

QUALITY-APPS Applikationen für das Qualitätsmanagement

Testen und Anwenden

Messsystemanalyse MSA2 ANOVA

Autor: Dr. Konrad Reuter

Kann man sich auf Messergebnisse verlassen? Vielfältige Einflüsse können das Ergebnis einer Messung in Frage stellen. Klarheit bringt eine Messsystemanalyse.

Als Messsystemanalyse bzw. Messmittel-Fähigkeitsananlyse oder Prüfmittel-Fähigkeitsananlyse, kurz MSA (engl: Measurement System Analysis),

bezeichnet man die Analyse der Eigenschaften von Messmitteln und kompletten Messsystemen im Qualitätsmanagement oder in Six Sigma Projekten bezüglich ihrer Messabweichungen..

Ob ein Messsystem die notwendige Fähigkeit besitzt, wird im Vergleich der systembedingten Messabweichungen zu den aufgabenbezogenen Anforderungen ermittelt.

Man unterscheidet fünf verschiedene Eigenschaften eines Messsystems: Genauigkeit, Wiederholpräzision, Vergleichspräzision, Linearität und Stabilität.

Jeder Analyse geht eine Untersuchung der Auflösung des verwendeten Messmittels voraus. Sie soll 5 % der Merkmalstoleranz nicht überschreiten.

Genauigkeit, Richtigkeit, systematische Messabweichung werden durch wiederholtes Messen ein und desselben Prüflings (Normals) ermittelt.

Messverfahren, die eine Wiederholung nicht zulassen, müssen auf andere Weise bewertet werden.

Die Differenz zwischen dem Mittelwert der Messergebnisse und dem richtigen Wert wird als systematische Messabweichung (engl. accuracy, bias) bezeichnet.

Zur Ermittlung der Wiederholpräzision, Wiederholbarkeit wird derselbe Prüfling vom selben Bediener und mit demselben Messmittel mehrmals in Folge gemessen.

Die Standardabweichung der Messwerte ist dann ein Maß für die Wiederholpräzision. (engl. repeatability)

Zur Ermittlung der Vergleichspräzision (engl. reproducibility) werden an denselben Prüflingen gemäß einem festgelegten Messverfahren Messungen

durch on shied ne, ed ane to recise the der mit nehreren Go was alb in T ps it route on h.

Zur Untersuchung der Linearität (engl. linearitat) wen en Messungen an mehrerer Prüflingen durc geführt, die den gesamten in der Praxis zu erwartenden Messbereich abdecken.

Jedes Referenzteil (Normal) V X A 6 V X Is Y & resse I. fie D fe 6-12 V Is and fe 1 are 2 22wt ft r are beobachteten Mittelwert wird berechnet.

Auf die gemessenen Abweichungen wird die Regressionsr chnung angewendet. Eine ei 🗬 Lefte Ausgleichskurve kann zur Korrektur der Nichtlinearität verwendet werden.

Die Ergebnisse werden zusätzlich grafisch dargestellt und mit vom Kunden vorgegebenen Anforderungen verglichen.

In der Messystemanalyse der Automobilindustrie und ihren Zulieferern kommen heute verbreitet folgende Verfahren zum Einsatz:

Das Verfahren MSA1 untersucht die Genauigkeit und Wiederholpräzision eines Messsystems. Hierfür ist ein eigenes QUALITY APP "Messsystemanalsyse MSA1" im Angebot.

Das Verfahren MSA2 untersucht die Wiederhol- und Vergleichspräzision eines Messmittels (engl. repeatability and reproducibility, daher R&R, auch Gage R&R).

Das Verfahren MSA3 untersucht die Genauigkeit und Wiederholpräzision eines Messsystems ohne Bedienereinfluss.

Neben diesen existieren die Verfahren für Linearität und Stabilität sowie verschiedene Verfahren für attributive Prüfmittel.

Für MSA2 können die Varianzanalyse (ANOVA Analysis of variance) und das Mittelwert- und Spannweiten-Verfahren (ARM Average and Range Method) eingesetzt werden.

Es wird angewendet, wenn ein Bedienereinfluss auf das Messergebnis möglich ist. Es wird vorzugsweise mit drei Prüfern und 10 Teilen durchgeführt und möglichst dreimal wiederholt.

Das ANOVA Verfahren wird in neueren Quellen empfohlen, da es die Bewertung einer Wechselwirkung von Prüfer/Teile ermöglicht.

Die Interpretation einer ggf. festgestellten Wechselwirkung muss vom Anwender entsprechend den Messbedingungen geleistet werden.

Ob ein Messystem geeignet ist, ergibt sich aus dem Vergleich der errechneten R&R% Werte zu den Anforderungen der Kunden.

Die genannten Verfahren sind in den gängigen CAQ Systemen oder statistischen Softwarepaketen meist enthalten.

Wegen ihrer relativen Überschaubarkeit sind diese Verfahren auch von vielen Anwendern mehr oder weniger geschickt in EXCEL umgesetzt worden.

Dieses APP ist so gestaltet, dass Sie interaktiv die Grundlagen der Auswertung der Analysedaten und deren wichtigsten Kenngrößen verstehen.

Dieses QUALITY APP liefert dem Qualitäts- und dem Produktionsmanagement wertvolle Unterstützung bei der Bewertung von Messverfahren und Messsystemen nach MSA2. Die QUALITY Applikation ist im Excel-Format und kann sofort eingesetzt werden.

Ansprechpartner: Dr. Konrad Reuter Telefon: 0171/6006604

QUALITY APPS Applikationen für das Qualitätsmanagement

Lizenzvereinbarung

Dieses Produkt "Messsystemanalyse MSA2" wurde vom Autor Dr. Konrad Reuter mit großem Aufwand und großer Sorgfalt hergestellt. Dieses Werk ist urheberrechtlich geschützt (©). Die dadurch begründeten Rechte, insbesondere die der Weitergabe, der Übersetzung, des Kopierens, der Entnahme von Teilen oder der Speicherung bleiben vorbehalten.

Sie erklären sich damit einverstanden, dieses Protukt nur für Ihre eigene Arheit und für die Information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information in und für die Information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information in und für die Information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es YAY de YAY of YAY sbes in er it 15 ihrun Yas und information in er it 15 ihrun

Alle Ergebnisse basieren auf den vom Autor eingesetzten Formeln und müssen vom Anwender sorgfältig geprüft werden. Die berechneten Ergebnisse sind als Hinweise und Anregungen zu verstehen.

Wir wünschen viel Spaß und Erfolg mit dieser Applikation

Anwendungshinweise

Datenreihe im Protokoll.

Blatt 1. Statistik Das Verfahren2 nach MSA und VDA wird hier in beiden Versionen ARM (Average Range Method) und ANOVA (Analysis of Variance) nach QS 9000 MSA Fourth Edition 2010 angewendet. Das Protokoll wird nur für ANOVA ausgegeben. Die Werte für ARM sind in Blatt Berechnung* ersichtlich. Protokoll Für die Umrechnung der Spannweiten R dienen die Faktoren MSA Ausgabe 3 bzw. 4. Daten Grafik* Die Berechnung der Eingriffsgrenzen der Regelkarten für Spannweiten und Mittelwerte erfolgt mit den Faktoren MSA Ausgabe3 bzw. 4. Für das Protokoll kann eine vorliegende Prozessstreuung eingegeben werden. Merkmal Andernfalls wird die Teilestreuung verwendet. Die Eingabe wird randomisiert und folgt damit einer ausdrücklicheren Empfehlung der MSA 4. Ausgabe. Dateneingabe (Innerhalb jeder Wiederholung) Zur innerbetrieblichen Bewertung der Prüfer sind die beiden Diagramme im Protokoll unerlässlich. Die Darstellung Protokoll folgt (er) 1! A. A. D. D. D. J. L. L. lei Jbai an K. tego len virc of gal ze Z. hlen gen Der Test auf Signifikanz der Wechselwirkung Prüfer/Teil wird mit dem F-Test geführt. Berechnung* Die Interpretation einer a f e k v v V V seh m a g ist sch vi r Protokoll Gründe könnten z.B. in unterschied ichen Messpesia inen gesucht weiden, wie an In benduichmessern sich eine Unrundheit auswirken könnte. Grafiken Zusätzlich und auf Empfehlung von MSA 4. Ausgabe werden die Residuen ausgewertet. Die Residuen geben Auskunft darüber, ob sich in die Versuchsduchführung störende Einflüsse eingeschlichen haben. Die Residuen (Messwerte - Mittelwerte) sollten einer Normalverteilung folgen. Außerdem sollte über der Versuchsdurchführung kein Trend aufgetreten sein. 2. Anwendung Im Blatt Merkmal sind zugehörigen und für das Protokoll verwendeten Angaben einzutragen. Merkmal Falls eine vorliegende Prozessstreuung (Standardabweichung) für die Bezugsgröße verwendet werden soll, kann diese im Blatt Merkmal eingetragen werden. Die Dateneingabe beinhaltet eine vollständige Randomisierung der Reihenfolge von Prüfer und Teil in den einzelnen Dateneingabe Wiederholungen. Die Randomisierung kann über ein Makro ausgelöst werden. Zur praktischen Anwendung sollte das Blatt "Druck" ausgedruckt und als Protokoll genutzt werden. Selbstverständlich Druck darf dann vor der Dateneingabe keine weitere Randomisierung ausgelöst werden. Fall Referenzwerte zur Verfügung stehen, können diese ebenfalls eingetragen werden. Die Grafik nutzt diese

Überprüfen Sie unbedingt den Datensatz auf Datenfehler!!!

Dateneingabe

Die Dateneingabe schließen Sie mit dem Button "Eingabe benden" ab. Dadurch werden die Berechnungen aktualiisert.

Die Stellenanzahl im Protokoll wird an die Stellenzahl des Prüfmittels angepasst.

Protokoll

Die Namen der Prüfer werden nicht in das Protokoll übernommen.

Die Achsen in den Diagrammen müssen ggf. noch manuell an die Datenlage angepasst werden.

Weitere Blätter enthalten Zwischenrechnungen und sind ausgeblendet. Hinweis *

3. EXCEL

Die Daten aus der randomisierten Eingabe werden mit Pivottabellen als Zwischenschritt der Auswertung systematisiert.

Berechnung*

Protokoll

Bei Beendigung der Eingabe (Button) werden die Tabellen aktualisiert.

Die EXCEL-Lösung stützt sich auf folgende grundsätzliche Prinzipien:

Funktionelle Aufteilung auf verschiedene Blätter.

Optische Hervorhebung von Zellen in Abhängigkeit von ihrer Funktion.

Kommentierung wesentlicher Zellen

Eingabe Daten
errechnete Werte

Bezeichnungen

Vergaben von Namen für Variable. Namen mit F3 nach Änderungen aktualisieren! Bezug auf Zellen mit Funktionen

Reagieren auf Bedingungen /Verzweigungen

Ausblenden von Zellinhalten, die nicht zutreffend sind (DIV/0).

Erzwingung einer geeigneten Zahlenformatierung im Protokoll mit vorgegebener Stellenzahl.

Verknüpfung von Zellinhalten über "&"

Namen *

INDEX(;;)
SVERWEIS(;;0)

ISTLEER()

ISTZAHL()

WENN(;;)

FEST(;Stellen)

="text1"&BEZUG

Zellen werden in Berechnungsblättern und Protokollen nicht über "Zellen verbinden" formatiert!

Als Lösung dient die Formatierung schmaler Spalten und die Formatierung

benachbarter Zellen mit "Über Auswahl zentrieren".

Die Nachteile verbundener Zellen sind damit vermieden...

Ausblenden von Blättern, die nicht ständig gebraucht werden.

Blattschutz gegen versehentliches Überschreiben (kann firmenintern geändert werden).

Bereitstellung einer Logdatei. Bitte manuell pflegen!

Änderungsübersicht

4. Validierung

Die Datei wird aus didaktischen Gründen mit den Testzahlen bereitgestellt.

In der praktischen Anwendung sollte eine Datei als Muster.xlt abgespeichert werden und dem betrieblichen Datenkonzept untergeordnet werden.	Merkmal
Vor diesem Abspeichern als Muster (###.xlt) sind die Inhalte Eingabefelder bei Merkmal und Dateneingabe zu löschen.	Dateneingabe
Neue Berechnungen sollten stets mit der Funktion Datei neu und dem Laden des Musters ausgelöst werden.	
Damit wird die Vergabe eines neuen Dateinamens von EXCEL erzwungen. Ergebnisse sind unter neuen Namen	
abzuspeichern (betriebliche Systematiken anwenden). Die Ber sch ung was hit er Phygram A Si A & D a CS I Van lichen. Die Berein ihne wurde ihne zwei Wieder follengen und each in tweiliger als a spengetestet.	Validierung*
Die Blätter sind in der Version der Übergabe ohne Passwort geschützt. Passwörter sollten nach den betrieblichen	
Systematiken eingesetzt werden Zur Überprüfung der Funkti	Testdaten
Ein Makro setzt diese in die Dateneingabe ein und Sie können das Ergebnis vergleichen.	

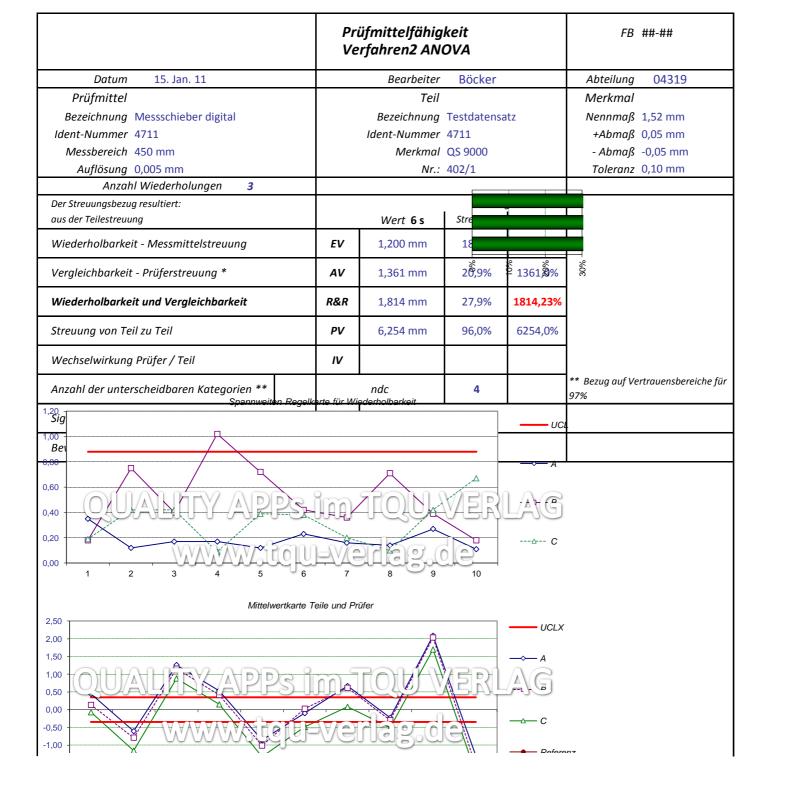
5. Quellen

MSA Fourth Edition 2010 VDA Leitfaden zum "Fähigkeitsnachweis von Messsystemen"Stand 12 /1999 STATGRAPHICS XVI VDA 5 Prüfprozesseignung 2. Auflage 2010

Datum	15. Jan. 11			Namen	_
Verantwortlich	Böcker		Α		
Abt./Kst.	04319		В		
Prüfort	Leipzig		С		
Bezeichnung	Messschieber d	gital	·		
Ident-Nummer	4711	_			
Messbereich	450,00	mm			
Auflösung	0,01	mm			
Stellen Maj ein) zi	Am The	LAPPs im	TOU	VERLAG	
Bezeicima. g	Testuacensatz				
Ident-Nummer	4711		nein		
Merkmal	QS 900C	ww.tau-ve	rse si	gbr	
Nr.:	402/1	ww.tqu-ve	e läfi z	ae	
Nennmaß	1,52	mm			
+ Abmaß	0,05	mm mi	it korrektem Vorze	ichen eingeben	
- Abmaß	-0,05	mm mi	it korrektem Vorze	ichen eingeben	
OSG (USL)	1,57	mm			
USG (LSL)	1,47	mm			
Toleranz T	0,10	mm			
Prozessstreuung S		mm fal	lls bekannt und erj	forderlich	FALSCH
Konfidenzlevel	95%	für	r ANOVA Wechsel	virkung	
acceptable <	10%				
may be acct. <=	30%	nach QS 9000 MSA Fourth Edition 2010			
unacceptable >	30%				_

Nr	Trial	Prüfer	Teil	Messwert	Namen	Teil	Referenz
1	1	C	1	0,04	0	1	
2	1	В	8	-0,63	0	2	
3	1	С	9	1,77	0	3	
4	1	A C	3	1,34	0	<i>4</i> 5	
5	1	A	1	-1,38 0,29	0	6	
7	1	В	10	-1,68	0	7	
8	1	С	5	-1,46	0	8	
9	1	В	2	-0,47	0	9	
10	1	В	5	-0,56	0	10	
11	1	A	7	0,59	0	20	
12	1	В	3	1,19	0		
13	1	С	3	0,88	0		
14	1	Α	5	-0,8	0		
15	1	В	7	0,47	0		
16	1	Α	9	2,26	0		
17	1	В	1	0,08	0		
18	1	В	6	-0,2	0		
19	1	В	4	0,01	0		
20	1	С	4	0,14	0		
21	1	С	6	-0,29	0		
22	1	С	7	0,02	0	1001.40	
23		UAL	8		Sim-TQU-V	ÆRLAG	
24	<u> </u>						
25	1	Α	4	0,47	0		
26	1	C	₩.		oteverlag.d	(2)	
27	1	A A	2	-0,56	<u> </u>)	
28	1	C	10	-0,56	0		
30	1	A	6	0,02	0		
31	2	С	1	-0,11	0		
32	2	С	6	-0,11	0		
33	2	В	9	2,12	0		
34	2	Α	2	-0,68	0		
35	2	Α	6	-0,11	0		
36	2	В	7	0,55	0		
37	2	С	2	-1,13	0		
38	2	Α	7	0,75	0		
39	2	В	5	-1,2	0		
40	2	Α	5	-0,92	0		
41	2	С	7	0,01	0		
42	2	В	1	0,25	0		
43	2	Α	3	1,17	0		
44	2	С	5	-1,07	0		
45	2	С	8	-0,56	0		
46	2	A	1	0,41	0		
47	2	A	10	-1,25	0		
48	2	B C	3	-1,22	0		
49	2	C	10	1,09	0		
50	2	С	4	-1,77 0,2	0		
51 52	2	A	9	1,99	0		
53	2	В	3	0,94	0		
54	2	В	8	0,08	0		
55	2	С	9	1,45	0		
56	2	В	4	1,03	0		
57	2	В	10	-1,62	0		
58	2	Α	4	0,5	0		
59	2	Α	8	-0,2	0		
60	2	В	6	0,22	0		
61	3	В	5	-1,28	0		
62	3	В	7	0,83	0		
63	3	С	9	1,87	0		
64	3	A	4	0,64	0		
65	3	В	9	2,19	0		
66 67	3	B A	2 10	-0,68 -1,31	0		
68	3	C	2	-0,96	0		
69	3	В	8	-0,34	0		
70	3	С	3	0,67	0		
71	3	В	3	1,34	0	1	
72	3	С	4	0,11	0		
73	3	В	4	0,2	0		
74	3	Α	7	0,66	0		
75	3	В	6	0,06	0		
76	3	Α	1	0,64	0		
77	3	С	10	-2,16	0		
78	3	Α	5	-0,84	0		
79	3	Α	9	2,01	0		
80	3	В	1	0,07	0		
81	3	A	2	-0,58	0		
82	3	С	8	-0,49	0		
83	3	A	3	1,27	0		
84	3	C	5	-1,45	0		
85	3	A	8	-0,17	0		
86	3	B C	10 7	-1,5 0,21	0		
87 88	3	C	6	-0,49	0		
88	3	С	1	-0,49	0		
90	3	A	6	-0,15	0		
- 50	_	-	_	0,21	L	i	

Einflussgröße	Symbol	Wert	Freihei	tsgrade			Varianzen	ohne WW	mit WW	F-Test	P(f)	
Prüfer	k	3	fIV	2	s²P	1,5836311	Prüfer	0,0514553	0,0521229	79,4060	0,000%	WAHR
Teile	n	10	fIII	9	s²T	9,8179927	Teile	1,0864466	1,0886721	492,2914	0,000%	WAHR
Wiederholungen	r	3	fII	18	s²PT	0,0199435	Wechselwirk	kung	-0,00868	0,4337	91,154%	FALSCH
			fl	60	s²E	0,0459822	Equipment	0,0399733	0,0459822			
			f	89	gesamt	1,1778751	S ² pool	0,0399733				


Ergebnistabelle			Wechse	elwirkung				Auswahl			AF
Ursache	σ ohne	σ mit	ohne	mit	ohne	mit	f	ür Protokol	I	Signifikanz	Verfa
AV	0,2268375	0,2283044	1361,0%	1369,8%	20,9%	21,0%	0,2268375	20,9%	1361,0%	hochsignifikant	0,229667
PV	1,0423275	1,0433945	6254,0%	6260,4%	96,0%	96,1%	1,0423275	96,0%	6254,0%	hochsignifikant	1,1045956
IV		0		0,0%		0,0%	0	0,0%		nicht signifikant	
EV	0,1999332	0,2144347	1199,6%	1286,6%	18,4%	19,8%	0,1999332	18,4%	1199,6%		0,2018567
TV	1,0852996	TV									1,1461345
R&R	0,3023715	ი 3132174	1814 2%	1879,3%	27,9%	28 9%	0,3023715	27 0%	1814,23%		0,3057663
Be	ezug		Tay	ran A D	SSTA				AG		

Zusammenfassung	Mittelwerte	Teil	NANA	mn (namk						
der Mittelwerte	Prüfer	1	A	V_V_V_3	QΟ[U = Δ	WHO E		7	8	9	10	Gesamt
•	Α	0,4466667	-0,60667	1,26	0,5,666667	-0,853333	-0,1	0,6666667	-0,226667	2,0866667	-1,306667	0,1903333
	В	0,1333333	-0,79	1,156667	0,41333333	-1,013333	0,0266667	0,6166667	-0,296667	2,0366667	-1,6	0,0683333
	С	-0,073333	-1,15667	0,88	0,15	-1,326667	-0,4833333	0,08	-0,503333	1,6966667	-1,806667	-0,2543333
Table2	Gesamt	0,1688889	-0,85111	1,098889	0,36666667	-1,064444	-0,1855556	0,4544444	-0,342222	1,94	-1,571111	0,0014444
												xquer_ges

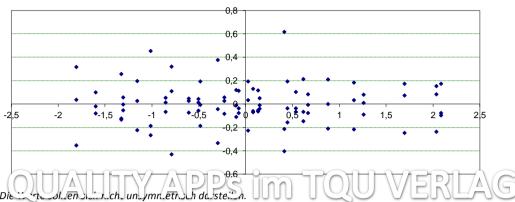
Bildung der	Summen	Teil										
Quadratsummen	Prüfer	1	2	3	4	5	6	7	8	9	10	Gesamt
Σ	Α	1,34	-1,82	3,78	1,61	-2,56	-0,3	2	-0,68	6,26	-3,92	5,71
Σ	В	0,4	-2,37	3,47	1,24	-3,04	0,08	1,85	-0,89	6,11	-4,8	2,05
Σ	С	-0,22	-3,47	2,64	0,45	-3,98	-1,45	0,24	-1,51	5,09	-5,42	-7,63
ΣW	Gesamt	1,52	-7,66	9,89	3,3	-9,58	-1,67	4,09	-3,08	17,46	-14,14	0,13
$(\Sigma W)^2$	795,2591	2,3104	58,6756	97,8121	10,89	91,7764	2,7889	16,7281	9,4864	304,8516	199,9396	
Σ (W) ²	275,6651	2,004	20,9702	33,2989	4,3322	31,6356	2,1989	7,4801	3,5346	102,4278	67,7828	
Table6												

	Prüfmittel		Teil		Merkmal	
15.01.11	Bezeichnung	Messschieber digital	Bezeichnung	Testdatensatz	Nennmaß	1,52 mm
	Ident-Nummer	4711	Ident-Nummer	4711	+Abmaß	0,05 mm
	Messbereich	450 mm	Merkmal	QS 9000	- Abmaß	-0,05 mm
	Δuflösuna	0.005 mm	Nr ·	402/1	Toleranz	0.10 mm

Tri	al 1				Tri	al 2				Tri	al 3			
Nr.	Prüfe	r	Teil	Messwert	Nr.	Prüfe	er	Teil	Messwert	Nr.	Prüfe	er	Teil	Messwert
1	С	0	1		31	С	0	1		61	В	0	5	
2	В	0	8		32	С	0	6		62	В	0	7	
3	С	0	9		33	В	0	9		63	С	0	9	
4	Α	0	3		34	Α	0	2		64	Α	0	4	
5	С	0	2		35	Α	0	6		65	В	0	9	
6	Α	0	1		36	В	0	7		66	В	0	2	
7	В	0	10		37	С	0	2		67	Α	0	10	
8	С	0	5		38	Α	0	7		68	С	0	2	
9	В	0	_2_		39	В	0	_5_		69	В	0	8	
10	В	0			4 /		<u> </u>	ווכ	_L_\V/15	D)	_¢∧'	(2)	3	
11	Α	0	77		ŲΓ.	315		35		nV7r	_5		3	
12	В	0	3		42	В	0	1		72	С	0	4	
13	С	0	3		/3 /4'/	A (3		73	В	0	4	
14	Α	0	5	WW	4	-		<u>ه الت</u>	Koule	74	Α	0	7	
15	В	0	7		45	С	0	8		75	В	0	6	
16	Α	0	9		46	Α	0	1		76	Α	0	1	
17	В	0	1		47	Α	0	10		77	С	0	10	
18	В	0	6		48	В	0	2		78	Α	0	5	
19	В	0	4		49	С	0	3		79	Α	0	9	
20	С	0	4		50	С	0	10		80	В	0	1	
21	С	0	6		51	С	0	4		81	Α	0	2	
22	С	0	7		52	Α	0	9		82	С	0	8	
23	Α	0	8		53	В	0	3		83	Α	0	3	
24	В	0	9		54	В	0	8		84	С	0	5	
25	Α	0	4		55	С	0	9		85	Α	0	8	
26	С	0	8		56	В	0	4		86	В	0	10	
27	Α	0	10		57	В	0	10		87	С	0	7	
28	Α	0	2		58	Α	0	4		88	С	0	6	
29	С	0	10		59	Α	0	8		89	С	0	1	
30	Α	0	6		60	В	0	6		90	Α	0	6	

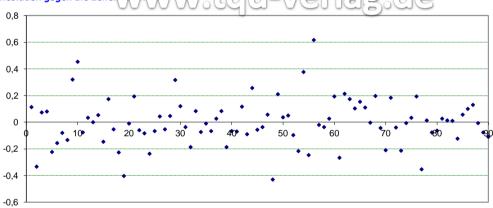
Allgemein

Datum	15. Jan. 11
Verantwortlich	Böcker
Abt./Kst.	04319
Prüfort	Leipzig

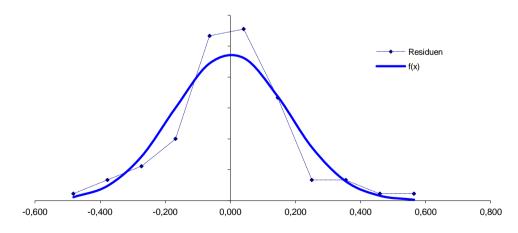

Prüfmittel

•		
Bezeichnung	Messschieber	r digital
Ident-Nummer	4711	
Messbereich	450,00	mm
Auflösung	0,01	mm

Teil


-			
Bezeichnung	Testdatensatz	Z	
Ident-Nummer	4711		
Nennmaß	1,52	mm	
+Toleranz	0,05	OSG	1,57
- Toleranz	-0,05	USG	1,47

Residuen gegen die Mittelwerte


Dies findet seinen Ausdruck auch im folgenden Histogramm im Vergleich zur Normalverteilung.

Die Werte sollten keinen Trend erkennen lassen. Andernfalls hätte sich während des Versuchsablaufes ein schädlicher Einfluss geltend geamacht.

Histogramm der Residuen im Vergleich zur Normalverteilung

Bei einem Messvogang sollten die beobachteten Abweichen zufälliger Natur sein. Deutliche Abweichungen von der Symmetrie sollten zu weiteren Analysen führen. Das Vorliegen einer Normalverteilung ist Voraussetzung für die Varianzanalyse.

Tria	als Operators	Parts	Code	Measurements			QS 9000 Te	est Daten		
1	Α	1	1A1	0,29			Vergleich d	er streuungsbezo	genen Ergebr	nisse (nur Teiles
1	Α	2	1A2	-0,56			Soll	Istergebnis	Vergleich	•
1	Α	3	1A3	1,34			%	%		
1	Α	4	1A4	0,47		EV	18,4219%	18,4219%	1	
1	Α	5	1A5	-0,8		ΑV	20,9009%	20,9009%	1	
1	Α	6	1A6	0,02		R&R	27,8607%	27,8607%	1	
1	Α	7	1A7	0,59		PV	96,0405%	96,0405%	1	
1	Α	8	1A8	-0,31				Test	i.O.	
1	Α	9	1A9	2,26			Datum	Tester	Ergebnis	
1	Α	10	1A10	-1,36			15.01.2011	Reuter	i.O.	
2	Α	1	2A1	0,41						
2	Α	2	2A2	-0,68						
2	Α	3	2A3	1,17						
2	Α	4	2A4	0,5						
2	Α	5	2A5	-0,92						
2	Α	6	2A6	-0,11						
2	Α	7	2A7	0,75						
2	Α	8	2A8	-0,2						
2	Α	9	2A9	1,99						
2	Α	10	2A10	-1,25						
3	Α	1	3A1	0,64						
3	Α	2	3A2	-0,58						
3	Α	3	3A3	1,27		0 0 6		$\cap \bigcirc$		
3	Α	4	3.4	/∧\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	APPs im TQU	\V/	151811	/A\(\(\text{G}\)		
3	Α	5	3/5/	-_U_U\\\&F			PI/IE			
3	Α	6	3A6	-0.21						
3	Α	7	3A7	0.66	v.tqu-verlag					
3	Α	8	3A8	\ ^v \ ^v \\ ^v \ ^v \ ¹ \ ⁴			3			
3	Α	9	3A9	_,						
3	A	10	3A10	-1,31						
1	В	1	1B1	0,08						
1	В	2	1B2	-0,47						
1	В	3	1B3	1,19						
1	В	4	1B4	0,01						
1	В	5	1B5	-0,56						
1	В	6	1B6	-0,2						
1	В	7	1B7	0,47						
1	В	8	1B8	-0,63						
1	В	9	1B9	1,8						
1	В	10	1B10	-1,68						