

This third volume in a collection of three (so far) books on Scratch programming focuses on an interesting,
powerful, and important technique from computer science called recursion. A recursive program is one
which "calls itself”. In Scratch, this means using a block for the script within the very script that defines the
block. Recursion makes solving many problems easier, and also allows one to do some things that would be
very difficult to do without it, such as drawing intricate fractals.

While you need not have previously gone through the two earlier volumes, it will help to have done so. At the
very least, we assume you are comfortable programming in the Scratch environment, and can use blocks
from the motion category, from the control category, and that you know how to create and use variables.
More generally, because recursion can be a confusing topic, it will help if you have enough programming
experience in Scratch so that you can focus on the idea of recursion, and are not simultaneously learning to
program.

We hope you find the projects in this book interesting, illuminating, and, most of all, fun! And, that the
projects inspire you to go on to further study of topics in computer science.

Authors:

Lenny Pitt, Professor of Computer Science, University of Illinois

Judy Rocke, Curriculum Development Specialist, Office for Mathematics, Science, and Technology Education
(MSTE), University of Illinois

Jana Sebestik, Assistant Director STEM Curriculum Design, MSTE, University of Illinois

This guide was created as a part of the 4-H Computing Connections (CS4H) project funded by the University
of Illinois Extension and Outreach Initiative.

Layout and Design:

Christina Tran, University of Illinois, College of LAS, Department of Mathematics, MSTE

Copyright © 2017 The Board of Trustees of the University of Illinois.

About this Guide

Scratch is a project of the Lifelong Kindergarten Group at the MIT Media Lab (http://scratch.mit.edu).
Images of the Scratch cat are used with permission. All other screenshots and images used in this
guide are licensed under the Creative Commons Attribution-ShareAlike License.

Table of Contents

6

6

10

11

13

13

16

19

23

26

27

29

30

34

35

36

41

42

42

42

43

43

44

1

 Creating with Scratch

 Parameters

 Creating Blocks that Accept Input

 Generalize Further

 Dinosaurs

 Recursion

 The Handshake Problem with Iteration

 The Handshake Problem with Recursion

 Stacking Red Cups

 Square Spirals

 More Fun with Spirals

 Letters

 Many Js with Recursion

 Drawing Recursive Trees

 Recursive Plant

 More Fun with Trees

 Koch’s Curve

 Create Your Own Koch’s Curve and Snowflake

 Other Recursive Problems

 The Sheep Pasture

 The Money Problem

 Piece of Cake

 The Guppy Problem

 Samples of Activities Used

2

For the Facilitator
This is the third computer science manual in a collection of three (so far). The activities in this book assume that
the user is comfortable programming in the Scratch environment and can use blocks from the motion and control
categories and knows how to create and use variables. This book focuses on an interesting, powerful, and important
technique from computer science called recursion. A recursive program "calls itself.” In Scratch, this means using a
block for the script within the very script that defines the block. Recursion makes solving many problems easier, and
also allows one to do some things that would be very difficult to do without it, such as drawing intricate fractals.

This curriculum provides youth with a series of tutorials and challenges within the Scratch environment. Some of
the activities are short and may take only thirty minutes, but others are more complex and offer opportunities to
explore. Young people can work on the activities individually, with partners, or in a guided instructional setting. If
students are working together, it is important to make sure that each student has equal time at the keyboard. It will
also be helpful if each youth has his/her own guidebook.

As a facilitator of this project, encourage youth to talk about what they learn as they try new scripts and find new
blocks. Youth will learn faster and more, when they discuss their projects with others. The Scratch community
encourages users to share their projects on the Scratch website and to remix others’ projects. Just be sure to give
credit to the original project creator. There are nearly 20,000,000 registered Scratch users sharing projects. Join the
fun!

This curriculum was written for youth in Grades 5-12, but may be used and adapted for younger and older audiences,
based on experience.

All three levels of Discovering Computer Science & Programming through Scratch were written using both the CSTA
(Computer Science Teachers Association) K-12 Computer Science Standards and the ISTE (International Society for
Technology in Education) Standards for Students as guidance. In addition to developing computer programming
skills and providing computing practice, these learning materials offer opportunities for collaboration and stimulate
computational thinking. Activities have been designed to promote creative design and encourage empowered
learners. The global Scratch community emphasizes positive digital citizenship and responsible collaboration.

Additionally, Using Mathematics and Computational Thinking is one of the Next Generation Science Standards
Scientific and Engineering Practices, while these lessons explicitly address the following Common Core State
Standards for Mathematical Practice:

MP1: Make sense of problems and persevere in solving them.
MP2: Reason abstractly and quantitatively
MP6: Attend to precision
MP8: Look for and express regularity in repeated reasoning.

Notes:

3

In computer science, a key concept is that of generalization. We try to find more general ways to
solve problems, so that a single solution or program can be used to solve different versions of the
same problem. Usually when you notice that you’re writing scripts that are similar, it is a good time
to ask if there is a more general way to solve the problem so that you need only one script.

Now look at the Square __ block. We created this new block, which accepts a value
or an argument. You have been using commands like this since you began using
Scratch. For example, the move and turn blocks accept arguments to tell the sprite

how far to move or turn. The Square__ block accepts an argument that tells the sprite how far
to move to make the side of the square. Type a number (try 75 or 100) into the open circle of the
Square__ block. Then click on the block. Try other numbers. Make a really big square and a very
small one.

This is an example of a script with a parameter. A parameter is a special variable. When we type
a value, for example 75, into the Square__ block, the parameter inside the define Square__ gets
the value 75. The parameter tells one script the value of the argument and when the script is run, it
uses that value within the program.

We could have used a variable, sideLength, to draw a square. The
script would have looked like this. So, how is a parameter different
from a variable? A parameter can be used only by the script where it is
defined. Whereas, a variable is available for use by any sprite or script
in the program.

When would we want to use a parameter instead of a variable? In a
more complicated project the value of a variable could be changed
many times by many different scripts. Each script could set or change
the variable to a different value using these blocks.

Creating Blocks that Accept Input
Open a new tab, and then open the Parameter activity at:
https://scratch.mit.edu/projects/87534863

Parameters

Click on the SmallSquare block. What do you see?
Click on the LargeSquare block.
What do you notice about what the two blocks do?
How are the scripts that define them alike? How are they different?

6

This define block will appear in the script area. Define the new square block by attaching a
script that will create a square of any size. To do this, pull out these blocks.

Parameters are just like variables - except that they “belong” just to a specific script. Just like when you use
variables, you should name a parameter with a name that clearly explains its meaning.

7

5

6

Click the More Blocks category. Then click
Make a Block. Name the new block, square.
Click options.

Click the oval to the right of Add number input.

The square block expands so you can name the
first parameter. Click inside the white oval
to change the parameter name to sideLength.

Then, click OK.

1

2

3

4

So we use a parameter when we want to associate a variable with a particular script.

Let’s go over how to create the script define Square with a parameter.

Open a new tab and a new Scratch file.

We want to be able to make a square of any size. Click and drag the sideLength parameter
from the define block into the input circle in the move block.

To draw a square the sprite moves and turns 90 degrees 4 times. Type these number inputs
into the turn and repeat blocks.

Put the move and turn blocks inside the repeat block.

Use the new customized square block in a script. Pull the square
block from the More Blocks category to use. Create this script:

8

Write a script that draws squares of several sizes to look like the squares below.

Define a new block, and then create a script that draws a triangle with a parameter for the
length of sides.

7

8

9

Change the input number to make a larger square. Make a square in the lower left corner of
the stage.

11

10

12

13

Attach the pen down block and the repeat group of blocks to the define block to create the
script that defines our new square block.

Open a new Scratch file, click on the More Blocks category,
and Make a Block. Name the new block polygon. Click options.

Click the oval after Add number input twice and
name the two parameters sideLength and #ofSides.

Create the script that defines the polygon block using these blocks. Add other blocks if you
need them.

Predict what shape will be created when the green flag is clicked on this script. Why does this
script use 20 and 8? Does it make a difference if the order of the numbers is reversed?

Create and test the script. Change the order of the
numbers and test the script. What happens?

Generalize Further

Notice the scripts shown above are very similar. Because of this, it should be no surprise that we can
create a single script that draws any polygon with any side length.

The script will have two parameters: one for the side length, and one for
the number of sides.

Remember from the Level 1
book, the total number of
turns a polygon needs to
complete is a full circle turn
of 360 degrees.

A triangle makes 3 exterior
angles with turns of 120°
(3 * 120 = 360), a square
makes 4 turns of 90° (4 * 90 =
360), and a octagon makes 8
turns of 45° (8 * 45 = 360).

9

1

2

3

4

Change the input numbers in the polygon block to create a square, a pentagon, a hexagon, and
other regular polygons.

It makes it easier for the user if we label the
parameters so they know which numbers to put in
each space. To do this, right click on the define
polygon block and choose edit from the drop down
menu. Click options.

To delete both parameters, click on the white oval with
the parameter name. Then click the x just above it.

Click on the word text to the right of Add label text. Type sideLength in the pink box. Click on
the oval to add a number input and type sideLength again.

Click again on the word text to the right of Add label text. Type #ofSides in the pink box. Click
on the oval to add a number input and type #ofSides again. Click OK.

The define polygon block and the polygon block now
both have labels for each of the parameters.

Challenge
• Write scripts using your new block to create multiple

polygon pictures like these:

10

5

7

6

8

9

10

