SOLEN INC.

HEPTA-LITZ AIR CORED INDUCTORS
 PERFECT LAY HEXAGONAL WINDING

SOLEN Inc. was the first inductor design company to introduce inductors made with Hepta-Litz conductors. Most of the time, until now, only one parameter was considered for designing crossover network inductors and that is dc winding resistance. The problem is that music is far from being dc and other non linear losses arise from ac frequency that can increase the ac winding resistance many times the dc value, even at audio frequency. Let us consider some of those losses.

As the frequency increase, additional power losses occur in the winding due to eddy currents in the conductors and by the magnetic fields within the winding. In the design of inductors both skin effect and proximity effect need to be considered. Both effects depend on the ratio of the conductors' diameter to the penetration depth of the electrons.

Skin Effect

Skin effect is the tendency for the alternating current to flow near the surface of the conductor as the frequency increase. It is due to eddy currents in the conductor that arise from the alternating magnetic field associated with the current in the conductor itself.

Proximity Effect

Proximity effect is the tendency for the alternating current to flow and return along the length of each conductor within the winding in a way that opposes the magnetic field of the winding as the frequency increase. It is due to the eddy currents in the conductor that arise from the alternating magnetic field interaction of the other conductors within the winding.

Litz Conductor

To reduce those losses, we have to replace the solid conductor with a number of separately insulated smaller conductors twisted together, the Litz conductor. The reduction of the conductors' diameter along with the increase in the number of twisted insulated conductors that tends to occupy all possible positions in the cross section of the resulting conductor are very effective in reducing both effects. The smaller insulated conductor makes the current to divide uniformly between them thus reducing the skin effect losses. The twist of the smaller insulated conductor cancels the EMF's induced by the traverse magnetic field thus reducing the proximity effect losses.

This design idea, Hepta-Litz that consists of seven twisted insulated conductors, results in equalizing the ac resistance to dc resistance ratios in the usable audio frequency band that is establishing new standards in inductor quality. The HeptaLitz Air Cored Inductors Perfect Layer Hexagonal Winding are a clean slate design, based on proven state-of-the-art technology that we have successfully transferred and merged to achieve superiority on all fronts. They will dramatically improve the performance of any loudspeaker by linearizing the inductor reactance curve to the ideal inductor reactance.

L10 $=7 \times .80 \mathrm{~mm}$ conductor's $\varnothing=2.4 \mathrm{~mm}$ conductor $\varnothing=\mathrm{S} 12=2.0 \mathrm{~mm}$ conductor \varnothing dc resistance
L12 = $7 \times .64 \mathrm{~mm}$ conductor's $\varnothing=2.0 \mathrm{~mm}$ conductor $\varnothing=\mathrm{S} 14=1.6 \mathrm{~mm}$ conductor \varnothing dc resistance
L14 $=7 \times .51 \mathrm{~mm}$ conductor's $\varnothing=1.6 \mathrm{~mm}$ conductor $\varnothing=\mathrm{S} 16=1.3 \mathrm{~mm}$ conductor \varnothing dc resistance
L16 $=7 \times .40 \mathrm{~mm}$ conductor's $\varnothing=1.3 \mathrm{~mm}$ conductor $\varnothing=\mathrm{S} 18=1.0 \mathrm{~mm}$ conductor \varnothing dc resistance

SOLEN 2008

SOLEN INC.

HEPTA-LITZ AIR CORED INDUCTORS PERFECT LAY HEXAGONAL WINDING

- GENERAL INFORMATION

Type	: Air Cored Inductor.
Conductors	: Pure Copper Seven Twisted Insulated Conductors.
Dielectric	: Red Polyurethane Polyamide Enamel.
Construction	: Hollow Cylindrical Type, Radial Leads.
Winding	: Perfect Layer Hexagonal Self-Supporting Type.
Coating	:Varnish Dip With Four Black Nylon Ties.
Leads	:Pure Copper.

- TECHNICAL DATA

Inductance Range/Tolerance	: $0.10 \ldots 30 \mathrm{mH}, \mathrm{E} 24$ series, ± 1 \%. (see specifications for details)		
Conductor Material	$: \geq 99.99$ \% Purity Annealed Copper.		
Electrical Conductivity	: ≥ 101.5 \%.		
DC Resistance	: Very Low (see specifications for details)		
Oxygen Content	: $\leq 200 \mathrm{ppm}$ on surface.		
Temperature Coefficient	: $0.00393 /{ }^{\circ} \mathrm{C}$.		
Temperature Range	: $-55{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$.		
Insulation Temperature	$: 130{ }^{\circ} \mathrm{C}$.		
Solderable Temperature	$: 360{ }^{\circ} \mathrm{C}$.		
Test Voltage	: 1000 VAC		
Total Conductor Diameter	: L16 = 1.3, $\quad \mathrm{L} 14=1.6$,	$\mathrm{L} 12=2.0$,	$\mathrm{L} 10=2.4 \mathrm{~mm} \varnothing$
Conductors Number/Diameter	: L16 = $7 \times .40, \mathrm{~L} 14=7 \times .51$,	L12 = $7 \times .6$	$\mathrm{L} 10=7 \mathrm{x} .80 \mathrm{~mm} \varnothing$
Skin Effect Rac = Rdc	$: L 16=27, \quad L 14=18$,	L12 = 12,	$\mathrm{L} 10=8 \mathrm{KHz}$
Skin Effect Rac = Rdc +10\%	$: L 16=100, \quad L 14=70$,	L12 = 45,	L10 $=30 \mathrm{KHz}$
Winding Space Factor	: L16 = 86, L14 = 87,	L12 = 88,	L10 = 89 \%

- FEATURE

```
Integral Wheeler Formula Application.
Computer Optimized Inductor Dimension.
Ultra Linear AC Resistance
Linear Phase Angle between Current and Voltage.
Linear and Stable High Frequency Characteristics.
Very Low Magnetostriction Distortion.
Constant Inductance with Voltage Variation.
Constant Inductance with Current Variation.
No Saturation Distortion.
No Hyteresis Distortion.
```


- ELECTRICAL PERFORMANCE

```
Very High Quality Factor.
Very Low Skin Effect Losses.
Very Low Proximity Effect Losses.
Low A.C. Resistance.
Low D.C. resistance
Low Self Capacitance.
```

L16	1.21 mm Ø (7 x . 40 mm)
	16 AWG (7×26 AWG)

P/N Inductance/DCR LxdxD

P/N	Inductance/DCR	LxdxD	P/N	Ind	DCR	LxdxD
L16.10	.10 mH .12	$11 \times 22 \times 45$				
L16.11	.11 mH .13	$11 \times 22 \times 45$				
L16.12	.12 mH .14	$11 \times 22 \times 45$				
L16.13	.13 mH .15	$11 \times 22 \times 45$				
L16.15	.15 mH .16	$11 \times 22 \times 45$				
L16.16	.16 mH .16	$13 \times 25 \times 51$	L14.16	.16 mH	11	$14 \times 29 \times 57$
L16.18	.18 mH .17	$13 \times 25 \times 51$	L14.18	. 18 mH	11	$14 \times 29 \times 57$
L16. 20	.20 mH .18	$13 \times 25 \times 51$	L14.20	.20 mH	. 12	$14 \times 29 \times 57$
L16.22	.22 mH .19	$13 \times 25 \times 51$	L14.22	. 22 mH	. 13	$14 \times 29 \times 57$
L16. 24	.24 mH .21	$13 \times 25 \times 51$	L14.24	. 24 mH	. 14	$14 \times 29 \times 57$
L16.27	.27 mH .22	$13 \times 25 \times 51$	L14.27	.27 mH	. 15	$14 \times 29 \times 57$
L16. 30	.30 mH .24	$13 \times 25 \times 51$	L14.30	.30 mH	. 16	$14 \times 29 \times 57$
L16.33	.33 mH .26	$14 \times 29 \times 57$	L14.33	. 33 mH	. 16	$16 \times 32 \times 64$
L16.36	.36 mH .27	$14 \times 29 \times 57$	L14.36	. 36 mH	. 17	$16 \times 32 \times 64$
L16.39	. 39 mH .28	$14 \times 29 \times 57$	L14.39	. 39 mH	. 18	$16 \times 32 \times 64$
L16. 43	.43 mH .29	$14 \times 29 \times 57$	L14.43	. 43 mH	. 19	$16 \times 32 \times 64$
L16.47	.47 mH .31	$14 \times 29 \times 57$	L14.47	. 47 mH	. 21	$16 \times 32 \times 64$
L16. 51	. 51 mH .33	$14 \times 29 \times 57$	L14.51	. 51 mH	. 22	$16 \times 32 \times 64$
L16.56	.56 mH .35	$14 \times 29 \times 57$	L14.56	. 56 mH	. 23	$16 \times 32 \times 64$
L16. 62	. 62 mH .36	$14 \times 29 \times 57$	L14.62	. 62 mH	. 24	$16 \times 32 \times 64$
L16.68	.68 mH .38	$16 \times 32 \times 64$	L14.68	. 68 mH	. 25	$19 \times 38 \times 76$
L16. 75	. 75 mH .40	$16 \times 32 \times 64$	L14.75	. 75 mH	. 27	$19 \times 38 \times 76$
L16. 82	.82 mH .43	$16 \times 32 \times 64$	L14.82	. 82 mH	. 28	$19 \times 38 \times 76$
L16.91	. 91 mH .45	$16 \times 32 \times 64$	L14.91	. 91 mH	. 30	$19 \times 38 \times 76$
L161.0	1.0 mH .47	$16 \times 32 \times 64$	L141.0	1.0 mH	. 31	$19 \times 38 \times 76$
L161.1	1.1 mH .50	$16 \times 32 \times 64$	L141.1	1.1 mH	. 33	$19 \times 38 \times 76$
L161.2	$1.2 \mathrm{mH} \quad .54$	$16 \times 32 \times 64$	L141.2	1.2 mH	. 35	$19 \times 38 \times 76$
L161.3	1.3 mH .57	$16 \times 32 \times 64$	L141.3	1.3 mH	. 38	$19 \times 38 \times 76$
L161.5	1.5 mH .60	$16 \times 32 \times 64$	L141.5	1.5 mH	. 41	$19 \times 38 \times 76$
L161.6	1.6 mH .63	$19 \times 38 \times 76$	L141.6	1.6 mH	. 44	$22 \times 45 \times 89$
L161. 8	1.8 mH .68	$19 \times 38 \times 76$	L141. 8	1.8 mH	. 46	$22 \times 45 \times 89$
L162.0	2.0 mH . 70	$19 \times 38 \times 76$	L142.0	2.0 mH	. 48	$22 \times 45 \times 89$
L162. 2	$2.2 \mathrm{mH} \quad .76$	$19 \times 38 \times 76$	L142.2	2.2 mH	. 52	$22 \times 45 \times 89$
L162.4	$2.4 \mathrm{mH} \quad .81$	$19 \times 38 \times 76$	L142.4	2.4 mH	. 56	$22 \times 45 \times 89$
L162.7	$2.7 \mathrm{mH} \quad .87$	$19 \times 38 \times 76$	L142.7	2.7 mH	. 60	$22 \times 45 \times 89$
L163.0	3.0 mH .93	$19 \times 38 \times 76$	L143.0	3.0 mH	. 63	$22 \times 45 \times 89$
L163.3	3.3 mH .98	$22 \times 45 \times 89$	L143.3	3.3 mH	. 66	$25 \times 51 \times 102$
L163.6	3.6 mH 1.03	$22 \times 45 \times 89$	L143.6	3.6 mH	. 70	$25 \times 51 \times 102$
L163.9	3.9 mH 1.09	$22 \times 45 \times 89$	L143.9	3.9 mH	. 73	$25 \times 51 \times 102$
L164.3	4.3 mH 1.15	$22 \times 45 \times 89$	L144.3	4.3 mH	. 77	$25 \times 51 \times 102$
L164.7	4.7 mH 1.22	$22 \times 45 \times 89$	L144.7	4.7 mH	. 82	$25 \times 51 \times 102$
L165.1	5.1 mH 1.29	$22 \times 45 \times 89$	L145.1	5.1 mH	. 86	$25 \times 51 \times 102$
L165.6	5.6 mH 1.36	$22 \times 45 \times 89$	L145.6	5.6 mH	. 91	$25 \times 51 \times 102$
L166. 2	6.2 mH 1.43	$22 \times 45 \times 89$	L146.2	6.2 mH	. 96	$32 \times 64 \times 127$
L166. 8	6.8 mH 1.51	$25 \times 51 \times 102$	L146. 8			$32 \times 64 \times 127$
L167.5	7.5 mH 1.59	$25 \times 51 \times 102$	L147.5	7.5 mH	1.07	$32 \times 64 \times 127$
L168.2	8.2 mH 1.67	$25 \times 51 \times 102$	L148.2	8.2 mH	1.12	$32 \times 64 \times 127$
L169.1	9.1 mH 1.75	$25 \times 51 \times 102$	L149.1	9.1 mH	1.18	$32 \times 64 \times 127$
L1610	10 mH 1.84	$25 \times 51 \times 102$	L1410	10 mH	1.24	$32 \times 64 \times 127$
L1611	11 mH 1.98	$25 \times 51 \times 102$	L1411	11 mH	1.38	$32 \times 64 \times 127$
L1612	12 mH 2.12	$25 \times 51 \times 102$	L1412	12 mH	1.52	$32 \times 64 \times 127$

L12	1.93 mm Ø (7 x .64 mm)	L10	2.40 mm Ø (7 x	$0.80 \mathrm{~mm})$
	12 AWG (7x 22 AWG)		10 AWG (7x 20	AWG)
P/N	Inductance/DCR LxdxD	P/N	Inductance/DCR	LxdxD

L12.33	. 33 mH	. 10	$19 \times 38 \times 76$				
L12.36	. 36 mH	. 11	$19 \times 38 \times 76$				
L12.39	. 39 mH	. 12	$19 \times 38 \times 76$				
L12.43	. 43 mH	. 12	$19 \times 38 \times 76$				
L12.47	.47 mH	. 13	$19 \times 38 \times 76$				
L12.51	. 51 mH	. 14	$19 \times 38 \times 76$				
L12.56	.56 mH	. 15	$19 \times 38 \times 76$				
L12.62	. 62 mH	. 16	$19 \times 38 \times 76$				
L12.68	. 68 mH	. 17	$22 \times 45 \times 89$	L10.68	. 68 mH	. 11	$25 \times 51 \times 102$
L12.75	. 75 mH	. 18	$22 \times 45 \times 89$	L10.75	. 75 mH	. 12	$25 \times 51 \times 102$
L12.82	. 82 mH	. 19	$22 \times 45 \times 89$	L10.82	. 82 mH	. 12	$25 \times 51 \times 102$
L12.91	. 91 mH	. 20	$22 \times 45 \times 89$	L10.91	. 91 mH	. 13	$25 \times 51 \times 102$
L121.0	1.0 mH	. 21	$22 \times 45 \times 89$	L101.0	1.0 mH	. 14	$25 \times 51 \times 102$
L121.1	1.1 mH	. 23	$22 \times 45 \times 89$	L101.1	1.1 mH	. 15	$25 \times 51 \times 102$
L121.2	1.2 mH	. 24	$22 \times 45 \times 89$	L101.2	1.2 mH	. 16	$25 \times 51 \times 102$
L121.3	1.3 mH	. 26	$22 \times 45 \times 89$	L101.3	1.3 mH	. 17	$25 \times 51 \times 102$
L121.5	1.5 mH	. 28	$22 \times 45 \times 89$	L101.5	1.5 mH	. 19	$25 \times 51 \times 102$
L121.6	1.6 mH	. 29	25x51x102	L101. 6	1.6 mH	. 20	$32 \times 64 \times 127$
L121.8	1.8 mH	. 30	$25 \times 51 \times 102$	L101. 8	1.8 mH	. 21	$32 \times 64 \times 127$
L122.0	2.0 mH	. 31	$25 \times 51 \times 102$	L102. 0	2.0 mH	. 22	$32 \times 64 \times 127$
L122.2	2.2 mH	. 33	$25 \times 51 \times 102$	L102. 2	2.2 mH	. 24	$32 \times 64 \times 127$
L122.4	2.4 mH	. 36	$25 \times 51 \times 102$	L102.4	2.4 mH	. 26	$32 \times 64 \times 127$
L122.7	2.7 mH	. 39	$25 \times 51 \times 102$	L102.7	2.7 mH	. 28	$32 \times 64 \times 127$
L123.0	3.0 mH	. 42	25x51x102	L103.0	3.0 mH	. 30	$32 \times 64 \times 127$
L123.3	3.3 mH	. 45	$32 \times 64 \times 127$	L103.3	3.3 mH	. 32	$38 \times 76 \times 152$
L123.6	3.6 mH	. 47	$32 \times 64 \times 127$	L103.6	3.6 mH	. 34	$38 \times 76 \times 152$
L123.9	3.9 mH	. 49	$32 \times 64 \times 127$	L103.9	3.9 mH	. 35	$38 \times 76 \times 152$
L124.3	4.3 mH	. 52	$32 \times 64 \times 127$	L104.3	4.3 mH	. 37	$38 \times 76 \times 152$
L124.7	4.7 mH	. 56	$32 \times 64 \times 127$	L104.7	4.7 mH	. 40	$38 \times 76 \times 152$
L125.1	5.1 mH	. 59	$32 \times 64 \times 127$	L105.1	5.1 mH	. 42	$38 \times 76 \times 152$
L125.6	5.6 mH	. 63	$32 \times 64 \times 127$	L105.6	5.6 mH	. 45	$38 \times 76 \times 152$
L126. 2	6.2 mH	. 67	$32 \times 64 \times 127$	L106. 2	6.2 mH	. 47	$38 \times 76 \times 152$
L126.8	6.8 mH	. 71	$38 \times 76 \times 152$	L106. 8	6.8 mH	. 49	$45 \times 89 \times 178$
L127.5	7.5 mH	. 75	$38 \times 76 \times 152$	L107. 5	7.5 mH	. 52	$45 \times 89 \times 178$
L128.2	8.2 mH	. 79	$38 \times 76 \times 152$	L108.2	8.2 mH	. 54	$45 \times 89 \times 178$
L129.1	9.1 mH	. 83	$38 \times 76 \times 152$	L109.1	9.1 mH	. 57	$45 \times 89 \times 178$
L1210	10 mH	. 87	$38 \times 76 \times 152$	L1010	10 mH	. 60	$45 \times 89 \times 178$
L1211	11 mH	. 96	$38 \times 76 \times 152$	L1011	11 mH	. 65	$45 \times 89 \times 178$
L1212	12 mH	03	$38 \times 76 \times 152$	L1012	12	70	$45 \times 89 \times 178$

L1613	13	mH 2.27	$25 \times 51 \times 102$	L1413	13	mH	1.66	$32 \times 64 \times 127$	L1213	13		1.11	$38 \times 76 \times 152$	L1013	13	mH	. 75	$45 \times 89 \times 178$
L1615	15	mH 2.42	$25 \times 51 \times 102$	L1415	15	mH	1.70	$32 \times 64 \times 127$	L1215	15		1.17	$38 \times 76 \times 152$	L1015	15	mH	. 79	$45 \times 89 \times 178$
				L1416	16	mH	1.79	$38 \times 76 \times 152$	L1216	16		1.24	$45 \times 89 \times 178$	L1016	16	mH	. 83	51x102×204
				L1418	18		1.88	$38 \times 76 \times 152$	L1218	18	mH	1.29	$45 \times 89 \times 178$	L1018	18	mH	. 88	$51 \times 102 \times 204$
				L1420	20		1.97	$38 \times 76 \times 152$	L1220	20		1.35	$45 \times 89 \times 178$	L1020	20	mH	. 92	$51 \times 102 \times 204$
				L1422	22		2.07	$38 \times 76 \times 152$	L1222	22	mH	1.44	$45 \times 89 \times 178$	L1022	22	mH	. 99	$51 \times 102 \times 204$
				L1424	24	mH	2.17	$38 \times 76 \times 152$	L1224	24	mH	1.53	$45 \times 89 \times 178$	L1024	24	mH	1.06	$51 \times 102 \times 204$
				L1427	27		2.27	$38 \times 76 \times 152$	L1227	27		1.62	$45 \times 89 \times 178$	L1027	27	mH	1.13	$51 \times 102 \times 204$
				L1430	30	mH	2.37	$38 \times 76 \times 152$	L1230	30	mH	1.71	$45 \times 89 \times 178$	L1030	30	mH	1.20	51x102x204

