

Premium Grade Paper

LyTherm° 1530-L premium grade paper is a lightweight refractory material processed from highly washed, spun, high purity alumina-silica fibers formed into a highly flexible sheet. It is recommended for continuous use at temperature up to 2300°F (1260°C) in applications requiring high strength, resiliency, and excellent thermal properties.

Because it is formulated with a low content of unfiberized particles, *LyTherm* 1530 paper offers an extremely low thermal conductivity and a dust-free surface. It was designed specifically for applications where low shot content, compression recovery, low thermal conductivity, and minimum shrinkage are of critical importance.

LyTherm 1535-GC is a lightweight refractory composite composed of an inner core of alumina-silica paper quilted with a durable textile cladding. LyTherm 1535-GC is designed for use in applications where abrasion resistance is of the utmost importance.

- High tensile strength
- Low shot content
- Protection against corrosion
- Reduced heat loss and skulling
- Minimal shrinkage
- Chemical stability
- ISO 9001: 2008 Certified

For outstanding thermal barrier's at high temperatures, trust the LYTHERM® family of ceramic papers.

Lydall Performance Materials

Typical Property Shee

Distributed by:

LYTHERM® 1530 Typical Properties

Physical Properties	1530-L	1535-GC
Melting Point, °F (°C)	3200 (1760)	3200 (1760)
Use Limit, °F (°C)	2300 (1260)	2300 (1260)
LOI,%	8-10	10
Density, lb/ft³ (kg/m³)	6-9 (96 -144)	10-12 (160-192)
Dielectric Strength, V/mil	55	-
Mullen Burst, psi	27	46

Chemical Properties %	
Al_2O_3	47.00
SiO ₂	52.62
Na ₂ O	0.18
Fe ₂ O ₃	0.03
Others	0.17

Tensile Strength lb/in (kg/25mm)	1530-L	1535-GC
Machine Direction Tensile	26.46 (11.81)	28.77 (12.84)
Cross Direction Tensile	13.23 (5.90)	17.64 (7.87)

Apparent Thermal Conductivity

The same of the sa		
Mean Temperature, °F (°C)	Thermal Conductivity* BTU in/hr ft² °F (W/mK)	
260 (500)	0.062 (0.43)	
426 (800)	0.082 (0.57)	
704 (1300)	0.120 (0.83)	
870 (1600)	0.141 (0.98)	

Product Availability

*Per ASTM C177

Grade	1530-L	1535-L	1535-GC
Normal Thickness in (mm)	1/32, 1/16, 1/18	1/4	1/4
	(0.8, 1.60, 3.20)	(6.35)	(6.35)
Stand Widths in (mm)	12, 24, 36, 48	12, 24, 36, 48	24
	(305, 610, 915, 1220)	(305, 610, 915, 1220)	(610)
Custom Widths in (m)	<72 (< 1.8)		

Applications

- Parting plane in refractory linings
- Combustion chamber liners
- Backup lining for metal troughs
- Hot top linings
- Thermal and electrical insulation
- Refractory backup insulation
- Coke oven door shock absorption medium
- Kiln car deck covering

Testing/Engineering Services

- Thermal imaging for performance validation
- Thermal conductivity for material characterization
- Thermal modeling for engineering solutions

Note: All product data is nominal and does not represent a specification.

All data and statements concerning these products may be considered as being indicative of representative $properties \ and \ characteristics \ obtainable. We \ make \ no \ warranty, expressed \ or \ implied, concerning \ actual$ use or results because of industry specific influences.

info@lydall.com

North America & Asia: +1 518 273 6320

Europe, Middle East & Africa: +33 (0) 2 97 28 5300

Rev. Date: 04/12/2016

All rights reserved. Copyright 2016

Specialty 2-295 Superior Blvd. Mississauga, Ontario L5T 2L6 T: (905)-564-0807 F:(905)-564-4812 E: sales@specialtygaskets.com