

QUALITY-APPs Applikationen für das Qualitätsmanagement

Testen und Anwenden

Epps-Pulley Test

Autor: Dr. Konrad Reuter

Der Epps-Pulley Test dient zur Testung von Daten aus kleinen Stichprobenumfängen auf Normalverteilung. Der Test sind in gängigen CAQ Systemen und statistischen Softwarepaketen kaum enthalten. Die Anwendung in EXCEL stützt sich auf die entsprechenden Tabellen zum Verfahren bis n=50.

Ein weiterer empfehlenswerter Test auf Normalverteilung ist der Shapiro-Wilk Test, der als APP im Verlag verfügbar ist.

Dieses QUALITY APP liefert dem Statistiker wertvolle Unterstützung beim Test auf Normalverteilung. Die QUALITY Applikation ist im Excel-Format (ab 2013) und kann sofort eingesetzt werden.

Ansprechpartner: Dr. Konrad Reuter

Telefon: 0171/6006604

QUALITY APPS Applikationen für das Qualitätsmanagement

Lizenzvereinbarung

Dieses Produkt "Epps-Pulley Test" wurde vom Autor Dr. Konrad Reuter mit großem Aufwand und großer Sorgfalt hergestellt. Dieses Werk ist urheberrechtlich geschützt (©). Die dadurch begründeten Rechte, insbesondere die der Weitergabe, der Übersetzung, des Kopierens, der Entnahme von Teilen oder der Speicherung bleiben vorbehalten.

Bei Fehlern, die zu einer wesentlichen Beeinträchtigung der Nutzung dieses Softwareproduktes führen, leisten wir kostenlos Ersatz. Beschreibungen und Funktionen verstehen sich als Beschreibung von Nutzungsmöglichkeiten und nicht als rechtsverbindliche Zusicherung bestimmter Eigenschaften. Wir übernehmen keine Gewähr dafür, dass die angebotenen Lösungen für bestimmte vom Kunden beabsichtigte Zwecke geeignet sind.

Sie erklären sich damit einverstanden, dieses Produkt nur für Ihre eigene Arbeit und für die Information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es in anderer Form, insbesondere in Schulungs- und Informationsmaßnahmen bei anderen Unternehmen (Beratung, Schulungseinrichtung etc.) verwenden wollen, setzen Sie sich unbedingt vorher mit uns wegen einer entsprechenden Vereinbarung in Verbindung. Unsere Produkte werden kontinuierlich weiterentwickelt. Bitte melden Sie sich, wenn Sie ein Update wünschen.

Alle Ergebnisse basieren auf den vom Autor eingesetzten Formeln und müssen vom Anwender sorgfältig geprüft werden. Die berechneten Ergebnisse sind als Hinweise und Anregungen zu verstehen.

Wir wünschen viel Spaß und Erfolg mit dieser Applikation

QUALITY APPS Applikationen für das Qualitätsmanagement

Anwendungshinweise

1. Statistik Blatt

Anpassungstests auf Verteilungsmodelle gehören zu den Standardverfahren statistischer Analysen.

Insbesondere zur Anpassung von Daten an die Normalverteilung sind eine Reihe von Tests entwickelt worden. Die Eigenschaftend der Tests sind in der Spezialliteratur beschrieben.

Die Hypothese H₀ behauptet: die Daten stammen aus einer Normalverteilung.

Die Alternativhypothese H_1 behauptet: die Daten stammen nicht aus einer Normalverteilung.

Einfache Verfahren für eine schnelle Übersicht sind mit der Verfügbarkeit von Software eher in den Hintergrund getreten.

Die Anwendbarkeit einzelner Tests richtet sich auch nach dem Stichprobenumfang. Bis etwa

n = 50 werden Einzelwerte verwendet. Darüber können auch klassierte Daten getestet werden.

Der Epps-Pulley Test beruht auf der empirischen charakteristischen Funktion.

Die charakteristische Funktion beschreibt, wie auch die Verteilungsfunktion, vollständig die Verteilung einer Zufallsvariablen.

Aus diesen Gründen werden dem Test günstige Eigenschaften zugesprochen.

Die Norm DIN 5479 verdeutlicht den Rechenweg, der in dieser APP umgesetzt wurde.

Das vorliegenden PP erlaubt einen Stichprobenumfang von max n = 50.

Die Testgröße T_{FP} wird nach folgender Formel errechnet.

Berechnung

$$T_{EP} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{k=2}^{n} \sum_{j=1}^{k-1} \exp\left\{\frac{-(x_j - x_k)^2}{2m_2}\right\} - \sqrt{2} \sum_{j=1}^{n} \exp\left\{\frac{-(x_j - \overline{x})^2}{4m_2}\right\}$$

Die Summenterme werden über Zeilen und Spaltensummen der Berechnung ermittelt und mit A und B bezeichnet.

 m_2 errechnet sich zu

$$m_2 = \frac{1}{n} \sum_{j=1}^{n} \left(x_j - \bar{x} \right)^2$$

Für die p-Quantile zu den Wahrscheinlichkeiten $1-\alpha = 090, 0,95, 0,975$ und 0,99 und den Stichprobenumfängen von n=8 bis n=50 liegt eine Tabelle vor.

2. Anwendung

Im Blatt Merkmal sind gewünschten Angaben einzutragen.

In das Blatt Daten sind die Daten einzutragen oder aus Anwendungen zu übernehmen.

Das Ergebnis wird als Wahrscheinlichkeit *p* ausgegeben und die Signifikanz bewertet.

Überprüfen Sie unbedingt den Datensatz auf Ausreißer oder andere Datenfehler!!!

Weitere Blätter enthalten Zwischenrechnungen oder dienen der Information.

3. EXCEL

Die EXCEL-Lösung stützt sich auf folgende Prinzipien:

Funktionelle Aufteilung auf verschiedene Blätter.

Optische Hervorhebung von Zellen in Abhängigkeit von ihrer Funktion.

Vergaben von Namen für Variable Bezug auf Zellen mit Funktionen

Kommentierung wesentlicher Zellen

Reagieren auf Bedingungen / Verzweigungen

Ausblenden von Zellinhalten, die nicht zutreffend sind

Erzwingung einer geeigneten Zahlenformatierung im Ergebnis mit vorgegebener Stellenzahl.

Blattschutz gegen versehentliches Überschreiben (firmenintern anpassen).

Bereitstellung von Testdaten zu Überprüfung der Funktion der Datei.

Ergebnis bitte manuell eintragen.

Die Pflege einer Logdatei für die Änderungen ist sehr zu empfehlen.

4. Quellen

Rinne: Prozessfähigkeitsmessung für die industrielle Praxis, Hanser Verlag 1999

ISO 5479 Tests auf Abweichung von der Normalverteilung

TQU Verlag, Magirus-Deutz-Straße 18, 89077 Ulm Deutschland, Telefon 0731/14660200, verlag@tqu-group.com, www.tqu-verlag.com

Merkmal Daten

Daten

Berechnung

Merkmal

Eingabe Daten
errechnete Werte
Bezeichnungen

Namen

namen
VERGLEICH(;;0)
INDEX(;;)
SVERWEIS(;;0)
ISTLEER()
ISTZAHL()
WENN(;;)
FEST(;)
_

Validierung

Änderungen

lin	Datum	20.08.16		
me	Verantwortlich	Reuter		
Allgemein	Abt./Kst.	QM		
A/	Prüfort	Leipzig		
			_	
e/	Bezeichnung	Prüfmaschine		
Prüfmittel	Ident-Nummer	0815		
üfr	Messbereich	500,000	N	
Pı	Auflösung	1,000	N	Stellen 0
			_	
	Bezeichnung	rayon yarn		
	Ident-Nummer	ISO/DIS 5479		
/c	Merkmal	Festigkeit		
ms	Maßeinheit	N		
Merkmal	Sollmaß	150,000	N	
S	OSG	200,000	N	
	USG	90,000	N	
	Toleranz	110,000	N	

Daten

Nr.	Daten
1	147
2	186
3	141
4	183
5	190
6	123
7	155
8	164
9	183
10	150
11	134
12	170
13	144
14	99
15	156
16	176
17 17	160
18	174
19	153
19 20	162
21	167
22	179
23	78
24	173
25	168
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

Daten eintragen oder einkopieren bis n = 50 vorbereitet Es sind zwischen den Werten keine leeren Zellen zulässig!

Die Auswertung ist erst ab n = 8 sinnvoll.

XYZ GmbH			Epp	Epps-Pulley Test		FB ##-## Freigabe ##				
			Rearheiter	Bearbeiter Reuter			Abt./Kst. QM			
Ide	Bezeichnung ent-Nummer Messbereich	Prüfmittel Prüfmaschi 0815	ne N	E	Teil Bezeichnung	rayon yarn ISO/DIS 54	E	rkmal Bezeichnung Sollmaß OSG		N N
	Auflösung el.Auflösung		N		7.11.24.77			USG T	90	N N
Daten	1	2	3	4	5	6	7	8	9	10
(₁ - X ₁₀	147	186	141	147	147	147	147	147	147	147
₁₁ - X ₂₀	134	170	144	99	156	176	160	174	153	162
₂₁ - X ₃₀ ₃₁ - X ₄₀	167	179	78	173	168	. 	<u> </u>		: 	. .
31 X 40 41 X 50	 		ļ		<u> </u>	<u> </u>	 			
Statistik			•	•	•	•	•	•	•	•
	Mittelwert	156,6	N	Median	•	N				
ndardal	bweichung	26,63	N	Max	190	N	Mit	telwert +3s	236,5	N
	Schiefe	-1,44		Min	78	N	Mi	ttelwert -3s	81,6	N
	Kurtosis	2,37		Range	112	N				
Vahrsci		ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,564		signifikant signifikant				
Wahrsci 4	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564						
z	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564						
4	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564		signifikant				
z 3	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564	H ₁	signifikant				
z	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564	H ₁	signifikant				
2 3	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564	H ₁	signifikant				
z 3	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564	H ₁	signifikant				
2	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564	H ₁	signifikant				
2 3	Sig	inifikanzniv inifikanzniv snetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250		200
2	Sig	ınifikanzniv ınifikanzniv	/eau 95% /eau 99%	5: 0,368 5: 0,564	H ₁	signifikant		250)	300
4	Sig	inifikanzniv inifikanzniv snetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250		300
4	Sig	inifikanzniv inifikanzniv snetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250		300
4	Sig	inifikanzniv inifikanzniv enetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250)	300
4	Sig	inifikanzniv inifikanzniv enetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250)	300
2 0 0	Sig	inifikanzniv inifikanzniv enetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250		300
4	Sig	inifikanzniv inifikanzniv enetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250		300
4	Sig	inifikanzniv inifikanzniv enetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		250)	300
2 0 0	Sig	inifikanzniv inifikanzniv snetz der N	veau 95% veau 99% veau 99%	1 0,368 1: 0,564 Intellung	H-	signifikant	200			300
4	Sig	inifikanzniv inifikanzniv snetz der N	/eau 95% /eau 99%	teilung	H ₁	signifikant		2\$0 3s		300
4	Sig	inifikanzniv inifikanzniv snetz der N	veau 95% veau 99% veau 99%	1 0,368 1: 0,564 Intellung	H-	signifikant	200			300

Abteilung

Unterschrift

n	0,900	0,950	0,975	0,990
8	0,271	0,347	0,426	0,526
9	0,275	0,350	0,428	0,537
10	0,279	0,357	0,437	0,545
15	0,284	0,366	0,447	0,560
20	0,287	0,368	0,450	0,564
30	0,288	0,371	0,459	0,569
50	0,290	0,374	0,461	0,574

ISO 5479 Tests auf Abweichung von der Normalverteilung Tabelle 14

Daten
147
186
141
183
190
123
155
164
183
150
134
170
144
99
156
176
160
174
153
162
167
179
78
173
168

Diese Daten manuell einkopieren

Ergebnisse	Α	29,6309	29,6309
	В	14,8087	14,8087
Testgröße	T _{EP}	0,6115	0,6115
Signifikanzniveaus	95%	0,368	0,368
	99%	0,564	0,564

Es sollten diese Ergenisse erscheinen.