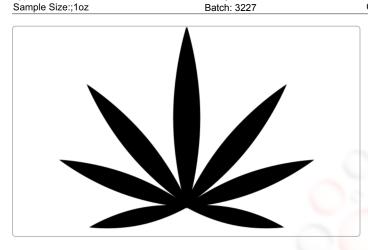
(855) 734-6640 /www.phs-lab.com/ Lic# C8-0000022-LIC


CBDA:CBD #3227

Lab ID: 211161-589-MH-1-32 METRC Batch: METRC Sample Sample ID: 2112PHS12082.9676

Strain: Tinc Matrix: Ingestible Type: Other Sample Size:;1oz Produced:

Collected: 03/18/2022 Received: 03/19/2022 Completed: 03/21/2022

Producer Clouds of Haze

Cannabinoids Complete

1.59 mg/mL

Total THC

20.40 mg/mL

Total CBD

45.85 mg/mL

Total Cannabinoids

Analyte	LOD	LOQ	Result	Result	Result	
	mg/g	mg/g	%	mg/g	mg/unit	
THCa	0.01	0.01	ND	ND	ND	
Δ9-ΤΗС	0.05	0.17	0.17	1.69	1.59	
Δ8-THC	0.08	0.27	ND	ND	ND	
CBDa	0.06	0.20	2.25	22.5	21.15	
CBD	0.07	0.25	2.17	21.7	20,40	
CBN	0.10	0.60	0.12	1.21	1.14	
CBGa	0.07	0.26	ND	ND	ND	
CBG	0.04	0.15	0.03	0.32	0.30	
CBC	0.15	0.50	0.14	1.35	1.27	
Total THC	0.10	2.00	0.17	1.69	1.59	
Total CBD			2.17	21.7	20.40	

Total THC = (THCa * 0.877) + Δ 9-THC; Total CBD = (CBDa * 0.877) + CBD LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Cannabinoids: UHPLC, PDA, SOP 6.0, 16 CCR §5724 Microbial: qPCR, SOP 6.05, 16 CCR §5720 Foreign Material: SOP 2.02 16 CCR §5722, %H2O and WA: Moisture Balance, Rotronic, SOP 6.07 §5717

NT Not Tested Moisture Content

NT Not Tested Water Activity **Not Tested**

Foreign Matter

Raquel Keledjian Lab Director

pH Solutions

(855) 734-6640 /www.phs-lab.com/ Lic# C8-0000022-LIC

CBDA:CBD #3227

Lab ID: 211161-589-MH-1-32 METRC Batch: METRC Sample Sample ID: 2112PHS12082.9676

Strain: Tinc Matrix: Ingestible Type: Other Sample Size:;1oz Produced:

Batch: 3227

Collected: 03/18/2022 Received: 03/19/2022 Completed: 03/21/2022

Producer Clouds of Haze

Terpenes

LOD	LOQ	Mass	Mass	
%	%	%	mg/g	
0.03	0.08	0.35	3.5	
0.04	0.11	0.27	2.7	
0.04	0.11	0.20	2.0	
0.03	0.09	0.18	1.8	
0.05	0.14	0.17	1.7	
0.02	0.05	ND	ND	
	0.23	ND	ND	
0.04				
0.03		ND	ND	
0.04	0.11			
	% 0.03 0.04 0.04 0.03 0.05 0.02 0.08 0.04	% % 0.03 0.08 0.04 0.11 0.03 0.09 0.05 0.14 0.02 0.05 0.08 0.23 0.04 0.12 0.03 0.10 0.02 0.05 0.03 0.10 0.03 0.10 0.03 0.09 0.03 0.09 0.03 0.09 0.01 0.04 0.02 0.28 0.03 0.08 0.01 0.04	% % 0.03 0.08 0.35 0.04 0.11 0.27 0.04 0.11 0.20 0.03 0.09 0.18 0.05 0.14 0.17 0.02 0.05 ND 0.08 0.23 ND 0.04 0.12 <loq< td=""> 0.03 0.10 ND 0.03 0.10 ND 0.03 0.10 ND 0.03 0.09 ND 0.03 0.09 ND 0.03 0.09 ND 0.01 0.04 ND 0.02 0.28 ND 0.03 0.08 ND 0.01 0.04 ND</loq<>	% % mg/g 0.03 0.08 0.35 3.5 0.04 0.11 0.27 2.7 0.04 0.11 0.20 2.0 0.03 0.09 0.18 1.8 0.05 0.14 0.17 1.7 0.02 0.05 ND ND 0.08 0.23 ND ND 0.04 0.12 <loq< td=""> <loq< td=""> 0.03 0.10 ND ND 0.02 0.05 ND ND 0.03 0.10 ND ND 0.03 0.10 ND ND 0.03 0.10 ND ND 0.03 0.09 ND ND 0.03 0.09 ND ND 0.03 0.09 ND ND 0.001 0.04 ND ND 0.003 0.10 ND ND 0.003 0.10 ND ND<!--</td--></loq<></loq<>

Primary Aromas

Cinnamon

Lavender

Hops

Turpentine

Orange

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Analyzed by GC-FID, SOP 6.02, 16 CCR §5725

Raquel Keledjian Lab Director

pH Solutions

(855) 734-6640 /www.phs-lab.com/ Lic# C8-0000022-LIC

CBDA:CBD #3227

METRC Batch: METRC Sample Sample ID: 2112PHS12082.9676

Strain: Tinc Matrix: Ingestible Type: Other Sample Size:;1oz

Xylenes

Produced:

Batch: 3227

Collected: 03/18/2022 Received: 03/19/2022 Completed: 03/21/2022

Producer Clouds of Haze

Residual Solvents					Pass
Analyte	LOD	LOQ	Limit	Mass	Status
	μg/g	µg/g	µg/g	μg/g	
1,2-Dichloro-Ethane	0.1	0.3	1	ND	Pass
Acetone	5	16	5000	ND	Pass
Acetonitrile	0.8	2.5	410	ND	Pass
Benzene	0.04	0.1	1	ND	Pass
Butane	5.5	17	5000	ND	Pass
Chloroform	0.25	0.5	1	ND	Pass
Ethanol	0.5	1		ND	Pass
Ethyl-Acetate	31	84	5000	ND	Pass
Ethyl-Ether	6	18	5000	ND	Pass
Ethylene Oxide	0.5	1	1	ND	Pass
Heptane	33	90	5000	ND	Pass
Isopropanol	7	21	5000	ND	Pass
Methanol	62	167	3000	ND	Pass
Methylene-Chloride	0.5	1	1	ND	Pass
n-Hexane	0.5	1	290	ND	Pass
Pentane	6.4	19	5000	ND	Pass
Propane	20	59	5000	ND	Pass
Toluene	12.2	33	890	ND	Pass
Trichloroethene	0.5	1	1	ND	Pass

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Analyzed by GCMS, SOP 6.01 CCR §5718

Raquel Keledjian

All Rights Reserved support@confidentcannabis.com (866) 506-5866 Lab Director www.confidentcannabis.com

2170

ND

Confident Cannabis

Pass

pH Solutions 181 W. Huntington Dr. Monrovia, CA 91016 (855) 734-6640 /www.phs-lab.com/ Lic# C8-0000022-LIC

CBDA:CBD #3227

Lab ID: 211161-589-MH-1-32

METRC Batch: METRC Sample Sample ID: 2112PHS12082.9676

Strain: Tinc
Matrix: Ingestible
Type: Other

Produced:

Collected: 03/18/2022 Received: 03/19/2022 Completed: 03/21/2022

Producer

Sample Size:;1oz Batch: 3227 Clouds of Haze

Microbials		Pass
Analyte	Result	Status
Aspergillus flavus	Not Detected in 1g	Pass
Aspergillus fumigatus	Not Detected in 1g	Pass
Aspergillus niger	Not Detected in 1g	Pass
Aspergillus terreus	Not Detected in 1g	Pass
Shiga toxin-producing E. Coli	Not Detected in 1g	Pass
Salmonella SPP	Not Detected in 1g	Pass

LOQ = Limit of Quantitation; TNC = Too Numerous to Count; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Analyzed by qPCR, SOP 6.05, 16 CCR §5720

Mycotoxins					Pass
Analyte	LOD	LOQ	Limit	Units	Status
	μg/kg	μg/kg	μg/kg	μg/kg	
B1	0.166	0.55	20	ND	Pass
B2	0.89	2.97	20	ND	Pass
G1	0.495	1.66	20	ND	Pass
G2	0.585	1.95	20	ND	Pass
Total Aflatoxins			20	ND	Pass
Ochratoxin A	0.848	2.87	20	ND	Pass

 $LOQ = Limit \ of \ Quantitation; The \ reported \ result \ is \ based \ on \ a \ sample \ weight \ with \ the \ applicable \ moisture \ content \ for \ that \ sample; Unless \ otherwise \ stated \ all \ quality \ control \ samples \ performed \ within \ specifications \ established \ by \ the \ Laboratory. Analyzed \ by \ LCMS, SOP \ 6.03 \& 6.04, 16 \ CCR \ \S5721$

Heavy Metals					Pass
Analyte	LOD	LOQ	Limit	Units	Status
	μg/g	μg/g	µg/g	μg/g	
Arsenic	0.001	0.004	0.2	ND	Pass
Cadmium	0.002	0.006	0.2	ND	Pass
Lead	0.0004	0.001	0.5	ND	Pass
Mercury	0.011	0.038	0.1	ND	Pass

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Analyzed by ICPMS SOP 6.06, 16 CCR § 5723

Raquel Keledjian Lab Director

pH Solutions 181 W. Huntington Dr. Monrovia, CA 91016 (855) 734-6640 /www.phs-lab.com/ Lic# C8-0000022-LIC

CBDA:CBD #3227

Lab ID: 211161-589-MH-1-32 METRC Batch: METRC Sample

Sample ID: 2112PHS12082.9676

Strain: Tinc Matrix: Ingestible Type: Other Sample Size:;1oz Produced:

Collected: 03/18/2022 Received: 03/19/2022 Completed: 03/21/2022

Completed: 03/21/2022 Producer Batch: 3227 Clouds of Haze

Pesticides Pass

Analyte	LOD	LOQ	Limit	Mass	Status	Analyte	LOD	LOQ	Limit	Mass	Status
	PPM	PPM	PPM	μg/g			PPM	PPM	PPM	μg/g	
Abamectin	0.0075	0.0249	0.3000	ND	Pass	Fludioxonil	0.0090	0.0302	30.0000	ND	Pass
Acephate	0.0056	0.0187	5.0000	ND	Pass	Hexythiazox	0.0006	0.0019	2.0000	ND	Pass
Acequinocyl	0.0008	0.0025	4.0000	ND	Pass	lmazalil	0.0056	0.0188	0.0056	ND	Pass
Acetamiprid	0.0011	0.0037	5.0000	ND	Pass	Imidacloprid	0.0020	0.0067	3.0000	ND	Pass
Aldicarb	0.0040	0.0133	0.0040	ND	Pass	Kresoxim Methyl	0.0024	0.0081	1.0000	ND	Pass
Azoxystrobin	0.0006	0.0019	40.0000	ND	Pass	Malathion	0.0010	0.0034	5.0000	ND	Pass
Bifenazate	0.0005	0.0016	5.0000	ND	Pass	Metalaxyl	0.0009	0.0032	15.0000	ND	Pass
Bifenthrin	0.1911	0.6371	0.5000	ND	Pass	Methiocarb	0.0019	0.0063	0.0019	ND	Pass
Boscalid	0.0019	0.0065	10.0000	ND	Pass	Methomyl	0.0013	0.0042	0.1000	ND	Pass
Captan	0.0608	0.2027	5.0000	ND	Pass	Mevinphos	0.0117	0.0389	0.0117	ND	Pass
Carbaryl	0.0013	0.0044	0.5000	ND	Pass	Myclobutanil	0.0213	0.0709	9.0000	ND	Pass
Carbofuran	0.0069	0.0229	0.0069	ND	Pass	Naled	0.0017	0.0056	0.5000	ND	Pass
Chlorantraniliprole	0.0017	0.0058	40.0000	ND	Pass	Oxamyl	0.0007	0.0025	0.2000	ND	Pass
Chlordane	0.0324	0.1020	0.0324	ND	Pass	Paclobutrazol	0.0015	0.0049	0.0015	ND	Pass
Chlorfenapyr	0.0108	0.0361	0.0108	ND	Pass	Parathion Methyl	0.0150	0.0500	0.0150	ND	Pass
Chlorpyrifos	0.0161	0.0538	0.0161	ND	Pass	Pentachloronitrobenzene	0.0291	0.0960	0.2000	ND	Pass
Clofentezine	0.0002	0.0008	0.5000	ND	Pass	Permethrin	0.0336			ND	Pass
Coumaphos	0.0034	0.0114	0.0034	ND	Pass	Phosmet	0.0035	0.0116	0.2000	ND	Pass
Cyfluthrin	0.0446	0.1486	1.0000	ND	Pass	Piperonyl Butoxide	0.0215	0.0718	8.0000	ND	Pass
Cypermethrin	0.0219	0.0729	1.0000	ND	Pass	P <mark>ra</mark> llethrin	0.0224	0.0745	0.4000	ND	Pass
Daminozide	0.0015	0.0049	0.0015	ND	Pass	Propiconazole	0.0278	0.0926	20.0000	ND	Pass
Diazinon	0.0018	0.0058	0.2000	ND	Pass	Propoxur	0.0023	0.0075	0.0023	ND	Pass
Dichlorvos	0.0168	0.0561	0.0168	ND	Pass	Pyrethrins	0.0532	0.1775	1.0000	ND	Pass
Dimethoate	0.0043	0.0143	0.0043	ND	Pass	Pyridaben	0.0014	0.0048	3.0000	ND	Pass
Dimethomorph	0.0065	0.0217	20.0000	ND	Pass	Spinetoram	0.0056	0.0186	3.0000	ND	Pass
Ethoprophos	0.0023	0.0077	0.0023	ND	Pass	Spinosad	0.0011	0.0037	3.0000	ND	Pass
Etofenprox	0.0276	0.0921	0.0276	ND	Pass	Spiromesifen	0.0006	0.0021	12.0000	ND	Pass
Etoxazole	0.0003	0.0011	1.5000	ND	Pass	Spirotetramat	0.0015			ND	Pass
Fenhexamid	0.0108	0.0361	10.0000	ND	Pass	Spiroxamine	0.0010	0.0034	0.0010	ND	Pass
Fenoxycarb	0.0008	0.0028	0.0008	ND	Pass	Tebuconazole	0.0057	0.0189	2.0000	ND	Pass
Fenpyroximate	0.0023	0.0076	2.0000	ND	Pass	Thiacloprid	0.0002	0.0008	0.0002	ND	Pass
Fipronil	0.0079	0.0264	0.0079	ND	Pass	Thiamethoxam	0.0004	0.0014	4.5000	ND	Pass
Flonicamid	0.0048	0.0160	2.0000	ND	Pass	Trifloxystrobin	0.0032	0.0108	30.0000	ND	Pass

 $LOQ = Limit \ of \ Quantitation; The \ reported \ result \ is \ based \ on \ a \ sample \ weight \ with \ the \ applicable \ moisture \ content \ for \ that \ sample; Unless \ otherwise \ stated \ all \ quality \ control \ samples \ performed \ within \ specifications \ established \ by \ the \ Laboratory. Pesticide \ detection \ is \ determined \ by \ LCMS \ & GCMS, SOP \ 6.03 \ & 6.04, \ 16 \ CCR \ § \ 5719.$

Raquel Keledjian Lab Director

