same item using your words to locate the item.
To Learn

Activity B – Communicate Like an Engineer - 3-D Drawing

After trading notebooks with a third member of the group, you will read the Description of the object and then draw a 3-D image of the item. To help, you can use the isometric grid below to line up your 3-D drawing.

Artist ____________________________

Then exchange your 3-D Drawing with the next player so that person can locate the same item, using your picture drawing to find the item.

Date ________________________
Signature ____________________
Activity B – Communicate Like an Engineer - Verbal

The fourth and last person in the group will use the 3-D Picture Drawing to locate the item and then will describe the item out loud for people in other groups to guess the item. You can use the area below to make notes for your sharing.

After sharing, return the notebook to its owner and then discuss and make a list of the benefits and problems when using each type of communication.

<table>
<thead>
<tr>
<th>Type of Communication</th>
<th>Benefits</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D Drawing/Sketch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-D Picture Drawing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why is it important to have detailed and accurate drawings and descriptions?

- Rectangular
- Wooden
- Has a hole through it in the large surface
- Is about 1 inch thick, 3 inches wide, and 5 inches long
- Light tan color
- Smooth surfaces
- One end has a tang
Career Connection 1: Robotics Notebook

Scientists conduct experiments and try to find new knowledge. Engineers apply their knowledge of science, math, and other elements to solve problems. As they work, they need to record their ideas and progress. These notes are usually kept in a notebook. This notebook is an important tool for communication. It records what has been done, what has worked, what has not worked, and ideas about what to work on next. The notebook is also used to assign credit for discoveries, inventions, and patents.

- What type of experiments do you think scientists might work on and record in their notebooks?
- What might an engineer invent or design that would be recorded in a notebook? Engineers use both drawings and words to describe their ideas. Do you think it would be easier for you to use words or drawings to describe a new invention?