

This Environmental Product Declaration (EPD) discloses potential environmental outcomes compliant with ISO 14025 for business to business communication.

The declared product Wallflex 2mm was made by Armstrong Flooring in Australia in 2016 for sale with a 15 year warranty as wall cladding in commercial and health care sectors.

Armstrong Flooring Pty Ltd is an environmental best practice leader manufacturing Australian-made resilient vinyl flooring. The company is committed to environmental protection through intelligent use of resources and environmental stewardship. Its commitment is to a decreased environmental footprint overall. Armstrong Flooring has a closed-loop flooring recycling program. By continued innovation it is reducing energy, water and waste and driving sustainable building. In communities in which it operates it is also being a responsible partner. The company effort in improved sustainability has been recognised by many environmental partners. Armstrong Flooring's operating principles are to ensure employees' rights and morale, high safety standards and fair business relations. Actively involved in socially beneficial programs Armstrong Flooring is a partner in several environmental and educational organisations. Armstrong Flooring has certified ISO 9001 Quality Management and ISO 14001 Environmental Management System operations. More information is at http://www.armstrong.com/corporate/c Figure 1 Wallflex 2mm Wall Cladding ompany.html

Table of Contents

Heading	Page
1. Details of This Declaration	3
2. Product Characterisation	3
3. Green Star® Certified Credits	3
4. Sustainability Assessment Scores	4
5. Type 1 Ecolabel	4
6. Verification of this Declaration	4
7. Packaging, Installation, Use & Disposal	4
8. Whole of life Performance	5
9. Base Material Origin and Detail	5
10. Life Cycle Impact Results	6
11. Supply Chain Modelling	7
12. Life Cycle Assessment Method	8
13. Data Sources Representativeness and Quality	9
14. Supply Chain Modelling Assumptions	10
15. References for this LCA & EPD	11

Different program EPDs may not be comparable as e.g. Australian transport is more than elsewhere. **Further explanatory information is found at** <u>http://www.globalgreentag.com/</u> or contact: <u>certification1@globalgreentag.com</u> © This EPD remains the property of Global GreenTag Pty Ltd.

1. Details of This Declaration

Program Operator	GreenTag Global Pty Ltd hereafter called Global GreenTag noted at www.globalgreentag.com
EPD Number	AWF-007-2015
Date issue	26 June 2017
Validity	26 June 2020
Reference PCR	Compliant with PCR:WC Wall and Ceiling Covering & Skirting Products 2015
Time	Compliant with PCR:WC Wall and Ceiling Covering & Skirting Products 2015 Made in and sold from 2016 for 20 years use
Time	Made in and sold from 2016 for 20 years use

2. Product Characterisation

Definition	Armstrong Flooring Wallflex 2mm wall cladding for commercial and health care sectors
Standard	AS/NZS 3837:1998 Method of test for heat and smoke release rates for materials and products using oxygen consumption calorimeter

3. Green Star® Certified Credits

Products are relevant to the Green Building Council of Australia's (GBCA) Green Star® scheme.

If required this EPD is evidence the declared product meets the following Green Star® credits. It may be used as evidence in Green Star® submissions for those credits.

The product is certified by GBCA recognised Global GreenTag GreenRate to meet the following credits of Green Star®:

- Design and As Built V1.1: Sustainable Product, Responsible Building Material
- Interiors V1.1: Sustainable Products, Responsible Building Materials
- Performance V1.1: Procurement and Purchasing: Refurbishment Materials

GBCA Disclaimer

Green Star® is a registered mark of the Green Building Council of Australia (GBCA). Assessments shall not be reproduced in part at any time. Rating Tools and Technical Manuals are subject to change by the GBCA.

This EPD provides Technical Opinion and as such is not endorsed by the GBCA or its agents. Green Star® Technical Manuals give technical details of credit requirements.

4. Sustainability Assessment Scores

Table 1 lists Global GreenTag Sustainability Assessment Criteria (SAC) scores prior to weighting and then used to determine the GreenTag EcoPOINT¹.

Table 1 Normalised GreenTag EcoPOINT & SAC Scores				
Category Potential	Results (-1 to +1)			
Building Synergy	1.00			
Health & Ecotoxicity	0.25			
Biodiversity	0.56			
LCA Score	0.17			
Greenhouse Emission	0.21			
Social Responsibility	0.65			
GreenTag EcoPOINT	0.43			

SAC scores are normalised against business as usual (BAU) product performing comparable functions under the same category rules.

Lower scores show better environmental and social benefits with fewer impacts and damages. Considering sustainability:

- worst case BAU results = 1.0,
- neutral = 0.0 and
- net positive benefit = -1.0

5. Type 1 Ecolabel

The declared product Type 1 Ecolabel achieved

Global Gold PLUS GreenRate Level A GreenTag^{CertTM}

6. Verification of this Declaration

This EPD was approved on 26th June 2017 according to requirements of ISO14025 8.1.3b.

Role	Name	Position	Signature
PCR Review Chair	Murray Jones	Ecquate Pty Ltd CEO	NAT-26-2017
LCI Developer	Delwyn Jones	The Evah Institute CEO	Delyn Jones 2709 2017
LCIA , LCARate & EPD Developer	Mathilde Vlieg	Global GreenTag Researcher	amm Meg
Internal LCA Audit	Shloka Ashar	Global GreenTag Lead Auditor	SISHAR
Internal EPD Audit	David Baggs	Global GreenTag CEO & Program Director	Duil

¹ http://www.ecospecifier.com.au/knowledge-green/glossary.aspx#greentagecopoint

7. Packaging, Installation, Use & Disposal

Packaging	Cardboard forms & cartons, plastic wrap & strapping on reused pallets.
Service life	Residential and commercial refits vary but 20 year life is assumed typical.
Health Safety & Environment	Apart from compliance to occupational and workplace health safety and environmental laws no additional personal protection is considered essential.
Residual Scrap	Mill off-cuts are minimised. Installation scrap of 5% is assumed to landfill.
Cleaning & Maintenance	The recommended cleaning and maintenance raises no ecosystem or human health concerns. Care and maintenance guides are on company websites.
Scenario	Weekly detergent spray, light mop, monthly wet machine scrub and cloth dry.
Recycling	Home mill, fabrication and installation scrap is reworked into new product.
Re-use	This study assumes 60% product is serviceable for reuse over 40 more years.
Disposal	It assumes 30% is recycled. Incineration is rare in Australia so none is modelled

8. Whole of life Performance

Health Protection	The product does not contain levels of carcinogenic, toxic or hazardous substances that warrant ecological or human health concern cradle to grave. It passed the Ecospecifier Cautionary Assessment Process (ESCAP) and no issues or red light concerns existed for product human or ecological toxicity.
Effluent	The LCI results and ESCAP raised no red light concerns in emissions to water ² .
Waste	Cradle to grave waste to landfill was <0.01% hazardous in fuel supply chains.
Environmental Protection	Continuous improvement under the maker's certified ISO14001 EMS aims to avoid toxics, waste and pollution plus reduce their material and energy use.
Environmental Health Effects	Installed products are certified as having VOC's compliant with Green Star® IEQ VOC credits for indoor environment ³ quality credits. No other potential in- use impacts on environment or health are known.

2 According with national standards in ANZECC Guideline For Fresh & Marine Water Quality (2000) 3 in accordance with national standards and practice EPD14025Armstrong2mmWallflex@Evah26June2017.docx

9. Base Material Origin and Detail

Table 2 lists key components by function, type, key operation, source and mass share.

Table 2 Base Material					
Function	Component	Production	Origin	%	
White Filler	Limestone	Mine, Crush, Sieve & Haul	Australia	<50.0	
Binder	Suspension PVC	Extract, Chlorinate, Polymerise	Australia	<30.0	
Plasticiser	Diisodecyl phthalate	Drill, Farm, Extract, Blend	Pacific Rim	<10.0	
Plasticiser	Epoxidised Soybean Oil	Farm, Press, Refine, Mill	UK Pacific	<1.0	
Stabiliser	Ca Zn Stearate	Mine, Farm, Press, Refine, Mill	UK	<1.0	
Antioxidant	TNPP ⁴ Ba Zn Stearate	Mine, Farm, Press, Refine, Mill	UK	<1.0	
Coating	Polyurethane elastomer	Farm, Drill, Extract, Polymerise	Global	<1.0	
Whiting	Titanium Dioxide	Mine, Digest, Separate, Coat	Australia	<1.0	
EVA Foam	Ethylene vinyl acetate	Drill, Extract, Polymerise, Blend	Pacific Rim	<1.0	
Adhesive	DPGME 5	Drill, Extract, Mill, Polymerise	Pacific Rim	<0.60	
Matte Agent	Silicates	Drill, Extract, Sieve, Mill, Blend	Pacific Rim	<0.15	
Recyclate	PC rPVC bottle	Collect, Clean, Debale ,Crush	Australia	<0.1	
Pigments	Iron Oxides	Recycle, Sieve, Mill, Blend	Global	<0.1	
Dyes	Red, Blue, Gold etc	Drill, Extract, Sieve, Mill, Blend	Global	<0.1	
Defoamer	Siloxanes	Drill, Extract, Polymerise, Blend	Global	<0.1	
Leveller	Methyl Pyrrolidone	Drill, Farm, Extract, Blend	Singapore	<0.1	
Cross	Polyaziridine	Drill, Extract, Polymerise, Blend	Singapore	<0.1	
Viscofier	Ca Stearate	Farm, Drill, Mine, Refine, Saponify	UK	<0.1	

10. Life Cycle Impact Results

Table 3 shows Life Cycle Assessment (LCA) Eco-Indicator 99 results for 20 years of product use.

Table 3 Potential Impact Results		-
Evaluation Category	Unit	Result
Product mass	kg/item	3.4
EcoIndicator 99	ecopoint	0.69
Embodied Water	kl	173
Carbon Dioxide Equivalent Emissions ⁶	kg CO _{2e}	12.5
Gross Energy & Feedstock	MJ	190
Renewable Primary Energy	MJ	11.3
Ecosystem Quality Damages	PDF*m ² *yr	8.68E-05
Human Health Damages	DALY	12.2E-04
Ozone Depletion	kg R11 _e	8.06E-10
Acidification	kg SO _{2e}	0.41
Eutrophication	kg PO ₄ ³⁻ e	9.14E-03
Fossil Fuel Depletion	MJ _{surplus}	8.43
Mineral Resource	MJ _{surplus}	0.092

Table 3 Potential Impact Results

⁴ Tris Nonyl Phenyl Phosphite Antioxidant

⁵ Dipropylene glycol methyl ether ⁶ Stocker et el (et a) C

⁶ Stocker et al (eds.) Climate Change 2013: The Physical Science Basis, CH8, IPCC AR5, Cambridge U Press, UK. EPD14025Armstrong2mmWallflex@Evah26June2017.docx Page 6 of 12

11. Supply Chain Modelling

Processes to acquire, refine, transport, fabricate, coat, use, clean, repair, reuse and dispose of metal, masonry, ceramic, timber, glass, plastic and composites are modelled.

These include those of:

- Mining, extracting and refining resources to make commodities and packaging;
- Acquiring, cultivating, harvesting, extracting, refining produce and biomass;
- Fuel production to supply power and process energy and freight;
- Chemicals use in processing resources, intermediates and ancillaries;
- Process energy, fuel and freight of resources, intermediates and ancillaries;
- Use, cleaning, recoating, repair, recycling, re-use and landfill, as well as
- Infrastructure process energy transformed and material wear loss e.g. tyres.

A flow chart in Figure 2 shows key product supply chain operations from cradle to fate. While all known operations are included not all are shown.

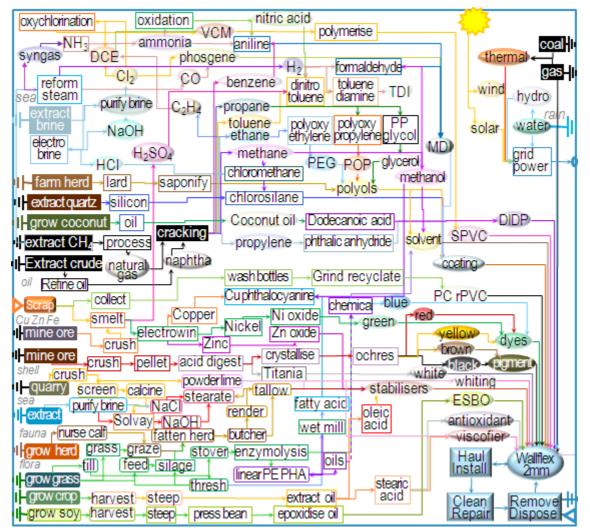


Figure 2 Major Product Operations

12. Life Cycle Assessment Method

LCA Author	The Even Institute	as describe	d at www.evah.com.au	
	Factory data was			
Study Period	•		•	
LCA Method	•		I ISO 14044 Standards	The Evah Institute
LCIA method	EcoIndicator 99 Li	te Cycle Imp	oact (LCIA) Assessment	
Scope	Cradle to Fate incl	uding all sup	oply chain phases and sta	ages depicted in Figure 3.
Phases	The LCA covered	all known flo	ows in all known stages c	radle to end of life fate.
Assumptions	Use is to typical A	ustralian Fa	cility Management profes	sional practice.
Scenarios	Use, cleaning, ma	intenance pl	us disposal and re-use w	vere scenario-based using
	Facility Manageme	ent Associat	ion denoted and publishe	ed typical operations.
System Boundaries	The LCA covers a	II operations	in the system boundary	depicted in Figure 3.
	All known process	es are inclu	ded from resource acquis	sition, water, fuel & energy
Processes	use, power genera	ation & distri	bution, freight, refining, ir	ntermediates, manufacture,
				aintenance and landfill. All
				ain operations involved to
	make, pack and in	stall the pro	duct are included.	
Phases A-D	1 Decision		B Use Built Fabric Operate	
Stages 1-20	A Produce	A Construct	6 7 8 9 10 11 12	
518965 1-20	1 2 3	4 5	0 1 0 5 10 11 12	13 14 15 16 17 18 19 20
Operation Modules	s of es	∞ ಹ	_ 5 >	sort very cle
1-20	ssources terial fransport, ver Lict	er, Unpack & ich packing Build, Install, & Dispatch	ct Use & Maintain - Product ce Product oish Produc ting Energ: ting Water	uct & Sort tto Depot Scrap Scrap In Landfill Recovery Reuse Recycle Upcycled
	duct Files	Disp	Main Main Main Main	rt to De Scrap Reco Reco
	profession and a second			tial tial sea
0	Acquire Resources &refine material Dispatch, Transport Ship & deliver Fabricate, Finish & Pack product	Deliver, Unpack 8 dispatch packing Prep, Build, Insta Scrap & Dispatch	Product Use Clean & Maintain Replace Product Refurbish Product Operating Energy Operating Water	Deconstruct & Sort Transport to Depot Process Scrap Disposal in Landfill Disposal in Landfill Potential Recovery Potential Recycle
Scope	- 4 0 0 0 k L L L	DH EX		

Scope	Acquire Reso &refine mater Dispatch, Tra Ship & deliver Fabricate, Fir Pack product	Deliver, Unpa dispatch packi Prep, Build, Ir Scrap & Dispe	Product Use Clean & Maint Repair Produc Replace Prod	Operating Ene Operating Wa	Deconstruct 8 Transport to 1 Process Scra Disposal in La	Potential Rec
C ₂ Gate	Mandatory 1,2,3					
C ₂ Gate +	Mandatory 1,2,3	Usual 4,5	Usual 6 to 10	Optional	Usual 13-16	Optional 1
C ₂ Grave	Mandatory 1,2,3	Mandatory 4,5	Mandatory 6 to 10	Mandatory	Mandatory 13-16	Optional 1
-					· · · · · · · · · · · · · · · · · · ·	

Figure 3 Phases and Stages Cradle to Grave

Evah industry databases cover all known domestic and global scope 1 and 2 operations.

They exclude scope 3 burdens from capital facilities, equipment churn, noise and dehydration as well as incidental activities and employee commuting.

The databases exist in top zones of commercial global modelling and calculating engines. Quality control methods are applied to ensure:

- Coverage of place in time with all information⁷ for each dataset noted, checked and updated;
- Consistency to Evah guidelines⁸ for all process technology, transport and energy demand;
- Completeness of modelling based on in-house reports, literature and industry reviews;
- Plausibility in 2 way checks of LCI input and output flows of data checked for validity, plus
- Mathematical correctness of all calculations in mass and energy balance cross checks.

Electricity supply models in active databases are updated annually. As each project is modelled and new data is available the databases are updated and audited by external Type 1 ecolabel certifiers.

al 17-20 al 17-20

Jones D G (2004) LCI Database for Commercial Building Report 2001-006-B-15 Icon.net, Australia

⁸ Evah Tools, Databases and Methodology Queensland, Australia at http://www.evah.com.au/tools.html

13. Data Sources Representativeness and Quality

Primary data used for modelling the state of art of each operation includes all known process for:

- Technology sequences;
- Energy and water use;

- Reliance on raw and recycled material;
- High and reduced process emissions;
- Landfill and effluent plus
- Freight and distribution systems.

Primary data is sourced from clients, Annual Reports and their publications on corporate locations, logistics, technology use, market share, management systems, standards and commitment to improved environmental performance. Information on operations is also sourced from client:

- Supply chain mills, their technical manuals, corporate annual reports and sector experts, and
- Manufacturing specifications websites and factory site development license applications.

Background data is sourced from the International Energy Agency, IBISWorld, USGS Minerals, Franklin Associates, Boustead 6, Plastics Europe, CML2, Simapro 8, EcoInvent 3 and NREL USLCI model databases. Information on operations is also sourced from:

- Library, document, NPI and web searches, review papers, building manuals and
- Global Industry Association and Government reports on Best Available Technology (BAT).

For benchmarking, comparison and integrity checks inventory data is developed to represent BAT, business as usual and worst practice options with operations covering industry sector supply and infrastructure in Australia and overseas.

Such technology, performance and license conditions were modelled and evaluated across mining, farming, forestry, freight, infrastructure and manufacturing and building industry sectors since 1995.

As most sources do not provide estimates of accuracy, a pedigree matrix of uncertainty estimates to 95% confidence levels of Geometric Standard Deviation² (σ_{q}) is used to define quality as in Table 4⁹.

Metric σ_{g}	U ±0.01	U ±0.05	U ±0.10	U ±0.20	U ±0.30
Temporal	Post 2015	Post 2010	Post 2005	Post 2000	Pre 2000
Duration	>3yr	Зуr	2yr	1yr	<1yr
Data Source	Process	Line	Plant	Corporate	Sector
Technology	Actual	Comparable	Within Class	Conventional	Within Sector
Reliability on	Site Audit	Expert verify	Region Report	Sector Report	Academic
Precision to	Process	Line	Plant	Company	Industry
Geography	Process	Line	Plant	Nation	Continent
True of the	Process	Mill	Company	Group	Industry
Sites cover of	>50%	>25%	>10%	>5%	<5%
Sample size	>66% trend	>25% trend	>10% batch	>5% batch	Academic
Cut-off mass	0.01%	0.05%	0.1%	0.5%	1%
Consistent to	±0.01	<±0.05	<±0.10	<±0.20	<±0.30
Reproducible	>98%	>95%	>90%	>80%	<70%
Certainty	Very High	High	Typical	Poor	>±0.30

Table 4 Data Quality Uncertainty (U) for 2014

No data set with $>\pm30\%$ uncertainty is used without notation in the LCA as well as the EPD.

⁹ Evah Institute data quality control system accords with UNEP SETAC Global LCI Database Quality 2010 Guidelines

14. Supply Chain Modelling Assumptions

Australian building sector rules and Evah assumptions applied are defined in Table 5.

Quality/Domain	National including Import and Export
Process Model	Typical industry practice with currently most common or best (BAT) technology
Resource flows	Regional data for resource mapping, fuels, energy, electricity and logistics
Temporal	Project data was collated from 2014 to 2016
Geography	Designated client, site, regional, national, Pacific Rim then European jurisdiction
Representation	Designated client, their suppliers and energy supply chains back to the cradle
Consistency	Model all operations by known given operations with closest proximity
Technology	Pacific Rim Industry Supply Chain Technology typical of 2014 to 2016
Functional Unit	Typical product usage with cleaning& disposal/m ² over the set year service life
System Control	
Primary Sources	Clients and suppliers mills, publications, websites, specifications & manuals
Other Sources	IEA 2016, GGT 2016, Boustead 2013, Simapro 2016, IBIS 2016, Ecolnvent 2016
Data mix	Power grid and renewable shares updated to latest IEA 2016 reports
Operational	Company data for process performance, product share, waste and emissions
Logistics	Local data is used for power, fuel mix, water supply, logistics share & capacity
New Data Entry	VliegLCA, Evah Institute 2016; Global Green Tag Researchers 2016
Data Generator	Manufacturers, Evah Institute 2016; GGT 2016; Meta: IBIS 2016, Other pre 2016
Data Publisher	The Evah Institute Pty Ltd to Global GreenTag and designated client only
Persons input	All contributors cited in Evah & Global GreenTag records or websites
Data Flow & Mix	
System Boundary	Earth's cradle of all resource & emission flows to end of use, fitout or build life
System flows	All known from and to air, land, water and community sources & sinks
Capital inclusions	Natural stocks Δ , industry stockpiles Δ , capital wear Δ , system losses and use
Arid Practice	Dry technology adopted, Water use is factored by 0.1 as for e.g. Mining
Transportation	Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance
Industrial	Company or industry sector data for manufacturing and minerals involved
Mining	All raw material extraction is based on Australian or Pacific Rim technology
Imported fuel	Mix is from nearest sources is e.g. UAE, SE Asia, Canada or New Zealand
Finishes	Processing inputs with finishing burdens are factored in. If not that is denoted
Validation	
Accuracy	10^{th} generation study is ± 5 to 15% uncertain due to some background data
Completeness	All significant operations are tracked and documented from the cradle to grave
Precision	Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyond
Allocation	%100 to co products on reaction stoichiometry by energetic or mass fraction
Burdens	All resource use from & emissions to community air land, water are included
Plausibility	Results are checked and benchmarked against BAT, BAU & worst practice
Sensitivity	Calculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.2
Validity Checks	Are made versus Plastics Europe, Ecobilan, GaBi & or Industry LCA Literature

15. References for this LCA & EPD

Australian & New Zealand (ANZECC) Guidelines For Fresh & Marine Water Quality (2000) http://www.environment.gov.au/water/quality/national-water-quality-management-strategy Basel Convention (2011) Control of Transboundary Movement of Hazardous Waste & Disposal http://www.basel.int/portals/4/basel%20convention/docs/text/baselconventiontext-e.pdf Boustead (2014) Model 6 LCI database http://www.boustead-consulting.co.uk/publicat.htm USA & UK Ecolnvent (2016) LCI Model 3 database http://www.ecoinvent.ch/ Ecolnvent, Switzerland Evah (2016) LCA Tools, Databases & Methodology at http://www.evah.com.au/tools.html Franklin Associates (2016) US LCI Database http://www.fal.com/index.html Eastern Research Group US GreenTag[™] Certification (2016) <u>http://www2.ecospecifier.org/services_offered/greentag_certification</u> GreenTag[™] (2016) Product Category Rules http://www.globalgreentag.com/greentag-epd-program Jones D., Mitchell. P. & Watson P. (2004) LCI Database for Australian Commercial Building Material: Report 2001-006-B-15, Sustainable Built Assets, CRC for Construction Innovation Jones D.G et al. (2009) Chapter 3: Material Environmental LCA in Newton P et al., (eds) Technology, Design & Process Innovation in the Built Environment, Taylor & Francis, UK IBISWorld (2014) Market Research, http://www.ibisworld.com.au/ IBISWorld Australia International Energy Agency (2016) Energy Statistics http://www.iea.org/countries/membercountries/ ISO 9001:2008 Quality Management Systems Requirements ISO 14001:2004 Environmental management systems: Requirements with guidance for use ISO 14004:2004 EMS: General guidelines on principles, systems & support techniques ISO 14015:2001 EMS: Environmental assessment of sites & organizations (EASO) ISO 14020:2000 Environmental labels & declarations — General principles ISO 14024:2009 Environmental labels & declarations -- Type I Principles & procedures ISO 14025:2006 Environmental labelling & declarations Type III EPDs Principles & procedures ISO 14031:1999 EM: Environmental performance evaluation: Guidelines ISO 14040:2006 EM: Life cycle assessment (LCA): Principles & framework ISO 14044:2006 EM: LCA: Requirement & guideline for data review: LCI; LCIA, Interpretation results ISO 14064:2006 EM: Greenhouse Gases: Organisation & Project reporting, Validation & verification ISO 15392:2008 Sustainability in building construction General principles ISO 15686-1:2011 Buildings & constructed assets Service life planning Part 1: General principles ISO 15686-2:2012 Buildings & constructed assets Service life (SL) planning Part 2: prediction ISO 15686-8:2008 Buildings & constructed assets SL planning Part 8: Reference & estimation ISO 21929-1:2011 Sustainability in building construction Sustainability indicators Part 1: Framework ISO 21930:2007 Building construction: Sustainability, Environmental declaration of building products ISO/TS 21931-1:2010 Sustainability in building construction: Framework for assessment, Part 1: ISO 21932:2013 Sustainability in buildings and civil engineering works -- A review of terminology Plastics Europe (2016) Portal http://www.plasticseurope.org/plastics-sustainability/eco-profiles.aspx Pre (2016) SimaPro 8 Software, The Netherlands http://www.pre-sustainability.com/simapro-manuals Myhre et al. 2013, Anthropogenic and Natural Radiative Forcing Chapter 8 in Stocker et al (eds.) Climate Change 2013, AR5 of the IPCC, Cambridge U Press UK. http://www.ipcc.ch/report/ar5/wg1/ Roache S. K. (2012) IMF Report WP/12/115 China's Impact on World Commodity Markets http://www.imf.org/external/pubs/ft/wp/2012/wp12115.pdf International Monetary Fund UNEP (2016) Persistent Organic Pollutants http://www.chem.unep.ch/pops/ The UN USLCI (2016) Life-Cycle Inventory Database https://www.lcacommons.gov/nrel/search, USA U.S. Geological Survey National Minerals (2016) http://minerals.usgs.gov/minerals/pubs/country/ USA US EPA (2016) Database of Sources of Environmental Releases of Dioxin like Compounds in U.S http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20797 p 1-38, 6-9, USA

This Environmental Product Declaration (EPD) discloses potential environmental outcomes compliant with ISO 14025 for business to business communication.

Further and explanatory information is found at

http://www.globalgreentag.com/ or contact: certification1@globalgreentag.com

Global GreenTagCertTM EPD Program Environmental Product Declaration Compliant to ISO 14025

© This EPD remains the property of the Global GreenTag Pty Lt