TQU Verlag Projektmanagement mit der Critical Chain Methode Pufferzeiten besser nutzen

QUALITY APPs Applikationen für das Qualitätsmanagement

Projektmanagement mit der Critical Chain Methode Pufferzeiten besser nutzen

Autor: Dr. Konrad Reuter

Critical-Chain-Projektmanagement (CCPM) oder auch Critical-Chain-Management (CCM) basiert auf den Ideen von Eliyahu M. Goldratt (Theory of Constraints). Es erweitert das klassische Projektmanagement um die Vermeidung von schädlichem Multitasking und den verbesserten Umgang mit Schätzungen, deren Streuungen und damit verbundenen Zeitpuffern. Das schädliche Multitasking wird vermieden, indem die Menge der Teilprojekte auf ein beherrschbares Maß begrenzt wird. Es wird mit real verfügbaren Ressourcen und nach Prioritäten (Kette) geplant. Der längste Pfad, bezogen auf den Ressourcenverbrauch, wird als "Kritische Kette" bezeichnet. Der verbesserte Umgang mit Schätzungen wird möglich, wenn die unvermeidlichen Streuungen der Bearbeitungszeiten akzeptiert und die damit verbundenen positiven und negativen Zeitreserven (Puffer) im Sinne des Projektes genutzt werden können (Puffermanagement)

Die Drei-Punkt-Schätzung der Dauern der Zeitpuffer der Teilprojekte (optimistisch, pessimistisch und realistisch) durch die Projektbeteiligten ist in der Regel nicht symmetrisch verteilt. In diesem QUALITY APP wird das Ermitteln der CCPM Projektpuffer einer kritischen Projektkette in der statistisch exakten Berechnung (schiefe Dreiecksverteilung) durchgeführt und durch Simulation der Überlagerungen der Zeitreserven berechnet. Die Berechnung erfolgt für alle Teilprojekte einer kritischen Kette (kritischer Pfad), d. h. die Arbeitsschritte schließen unmittelbar aneinander an. Parallele Teilprojekte werden nicht in die Überlegungen eingeschlossen. Die Applikation ist hilfreich für Projektbeauftragte und Projektleiter, die ressourcenkritische Projekte überdenken und steuern müssen.

Ansprechpartner: Dr. Konrad Reuter Telefon: 0171/6006604

TQU Verlag, Magirus-Deutz-Straße 18, 89077 Ulm Deutschland, Telefon 0731/14660200, verlag@tqu-group.com, www.tqu-verlag.com

QUALITY APPs Applikationen für das Qualitätsmanagement

Lizenzvereinbarung

Dieses Produkt "Projektmanagement nach der Critical Chain Methode" wurde von uns mit großem Aufwand und großer Sorgfalt hergestellt. Dieses Werk ist urheberrechtlich geschützt (©). Die dadurch begründeten Rechte, insbesondere die der Weitergabe, der Übersetzung, des Kopierens, der Entnahme von Teilen oder der Speicherung bleiben vorbehalten.

Bei Fehlern, die zu einer wesentlichen Beeinträchtigung der Nutzung dieses Softwareproduktes führen, leisten wir kostenlos Ersatz.

Be chopi un en al un io en estehe sich preibung von Nutzun sin og heit in und rockelle hisver dli red zu eine bei vir dafi, dass eine bott en ösu gen in vom Kunden beabsichtigte Zwecke geeignet sind.

Die Mappe ist insgesamt er hört dir in ehen Git sind urch er for gegen tropellen, Zeilen, Spalten oder Blätter können ausgeblen Ander gegen der Autor und der Verlag keinerlei weitere Verpflichtungen.

Sie erklären sich damit einverstanden, dieses Produkt nur für Ihre eigene Arbeit und für die Information innerhalb Ihres Unternehmens zu verwenden. Sollten Sie es in anderer Form, insbesondere in Schulungs- und Informationsmaßnahmen bei anderen Unternehmen (Beratung, Schulungseinrichtung etc.) verwenden wollen, setzen Sie sich unbedingt vorher mit uns wegen einer entsprechenden Vereinbarung in Verbindung. Unsere Produkte werden kontinuierlich weiterentwickelt. Bitte melden Sie sich, wenn Sie ein Update wünschen.

Wir wünschen viel Spaß und Erfolg mit dieser Applikation

TQU Verlag, Magirus-Deutz-Straße 18, 89077 Ulm Deutschland, Telefon 0731/14660200, verlag@tqu-group.com, www.tqu-verlag.com

QUALITY APPs Applikationen für das Qualitätsmanagement

Projektmanagement mit der Critical Chain Methode

Pufferzeiten besser nutzen

Hintergrund

Critical-Chain-Projektmanagement (CCPM) oder auch Critical-Chain-Management (CCM) basiert auf den Ideen von Eliyahu M. Goldratt (Theory of Constraints). Es erweitert das klassische Projektmanagement um die Vermeidung von schädlichem Multitasking und den verbesserten Umgang mit Schätzungen, deren Streuungen und damit verbundenen Zeitpuffern. Das schädliche Multitasking wird vermieden, indem die Menge der Teilprojekte auf ein beherrschbares Maß begrenzt wird. Es wird mit real verfügbaren Ressourcen und nach Prioritäten (Kette) geplant. Der längste Pfad, bezogen auf den Ressourcenverbrauch, wird als "Kritische Kette" bezeichnet. Der verbesserte Umgang mit Schätzungen wird möglich, wenn die unvermeidlichen Streuungen der Bearbeitungszeiten akzeptiert und die damit verbundenen positiven und negativen Zeitreserven (Puffer) im Sinne des Projektes genutzt werden können (Puffermanagement).

Im "klassischen" kt an jen t (tzzp im die jut im zusive eines ans jut im jojekte inkusive eines ans jut im jut i

Lösung

Die Drei-Punkt-Schätzung der Dauern der Zeitpuffer der Teilprojekte (optimistisch, pessimistisch und realistisch) durch die Projektbeteiligten ist in der Regel nicht symmetrisch verteilt. In diesem QUALITY APP wird das Ermitteln der CCPM Projektpuffer einer kritischen Projektkette in der statistisch exakten Berechnung (schiefe Dreiecksverteilung) durchgeführt und durch Simulation der Überlagerungen der Zeitreserven berechnet. Die Berechnung erfolgt für alle Teilprojekte einer kritischen Kette (kritischer Pfad), d. h. die Arbeitsschritte schließen unmittelbar aneinander an. Parallele Teilprojekte (nach Goldratt: schlechtes Multitasking) werden nicht in die Überlegungen eingeschlossen.

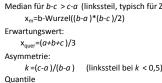
Anwendung

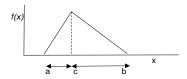
Die Applikation ist hilfreich für Projektbeauftragte und Projektleiter, die ressourcenkritische Projekte überdenken und steuern müssen.

Nutzung

In der Regel besteht eine Vorstellung, wann ein Gesamtprojekt fertig sein muss und welche Teilprojekte zu bearbeiten sind. In einem Netzplan können die Arbeitsgänge dargestellt werden und der kritische Pfad (längste Bearbeitungsdauer) ermittelt werden. Für die auf diesem Pfad liegenden Teilprojekte und Arbeitsschritte kann die CCPM Methode angewendet werden.

Schritt 1: Dreipunktschätzung. Zuerst ermittelt man bei den Projektmitgliedern die pessimisitische Schätzung, dann die optimistische und schließlich die realistische Schätzung der notwenigen Bearbeitungszeit für jedes Teilprojekt.


Schritt 2: Abgleich der notwendigen Ressourcen


Schritt 3: Pufferbildung. Nach CCPM werden die Teilprojekte möglichst spät begonnen, um Nacharbeiten zu vermeiden, wenn sich später neue Erkenntnisse ergeben.

Statisti

Für die Nutzung einer asymmetrischen Dreiecksverteilung zur Beschreibung von Zeitdauern gilt folgende Symbolik. optimistische Zeit - a (minimale Zeit ohne jegliche Verzögerung, technische Prozessdauer) realistische Zeit - c (Dichtegipfel, Modalwert, Erfahrungswerte analoger Projekte) pessimistische Zeit - b (unter Berücksichtigung von Risiken)

Bei Prozesszeitmodellen mit einer Zeitachse gegen ∞ wird eine Kappung für b vorgenommen, vorzugsweise bei 95%. Median für b-c > c-a (linkssteil, typisch für Zeitdauern)

für $P \le k : a \ne var | v$

Das Blatt "Daten S" zeigt die Simulationsergebnisse und die Kennwerte.

Das Blatt "Dichtefunktion" zeigt das Ergebnis der Simulation (die x-Achse muss manuell an die Daten angepasst werd (- 1).

Als Vergleich ist eine Normalverteilung mit Mittel e un an in 15 er jimu e grüß e V

Blatt "Projekte"

Für die Eintragungen und Ergebnisse von Zeiten ist keine Einheit festgelegt. Der Nutzer muss hier gemäß seinem Projekt eine Einheit zuordnen.

Eintragung der Beschreibung der Prozessschritte und zugeordneten Hauptressource.

Eintragung der geschätzten Zeiten optimistisch, realistische und pessimistisch.

Die Werte für den Median werden berechnet.

Die Schätzwerte aus dieser Planung werden zusammengefasst.

Der Puffer berechnet sich gemäß der Literatur aus der Differenz zwischen dem pessimistischen Wert und dem Median (50/50).

Ein aktueller Simulationswert für die Prozessdauer wird angezeigt.

Simulation auslösen (je nach Rechnerleistung dauert es). Der Abschluss des Simulationslaufes wird angezeigt.

Die Ergebnisse der Simulation werden zusammengefasst.

Für die weitere Planung wird die simulierte Pufferzeit verwendet.

In der Literatur wird auf eine weitere mögliche Verkürzung der Pufferzeit verwiesen.

Diese Kürzung kann ausgewählt werden.

Die Überwachung des Projektes ist mit der Eintragung der Istzeiten für jeden Prozessschritt möglich.

Die realisierte Zeiten gehen als feste Werte in weitere Simulationen ein.

Eine Überschreitung des Endtermins bei der Simulation wird angezeigt.

Diagramm Projektverfolgung

In der Literatur hat sich eine Grafik zur Projektverfolgung etabliert, wie im Blatt Beispiele dargestellt.

Die Fertigstellung der Teilschritte auf der kritischen Kette bezogen zur Zieldauer ist auf der x-Achse dargestellt.

Die y-Achse stellt den Verbrauch von Pufferzeit bezogen auf en verfügbaren Gesamtpuffer dar.

Idealer Weise sollte der Prozessverlauf nahe dem grünen Bereich liegen.

Falls Prozessschritte kürzer als der geplante Median gelaufen sind, gibt es einen Pufferzeitgewinn, die Kurve knickt nach unten ab.

Der grüne und der rote Bereich sind als Grafik eingebaut und müssen nach dem Simulationslauf und der ggf. Kürzung der Pufferzeit manuell nachgeführt werden.

Zur Orientierung hierfür dienen errechnete Linien rot und grün.

EXCEL

Die EXCEL Umsetzung verwendet vorteilhafterweise Namen für Variable und Konstanten.

Die farbige Formatierung von Zellen erfolgt funktionsbezogen, teils als bedingte Formatierung.

Die EXCEL-Funktion Modalwert kann bei simulierten Daten nicht verwendet werden.

Die x-Achse der Dichtefunktion ist manuell nachzuführen (Achse formatieren, Grenzen).

Schutz

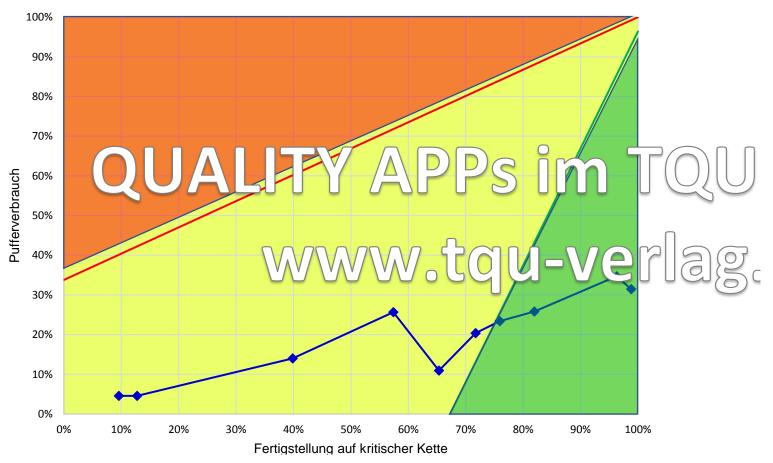
Dieses APP ist lauffähig ab Excel 2010. Das APP enthält Makros, die zu Beginn einer Bearbeitung aktiviert werden müssen. Bei den eingetragenen Daten handelt es sich um Vorschläge und Testdaten, sie müssen vor der Anwendung vom Benutzer entsprechend verändert oder gelöscht werden. Es wird empfohlen das Original vorher zu sichern. Die Mappe ist insgesamt geschützt. Der Schutz kann nicht aufgehoben werden. Die einzelnen Zellen und Blätter der Mappe sind durch einfachen Excel-Schutz geschützt. Einzelne Zellen, Blätter oder Zeilen wie Spalten können zum Schutz gesperrt oder ausgeblendet sein. Werden vom Anwender die eingerichteten Schutzmaßnahmen aufgehoben, lehnen der Autor und der Verlag alle weiteren Verpflichtungen ab. Quellen sind benannt und übernommene Inhalte sind gekennzeichnet. Für benannte Links wird keinerlei Haftung übernommen.

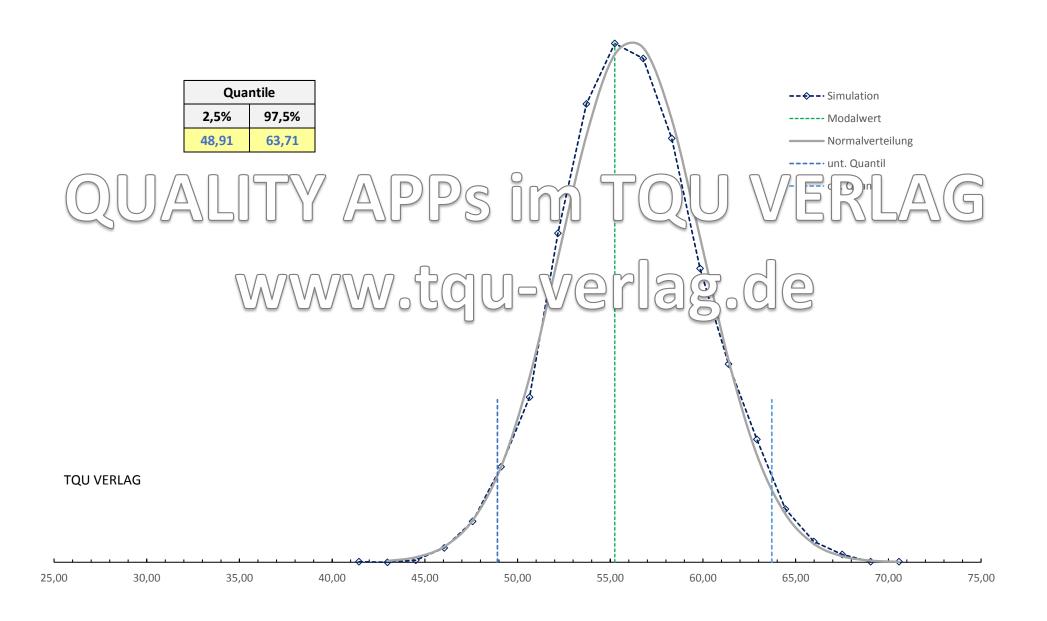
Ergebnisse

Alle Ergebnisse beruhen auf den vom Autor eingesetzten Regeln und Berechnungen, sie müssen vom Anwender sorgfältig auf ihre Eignung geprüft werden. Die berechneten Ergebnisse sind als Vorschläge, Hinweise oder Anregungen zu verstehen.

TQU Verlag, Magirus-Deutz-Straße 18, 89077 Ulm Deutschland, Telefon 0731/14660200, verlag@tqu-group.com, www.tqu-verlag.com

Prozess	beschreibung			Zeitschät	zungen		Simulation	Realisierung
Benennung	Ressource	Code	optimist	realist	pessimist	50/50	Zeit	Istzeit
Projekt vorbereiten		P_1	2,0	4,5	9,0	5,03	3,99	6,0
Projektleiter festlegen		P_2	1,0	2,0	3,0	2,00	2,39	2,0
Projekt spezifizieren		P_3	10,0	15,0	20,0	15,00	14,36	17,0
Arbeitspakete festlegen		P_4	5,0	8,0	13,0	8,53	11,97	11,0
Projektteam festlegen		P_5	6,0	7,0	12,0	8,13	7,00	5,0
Kick off vorbereiten		P_6	1,0	2,0	3,0	2,00	1,46	4,0
Projekt starten		P_7	1,0	2,0	3,0	2,00	2,65	
Projektbesprechung		P_8	2,0	3,0	5,0	3,27	3,77	
Teilprojekte vorstellen		P_9	4,0	6,0	12,0	7,10	8,99	
Projektaudit		P_10	1,0	2,0	4,0	2,27	1,58	
QUAL		P 11	ům	TQ				5
	<u> </u>	P_14 P_16		erla	3.0	e		
		P_17						
		P_18						
		P_19						
		P_20						
		P_21						
		P_22						
		P_23						
		P_24						


Schätzwerte aus Planung					
optimist	realist	50/50	pessimist	Puffer	Schritte
33,00	51,50	55,32	84,00	28,68	10


Simulation						
optimist	realist	50/50	pessimist	Puffer	n =	aktuell F9
42,21	55,24	41,55	69,81	28,26	5.000	58,16

Quantile			
2,5%	97,5%		
48,91	63,71		

Planung Puffer			
pess 50/50 Kürzung			
28,3	25%		
Planung Projekt			
Puffer	Dauer		
21,2	62,75		

data	Statistik				
54,5297667	Mittel	56,132	Median	56,012	
56,5738254	Stabw	3,783	Schiefe	0,107	
51,8610986	Max	69,809	Quantil	48,913	2,5%
51,1425084	Min	42,213	Quantil	63,711	97,5%
59,5066083	R	27,596			_
53,9382569	n	5000	Kl. Weite	1,5331	
53,3040724	Kla	assen	h(x)	Klassenmitte	f(x)
61,1188181	1	42,2126	1	41,44609	0,0002
52,896258	2	43,7457	0	42,97919	0
52,7799749	3	45,2788	3	44,51229	0,0006
58,8806124	4	46,8119	22	46,04539	0,0044
53,0834929	5	48,3450	63	47,57849	0,0126
57,9116618	6	49,8781	147	49,11159	0,0294
5 00 9 39 5 20 6 21			าโล๊ก	2,1 77	050
	_/ <u>/~</u> \ [r,9445			
54,474J049 56,2053392	10	54,4774	705 798	53,71089	0,141
·	10	56,0105 57,5436		55,24399 56,700	0,1596
57,2305769 53,4210085	W/\\\		775	$\mathcal{H} \sim \mathcal{H} \sim \mathcal{H}$	0,155
55,7687815	/_\\A\/_C 13	60,60 8	452	8,1 G 59,84329	0,13 4
60,4222335	14	62,1429	305	61,37639	0,061
52,3032914	15	63,6760	189	62,90949	0,0378
54,655779	16	65,2091	82	64,44259	0,0164
57,1910433	17	66,7422	32	65,97569	0,0064
57,4085257	18	68,2753	12	67,50879	0,0024
56,2425339	19	69,8084	1	69,04189	0,0002
63,3390746	20	71,3415	1	70,57499	0,0002
55,6430062	hä	ufigste Klasse	798	Modalwerte	ermittlung
57,2631715		Zeile	10		0,1596
57,4892526		Wert	55,24399	empirischer	Modalwert
52,3841902					
55,7239584					

Auswählen

F(x)

0,0002

0,0002

0,0008

0,0052

0,0178

0,0472

0.192

0,3402

0,4998

0,6548

0,8756

0,9366

0,9744

0,9908

0,9972

0,9996

0,9998

1

7,7852

NV

0,00041

0,00153

0,00482

0,01290

0,13120

0,15626

0,15828

0,13635

0,09989

0,06224

0,03298

0,01486

0,00569

0,00186

0,00051

0,00012

0,1060

NV

0,0001

0,0005

0,0021

0,0069 0,0198

0,0492

0,3309

0,4872

0,6455

0,7818

0,8817

0,9439

0,9769

0,9918

0,9975

0,9993

0,9998

1,0000

Name	Zuordnung	Bedeutung
а	=Projekte!\$D\$3:\$D\$27	optimistische Zeitdauer
b	=Projekte!\$F\$3:\$F\$27	pessimistisch Zeitdauer
c_	=Projekte!\$E\$3:\$E\$27	realistische Zeitdauer
data	=Daten_S!\$A\$2:\$A\$10000	Simulationsdaten
k	=Projekte!\$Y\$3:\$Y\$27	Form der Verteilung, k<0,5 >> linkssteil
median	=Projekte!\$G\$2:\$G\$27	50/50 Wert
n	=Daten_S!\$E\$7	Anzahl Simulationen
Р	=Projekte!\$Z\$3:\$Z\$27	Wahrscheinlichkeit
t_p	=Projekte!\$M\$14	Projektdauer

TQU Verlag, Magirus-Deutz-Straße 18, 89077 Ulm Deutschland, Telefon 0731/14660200, verlag@tqu-gro