Soft Tissue Starter Pack

A color-customizable soft model material for working digital prosthetic cases

Create flexible gingiva masks for use in combination with rigid dental models. Confidently check implant prosthetics by adding removable soft tissue components to your model production. Use the Soft Tissue Starter Pack to create your own Soft Tissue Resin in customizable dark, medium, and light pink shades.

The Soft Tissue Starter Pack uses Flexible 80A Resin as a flexible base material.

Please note: Adding Color Pigments to Flexible 80A Resin to create Soft Tissue Resin will alter some of its mechanical properties.

Soft tissue for implant models

Gingiva masks

Prepared 11 . 18 . 2020

Rev. 01 11.18.2020

^{*} May not be available in all regions

MATERIAL PROPERTIES DATA Soft TissueStarter Pack (Flexible 80A Resin)

	METRIC ¹		IMPERIAL 1		METHOD
	Green	Post-Cured ²	Green	Post-Cured ²	
Tensile Properties	,				
Ultimate Tensile Strength ³	3.7 MPa	8.9 MPa	539 psi	1290 psi	ASTM D 412-06 (A)
Stress at 50% Elongation	1.5 MPa	3.1 MPa	218 psi	433 psi	ASTM D 412-06 (A)
Stress at 100% Elongation	3.5 MPa	6.3 MPa	510 psi	909 psi	ASTM D 412-06 (A)
Elongation at Break	100%	120%	100%	120%	ASTM D 412-06 (A)
Tear Strength ⁴	11 kN/m	24 kN/m	61 lbf/in	137 lbf/in	ASTM D 624-00
Shore Hardness	70A	80A	80A	80A	ASTM 2240
Compression Set (23 °C for 22 hours)	Not Tested	3%	Not Tested	3%	ASTM D 395-03 (B)
Compression Set (70 °C for 22 hours)	Not Tested	5%	Not Tested	5%	ASTM D 395-03 (B)
Ross Flex Fatigue at 23 °C	Not Tested	>200,000 cycles	Not Tested	>200,000 cycles	ASTM D1052, (notched) 60° bending, 100 cycles/minute
Ross Flex Fatigue at -10 °C	Not Tested	>50,000 cycles	Not Tested	>50,000 cycles	ASTM D1052, (notched 60° bending, 100 cycles/minute
Bayshore Resilience	Not Tested	28%	Not Tested	28%	ASTM D2632
Thermal Properties					
Glass transition temperature (Tg)	Not Tested	27 °C	Not Tested	27 °C	DMA

¹ Material properties can

SOLVENT COMPATIBILITY

Percent weight gain over 24 hours for a printed and post-cured 1 x 1 x 1 cm cube immersed in respective solvent:

Solvent	24 hr weight gain, %	Solvent	24 hr weight gain, %	
Acetic Acid 5%	0.9	Mineral oil (Light)	0.1	
Acetone	37.4 Mineral oil (Heavy)		< 0.1	
Bleach ~5% NaOCI	0.6	Salt Water (3.5% NaCl)	0.5	
Butyl Acetate	51.4	Skydrol 5	10.7	
Diesel Fuel	2.3	Sodium Hydroxide solution (0.025% PH 10)	0.6	
Diethyl glycol Monomethyl Ether	19.3	Strong Acid (HCl conc)	28.6	
Hydraulic Oil	1.0	Tripropylene glycol monomethyl ether	13.6	
Hydrogen peroxide (3%)	0.7	Water	0.7	
Isooctane (aka gasoline)	1.6	Xylene	64.1	
Isopropyl Alcohol	11.7			

vary with part geometry, print orientation, print settings, and temperature. and post-cured with Form Cure at 60 °C for 10 minutes.

² Data was obtained from parts printed using Form 3, 100 µm, Flexible 80A settings, washed Flexible 80A settings, washed Die C specimen cut from sheets.

3 Tensile testing was performed after 3+ hours at 23 °C, using a Die C tear specimen directly printed.