

Powerhouse Vented cells (hybrid lead+copper)

Powerhouse VRLA cells (hybrid lead+copper VRLA)

- ▶ The number of transhipment services in Intralogistics is constantly increasing
 - Requires a battery technology supporting longer operation time
- ▶ Modern electric trucks are equipped with three-phase motors
 - Requires a battery technology providing high currents
- Heavy trucks with internal combustion engine are converted to electric
 - Requires a battery technology which has superior power.
- ▶ Out-door operation of trucks with massive temperature gradients

- Requires a battery technology which can cope with high and low temperatures.

The expectations on energy efficiency are very high

- Requires a battery technology which saves energy costs and CO2 emissions.

Requirements and Benefits

Extended runningtime due to...

- ... more nominal capacity (= energy plus
- ... higher nominal voltage (= energy plus)
- ... highly efficient energy recovery
- ... high peak power tolerance

Longer operational life due to...

- ... lower battery temperature profile
- ... high robustness on high workload
- Perfectly suited for fast and opportunity charging
- Energy cost savings due to excellent efficiency

Increased Capacity (Ah)

Improved Charge Acceptance

Charging current 1×15 (Standard charging current!

Charging current 3×15 (Fast / Opportunity charging Recuperation currents)

+10% service life

according ZVEI reference sheet: "Considerations on the Life of Traction Batteries"

Extended running time at 30°C (86°F)

Running time* *based on the driving profile 05EPZS0775SC vs. 07PCSM0840SC

- ➤ POWERHOUSE Vented batteries do not require special chargers for standard charging. (Chargers equipped with charging regimes for flooded batteries can be used)
- ▶ POWERHOUSE Vented batteries are also designed for fast & opportunity charging Charging characteristic "Z-Profile" was especially developed for this purpose.
- Z-Profile enables the user to...

...fully recharge POWERHOUSE Vented batteries in up to 4-5 hours (80% depth of discharge \(\mathbb{\text{M}} 100\% state of charge)

...frequently opportunity charging POWERHOUSE Vented batteries

 Chargers with Z-Profile are equipped with air agitation (to prevent acid stratification) and temperature sensor (for temperature-controlled charging)

High-rack facilities/ Narrow aisle trucks

Cold storage/ Outdoor applications

Accessory equipment/ Additional electrical consumers

Seasonal business / Activity peaks

Heavy duty applications/ Heavy trucks

24/7 applications/ Multi-shift

Scenario 1

POWERHOUSE Vented fulfils two shifts. No changing batteries required

Scenario 2

PO WERHOUSE Vented opportunity charging No changing batteries required

Scenario 3

POWERHOUSE Vented works more. Less changing batteries required

Case Example #1 Villeroy & Boch, Merzig

- POWERHOUSE vented test battery 80V 1285 TCSM (C5: 660 Ah)
- Opponent: Battery from the competition 80V 5 PzS 625 (C5: 625Ah)
- Standard charging profile for flooded batteries
- Industrial truck: Linde E 25 BR 336
- Villeroy & Boch ceramic tiles warehouse
- 6 days a week // 3 shifts

	Competitive Battery 5 PzS 625	POWERHOUSE 1285 TCSM	Advantage
Nominal Capacity (Ah)	625	660	+5,6%
Discharging Time Per Working Day (h)	3,81	4,88	+28,1%
Discharged Capacity (Ah)	15.100	18.789	+24,4%
Cut-off Voltage (V)	1,50	1,79	+19,3%
Operating Temperature (C)	38,8	30,2	-22,1%

Case Example #2 Logistics Service Provider

- POWERHOUSE vented battery 80V 1910 TCSM (C5: 990 Ah)
- Competitive battery 80V 6 PzS 930 (C5: 930 Ah)
- Batteries were being used alternately in the same truck
- Charger with standard charging regime for flooded batteries
- Area of application: Logistics provider
- Test period: 8 weeks

Technologies US Ampere Hour Turnover

Case Example #3 Cold Storage

- POWERHOUSE vented battery 48V 1620 TCSM (C5: 840Ah)
- Standard battery 48V 5 PzS 775 (C5: 775Ah)
- Area of Application: Cold storage (-25°C) // Fresh fruits area (+5°C)
- Standard charging regime for flooded batteries at low temperatures
- 2 Reach trucks Linde R16
- Battery changing pool (4 batteries)
- Test period: 10 weeks

Multi-shift + Fast Opportunity Charging

POWERHOUSE VRLA

Standard VRLA GEL Batteries usually have:

- Lower capacity Ah (for same cell dimensions)
- ► Higher charging time (12-14h)

High availability of industrial trucks due to...

- ... higher capacity and voltage level
- ightharpoonup ... significant reduction of the charging time (7 8 hrs.)
- efficient intermediate and opportunity charging
- ▶ Maintenance-free -> 'Install-and-forget'

Product Properties

Expected performance of the POWERHOUSE VRLA product line

- ▶ Maintenance-free: No time and infrastructure for water refilling required
- ➤ Operational time of POWERHOUSE VRLA similar to standard lead acid at room temperature
- Operational time of POWERHOUSE VRLA exceeds standard lead acid at low temperatures
- ➤ Full recharge of POWERHOUSE VRLA from 30% to 100% state of charge in 7 hours
- ▶ POWERHOUSE VRLA is capable to opportunity and intermediate charging'

Case Example #1 Automotive Customer

- POWERHOUSE VRLA 80V 3 PCSV 450 (C5: 450 Ah)
- Versus: Standard GEL 80V 3 EPzV 360 (C5: 360 Ah)
- Counterbalanced truck 1.8tn.
- ► Charger with gel profile
- ▶ Automotive customer
- ► Testing: 5 weeks

Test Results #1 Discharged Ah

Test Results #1 Operating Hours

Test Results #1 Energy Consumption Ah/h

Test Results #1 Running Time

Test Results #1 Temperature

