Compressed, Non-Asbestos (CNA) Gasketing Line

Garlock: Blue Gard 3200

PROUD DISTRIBUTOR

DESCRIPTION

The Garlock® BLUE-GARD® compressed, non-asbestos (CNA) gasketing line offers a variety of elastomers to excel in a wide range of services. The unique blend of aramid fibers, fillers and elastomeric binders provides improved torque retention and drastically lowered emissions levels. BLUE-GARD® CNA Gasketing offers cost savings by cutting operational costs through reduced waste, maintenance, stocked inventory, fluid loss, and energy consumption.

BENEFITS

- Excellent sealability
- Unique blend of aramid fibers, fillers, and a SBR rubber binder provides improved torque retention and drastically lowered emissions levels.
- Cuts operational costs through reduced: Waste Maintenance -Stocked Inventory - Fluid Loss - Energy Consumption

DISCLAIMER

All data and statements concerning these products may be considered as being indicative of representative properties and characteristics obtainable. We make no warranty, expressed or implied, concerning actual use or results because of industry specific influences. All of the product data is nominal and does not represent a specification.

Material Properties				
Colour:	Off-white			
Composition:	Aramid fibers with a SBR binder			
Fluid Services 1:	Water, saturated steam ⁴ , inert gases			
Temperature ² , °F (°C)				
Minimum:	-100 (-73)			
Continuous:	+400 (+205)			
Maximum:	+700 (+371)			
Pressure ² , Maximum, psig (bar):	1200 (83)			
P × T (max.) ² , psig × °F (bar × °C)				
1/32 and 1/16":	350,000 (12,000)			
1/8":	250,000 (8,600)			
Meets Specification:	ABS (American Bureau of Shipping) and MIL-DTL-24696C ⁶			

Physi	cal Properties		
Compressibility, range, %:	7-17		
Recovery, %:	50		
Creep Relaxation, %:	18		
Tensile, Across Grain, psi (N/mm²):	2250 (15)		
Density, lbs./ft.3 (grams/cm3):	100 (1.60)		
Thermal Conductivity (K), W/m°K (Btu.in./hr.·ft.²-°F):	0.29 - 0.38 (2.00 - 2.65)		
Dielectric Properties, range, volts/mil.			
Sample conditioning	<u>1/16"</u>	<u>1/8"</u>	
3 hours at 250°F:	508	285 ⁽³⁾	
96 hours at 100% Relative Humidity:	116	140	
Design Factors	<u>1/16" & Under</u>	<u>1/8"</u>	
"m" factor:	3.5	6.6	
"y" factor, psi (N/mm²):	2100 (14.5)	3000 (20.7)	
Line Call Out:	F712902A9B4E4	5K5L102M9 ⁽⁵⁾	

Sealing Characteristics						
	ASTM F37B ASTM F37B		DIN 3535- 4			
	Fuel A	Nitrogen	Gas Permeability			
Gasket Load, psi (N/mm²):	500 (3.5)	3000 (20.7)	4640 (32)			
Internal Pressure, psig (bar):	9.8 (0.7)	30 (2)	580 (40)			
Leakage	0.1 ml/hr.	0.4 ml/hr.	0.03 cc/min			

Immersion Properties - ASTM F146 Fluid Resistance after Five Hours						
	ASTM #1 Oil	ASTM IRM #903	ASTM Fuel A	ASTM Fuel B		
	300°F (150°C)	300°F (150°C)	70-85°F (20-30°C)	70-85°F (20-30°C)		
Thickness Increase, (%)	0-10	15-30	0-15	5-20		
Weight Increase, (%)	<20	-	<25	<30		
Tensile Loss, (%)	-	<70	-	-		

NOTE:
This is a general guide and should not be the sole means of selecting or rejecting this material. ASTM test results in accordance with ASTM F-104; properties based on 1/32" (0.8mm) sheet thickness unless otherwise mentioned.
*Values do not constitute specification Limits

1 See Garlock chemical resis

2 Based on ANSI RF flanges at our preferred torque. When approaching maximum pressure, continuous operating temperature, minimum temperatureor 50% of maximum PxT, consult Garlock Applications Engineering. Minimum temperature rating

² Based on ANSI RF flanges at our preferred torque. When approaching maximum pressure, continuous operating temperature, minimum temperatureor 50% of maximum PxT, consult Garlock Applications Engineering. Minimum temperature ratic sonservative.

³ Indicates current arced around and not through gasket. Dielectric higher than indicated.

⁴ These styles are not preferred choices for steam service, but are successful when adequately compressed. Minimum recommended assembly stress = 4,800psi. Preferred assembly stress = 6,000-10,000psi. Gasket thickness of 1/16" strongly preferred. Reforque the botis-yfsuds prior to pressurizing the assembly. For saturated steam above 150psig or superheated steam, consult Garlock Engineering.

⁵ Fourth numeral 9: % Thickness Increase in IRM Oil #903 = 25-50% max. A9: Leakage in Fuel A (Isooctane), Gasket Load = 500psi (3.5N/mm2), Pressure = 9.8psig (0.7bar): Typical = 0.1ml/hr, Max = 1.0ml/hr. A9: Leakage in Nitrogen, Gasket Load = 3,000psi (2.07N/mm2), Pressure = 30psig (2bar): Typical = 0.4ml/hr, Max = 1.0ml/hr. M9: Tensile Strength = 2,250psi min. (15N/mm2 min.).

⁶ To ensure receipt of product branded Mil-G-24696, certification will be required-- fees associated based on quantity. Refer to "Military Specifications" in the Gasketing Terms section of the Engineered Gasket Products catalog for order/inquiry requirements.