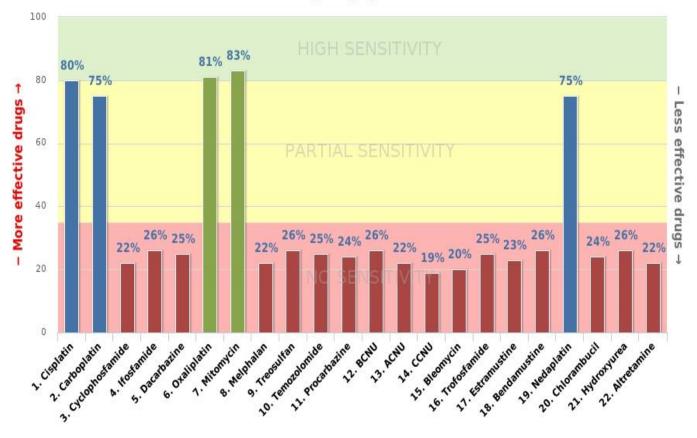


R.G.C.C. - RESEARCH GENETIC CANCER CENTRE S.A.

Florina, 03/10/2017

Dear colleague,

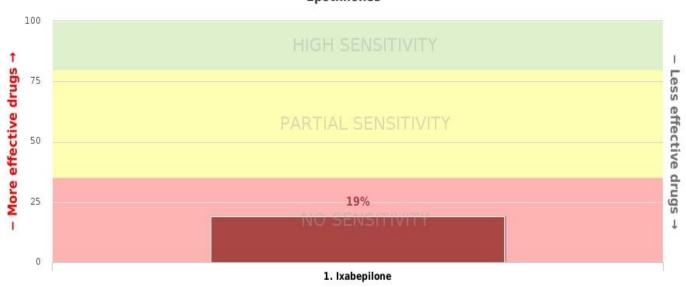
We send you the results from the analysis on a patient Mr xxxxxxxxxxxx suffering from cholangiocarcinoma stage N/A. The sample that was sent to us for analysis was a sample of 20ml of whole blood that contained EDTA-Ca as anti-coagulant, and packed with an ice pack.


In our laboratory we made the following:

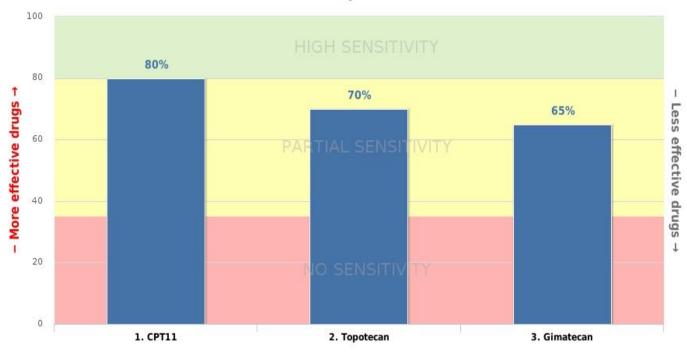
- We isolated the malignant cells using Oncoquick with a membrane that isolates malignant cells from normal cells after centrifugation and positive selection using anti-EpCam and negative selection using anti-CD45 particles (isolated 6.6cells/ml, SD +/- 0.3cells).
- Then we developed cell cultures in a fetal calf serum media and at the same time we developed colony cultures in soft agar. In each culture of the well plate we added a chemotherapeutic substance that is used in clinical application. Then we developed those cultures and we harvested a sample every 24 hours for 6 days and made the following assays.
- There was made an isolation of the genomic DNA using the kit Invisorb of INVITEK.
- We isolated mRNA using the mRNA Magprep blood isolation kit of NOVAGEN.
- We traced the mRNA and the genes of MDR1 (multi drug resistant 1), MRP and LRP using the technique of Northern Blot (resistance in drugs used in chemotherapies).
- We tracked the mRNA and the gene of topoisomerase I and II a & b using the technique of Northern Blot (sensitivity in cytostatic inhibitors of topoisomerase).
- We tracked the quantity of the mRNA of the tubulin using the RT-PCR (sensitivity in cytostatics of the kind of taxanes and the products of the alkaloids of Vinca).
- We defined the activity of the enzyme complex of the glutathione-S-transferases (GST kit of NOVAGEN) (resistance in drugs used in chemotherapies-especially in platinum compounds).
- We defined the DNA methyl transferase which is a target of the alkylating factors (products of platinum, cyclophosphamide and the products of it).
- We defined the mRNA of the Thymidylate synthetase (TS) and the DHFR (sensitivity in 5-FU, capecitabine and methotrexate).
- We defined the mRNA of the reductase of 5-CMP (sensitivity in gemcitabine).
- We defined the receptors of the MMP and the receptors of laminin (invasive ability of the tumor).
- We defined the expression of protein p27 that is responsible for cell arrest in G0 stage.
- We defined the VEGF (neoangiogenetic factor) and the induction of the apoptotic pathway using ONCOGENE kit from NOVAGEN.
- We defined the ability of acting of the nucleus protein kinases which are a target of the Carbazine compounds.
- We defined the over expression of TGFa and TGFb factors as targets for Suramin sulfate.
- We defined the over expression of somatostatin receptor (SS-R), of COX-2 and 5-LOX, of c-erb-B2 (Her/Neu2), c-erb-B1, androgen, estrogen and progesterone receptors.

The above conclusions were confirmed by the cell cultures of the tumor (or circulating tumor cells and the results are displayed in the bar graph on the next pages.

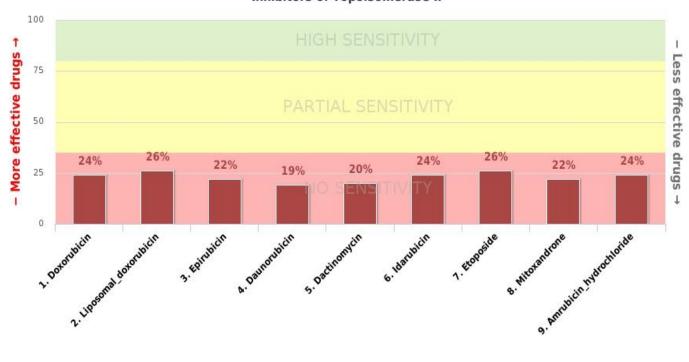
INTERPRETATION: The numbers above the bars indicate % of cancer cell **DEATH** caused by the drug tested. This equates the % **SENSITIVITY** to that drug. Therefore, the drugs with the highest numbers are the most effective drugs at inducing cancer cell death for the patient tested. The numbers below or beside the bars refer to the drugs tested, as indicated in the diagrams in pages 2 to 7.


Alkylating Agents

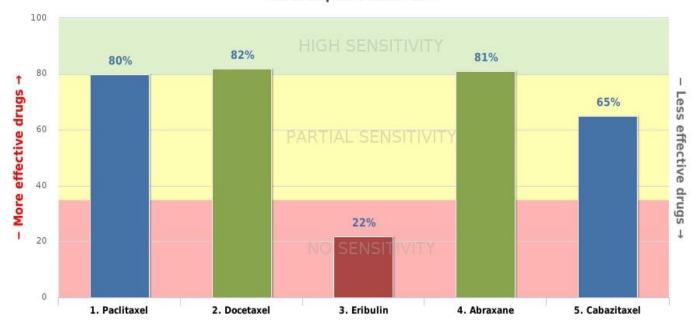
High Sensitivity: Oxaliplatin, Mitomycin
Partial Sensitivity: Cisplatin, Carboplatin, Nedaplatin


No Sensitivity: Cyclophosfamide, Ifosfamide, Dacarbazine, Melphalan, Treosulfan, Temozolomide, Procarbazine, BCNU, 4 ACNU, CCNU, Bleomycin, Trofosfamide, Estramustine, Bendamustine, Chlorambucil, Hydroxyurea, Altretamine

Epothilones

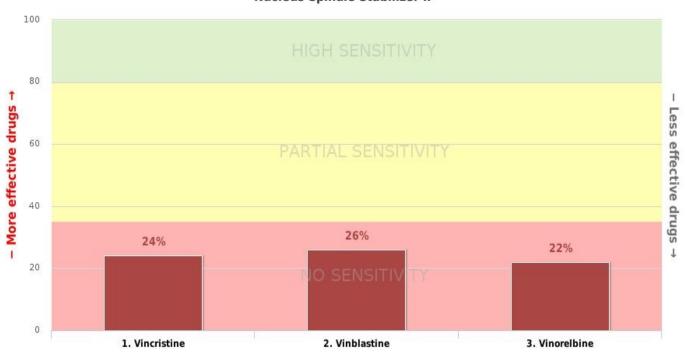

No Sensitivity: Ixabepilone

Inhibitors of Topoisomerase I

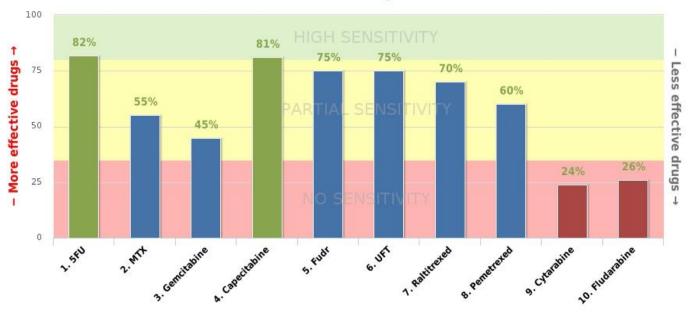

Partial Sensitivity: CPT11, Topotecan, Gimatecan

Inhibitors of Topoisomerase II

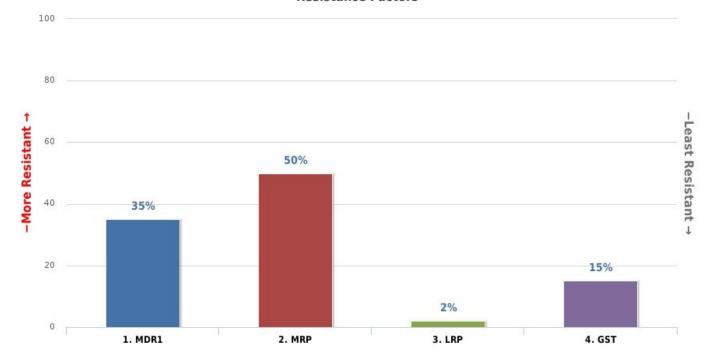
No Sensitivity: Doxorubicin, Liposomal_doxorubicin, Epirubicin, Daunorubicin, Dactinomycin, Idarubicin, Etoposide, 4 Mitoxandrone, Amrubicin_hydrochloride


Nucleus Spindle Stabilizer I

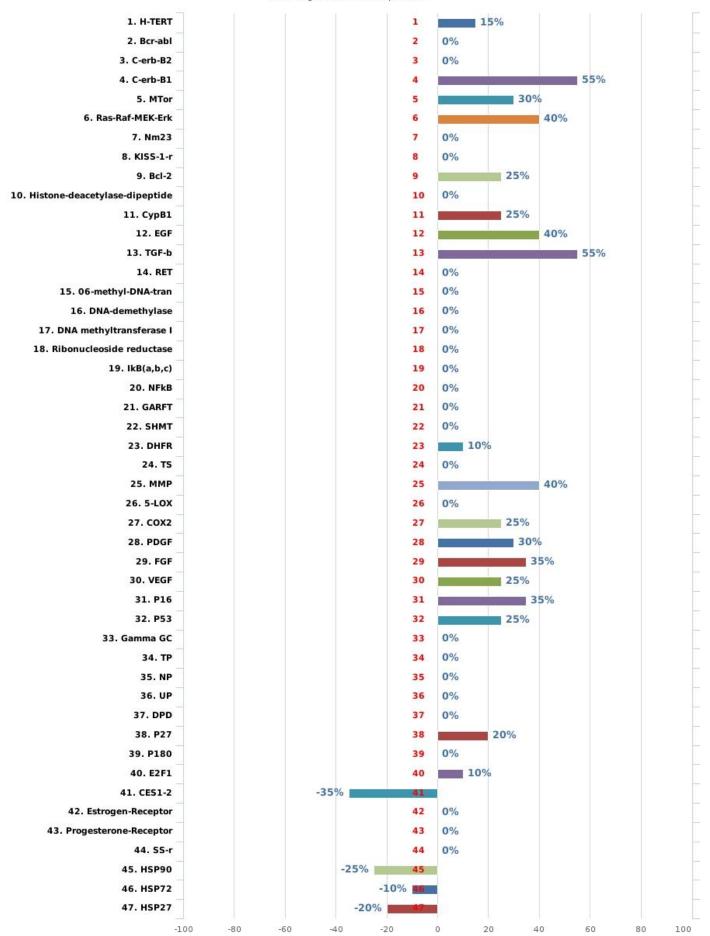
High Sensitivity: Docetaxel, Abraxane Partial Sensitivity: Paclitaxel, Cabazitaxel


No Sensitivity: Eribulin

Nucleus Spindle Stabilizer II

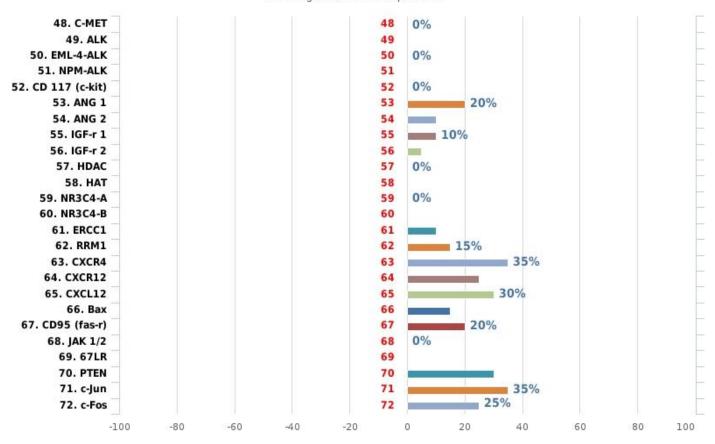

No Sensitivity: Vincristine, Vinblastine, Vinorelbine

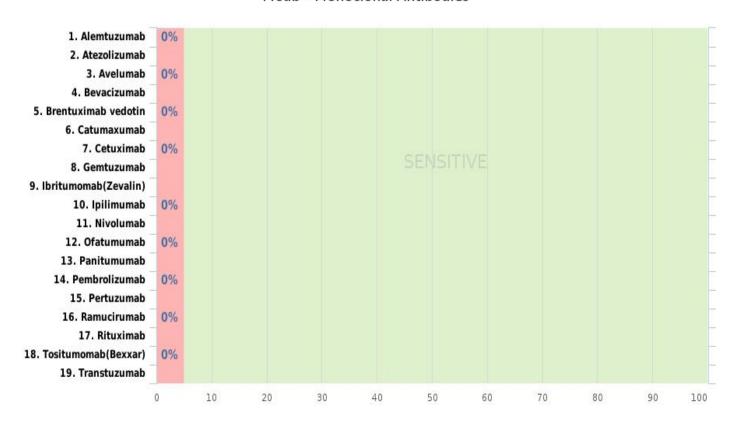
Nucleoside Analogues


High Sensitivity: 5FU, Capecitabine
Partial Sensitivity: MTX, Gemcitabine, Fudr, UFT, Raltitrexed, Pemetrexed
No Sensitivity: Cytarabine, Fludarabine

Resistance Factors

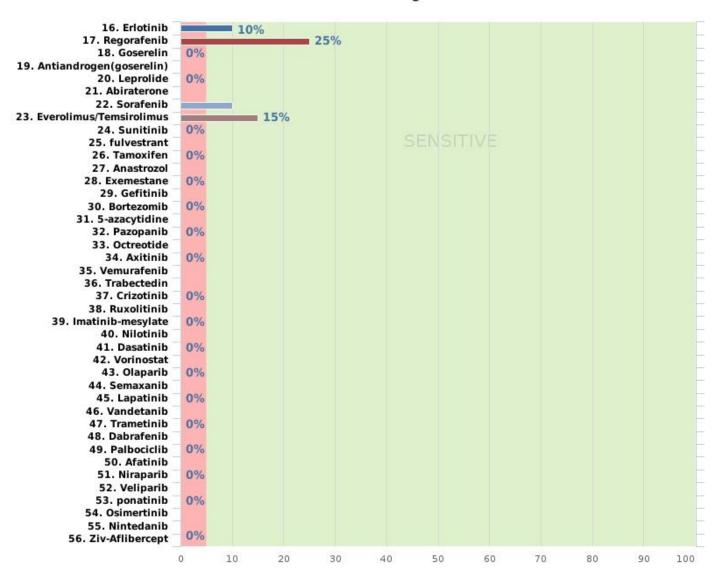
Tumor Related Genes I


Downregulation - Overexpression


ONCONOMICS ® 7 / 12

Tumor Related Genes II

Downregulation - Overexpression



Moab - Monoclonal Antibodies

ONCONOMICS ® 8 / 12

SMW - Small Molecular Weight molecule

Tumor Related Genes

GROWTH FACTORS PROLIFERATION STIMULI

NAME	RELATED	RESULTS	<u>OUTCOME</u>	<u>FUNCTION</u>	CLINICAL RISK
p180	Tyrosin kinase growth f.	normal	LOW RISK	Preprotein for Cellular	LOW RISK
				stress	
Bcr-abl	Resist phenotype	normal	LOW RISK	Fusion	LOW RISK
			LOWKISK	Protein	LOW KISK
PTEN	Tumor Suppressor	30%	HIGH RISK	Repair	HIGH RISK
	Gene		піоп кізк	Related Gene	піоп кізк

COX2	Tumour Growth	25%	HIGH RISK	Eicosanoid	
5-LOX	Tumour Growth	normal	LOW RISK	related protein	HIGH RISK

ONCONOMICS ® 9/12 NFkB Transcription fact LOW RISK normal Proteasome LOW RISK IkB(a,b,c) Inhibitor of NFκB LOW RISK inhibitors normal ALK Acute Leukemia normal LOW RISK kinase EML-4-ALK Fusion EML with LOW RISK normal Proto-**ALK** LOW RISK Oncogene Fusion NPM with NPM-ALK LOW RISK normal ALK **RET** proto-oncogene LOW RISK normal SS-r Somatostatin receptor normal LOW RISK CD 117(c-kit) Proliferate growth LOW RISK normal factor receptor 1 IGF-r 1 Insulin like growth 10% **HIGH RISK** Growth factor receptor I Factor IGF-r-2 Insulin like growth normal LOW RISK HIGH RISK Receptor factor receptor II **EGF** Tumour Growth **HIGH RISK** 40% Her1 c-erb-B1 55% HIGH RISK c-erb-B2 Her/neu2 LOW RISK normal JAK 1/2 Single transduction LOW RISK normal pathway c-Jun Proto-Oncogene 35% HIGH RISK Signal HIGH c-Fos Proto-Oncogene 25% **HIGH RISK** transduction **PROLIFERATIVE** Ras/Raf/MEK/Er Transduction pathway pathway SIGNAL 40% HIGH RISK k mTOR Transduction pathway **HIGH RISK** 30% Progesterone **Growth Factor** LOW RISK normal Receptor receptor Estrogene Growth Factor LOW RISK normal Receptor receptor NR3C4-A Nucleous receptor LOW RISK HORMONE normal Hormone group III Class 4 **INDEPENDENT** Receptors (androgen receptor A) Nucleous receptor NR3C4-B LOW RISK normal group III Class 4

SELF REPAIR - RESISTANCE

(androgen receptor B)

NAME	RELATED	RESULTS	<u>OUTCOME</u>	<u>FUNCTION</u>	CLINICAL RISK
TGF-b	Tumour Growth	55%	HIGH RISK	Signal transduction pathways	HIGH RISK
HSP27	Heat Shock Protein	-20%	(SENSITIVE)	D = 1' = (1)	
HSP72	Heat Shock Protein	-10%	(SENSITIVE)	Radiotherapy/ Hyperthermia	SENSITIVE
HSP90	Heat Shock Protein	-25%	SENSITIVE	sensitivity	

ONCONOMICS ® 10 / 12

DNA	DNA	normal	LOW RISK		
methyltransferas	methylation				
e I					
DNA	DNA	normal	LOW RISK		
demethylase	methylation				
06-methyl-DNA-	DNA	normal	LOW RISK		
tran.	methylation				
Histonedeacetyla	DNA coiling	normal	LOW RISK		
se-dipeptide	(nucleosome)			Resistant	
HAT	Histone acetyl	normal	LOW RISK	Phenotype	
	transferase			Markers	RESISTANT
CXCR4	Resistant	35%	HIGH RISK	Warkers	
	Phenotype				
CXCR12	Resistant	25%	HIGH RISK		
	Phenotype				
CXCL12	Resistant	30%	HIGH RISK		
	Phenotype				
Gamma GC	Resist to	normal	LOW RISK		
	alkylating drug				
HDAC	Histone	normal	LOW RISK		
	deacetylase				

ANGIOGENESIS

<u>NAME</u>	<u>RELATED</u>	<u>RESULTS</u>	<u>OUTCOME</u>	<u>FUNCTION</u>	<u>CLINICAL RISK</u>
VEGF	Angiogenesis	25%	HIGH RISK		
FGF	Angiogenesis	35%	HIGH RISK		
PDGF	Angiogenesis	30%	HIGH RISK	Angiogenesis	HIGH RISK
ANG 1	Angiogenin I	20%	HIGH RISK		
ANG 2	Angiogenin II	10%	HIGH RISK		

CELL CYCLE REGULATION & IMMORTALIZATION / APOPTOSIS

<u>NAME</u>	<u>RELATED</u>	<u>RESULTS</u>	<u>OUTCOME</u>	<u>FUNCTION</u>	<u>CLINICAL RISK</u>
E2F1	Transcr. Fact of	10%	HIGH RISK	Increase protein	HIGH DIOK
	TS & topo I			Synthesis	HIGH RISK
CDC6	Initiation of DNA	normal	LOW RISK	Rapid Cell	I OW DICK
	replication			Cycle	LOW RISK
h-TERT	M2 crisis-	15%	HIGH RISK	Immortalization	HIGH RISK
	aggressive phen.			Illillortalization	піоп кізк
Bcl-2	Apoptosis	25%	HIGH RISK		
Bax	Apoptosis	15%	HIGH RISK	Regulation of	HIGH RISK
CD95 (fas-r)	Apoptosis related	<mark>20</mark> %	HIGH RISK	apoptosis	піоп кізк
	receptor				
p27	Cell arrest (G0)	20%	LOW RISK		
p53	Cell cycle	25%	HIGH RISK	Cell cycle	RAPID
	regulator			Rate	KAPID
p16	Apoptosis	35%	HIGH RISK		

ONCONOMICS ® 11 / 12

ANGIOGENESIS - METASTASES

NAME	RELATED	RESULTS	OUTCOME	<u>FUNCTION</u>	CLINICAL RISK
c-MET	Mesenchymal to	normal	LOW RISK		
	epithelial				
	transition				
67LR	67 Laminin	normal	LOW RISK		
	receptor			Migration	HIGH RISK
KISS-1-r	Metastases	normal	LOW RISK	invasion	поп кізк
	regulator				
Nm23	Metastases	normal	LOW RISK		
	regulator				
MMP	Metastases	40%	HIGH RISK		

DRUG METABOLISMS & TARGETS

27.12.57	D = 1 . = 2	D = 07.11 =	0777700777		
<u>NAME</u>	<u>RELATED</u>	RESULT	<u>OUTCOME</u>	<u>FUNCTION</u>	<u>CLINICAL RISK</u>
		<u>S</u>			
CES1&2	Resist to	-35%	LOW RISK	Activation of	
(carboxyesterase	camptothecin			camptothecin	LOW RISK
)				camptomecm	
DPD	Resist to 5FU	normal	LOW RISK		
UP	Resist to 5FU	normal	LOW RISK		
NP	Resist topyrim.	normal	LOW RISK		
	Antagonist				
TP	Resist to 5FU	normal	LOW RISK		
TS	Rapid cell cycle	normal	LOW RISK	NT 1 '1	
	(THFA)			Nucleoside	
DHFR	Rapid cell cycle	10%	HIGH RISK	Import	HIGH RISK
	(THFA)			transformatio	
SHMT	Rapid cell cycle	normal	LOW RISK	n	
	(THFA)				
GARFT	Rapid cell	normal	LOW RISK		
	cycle(THFA)				
Ribonucleosider	DNA synthesis	normal	LOW RISK		
eductase	21,115,11010515	110111111	20 // 111011		
CypB1	Xenobiotic	25%	HIGH RISK		
JPZI	metabolism	20 / 0	111011111011	Xenobiotic	HIGH RISK
ERCC1	DNA repair	10%	HIGH RISK		
2.1.001	mechanism	10 / 0	HOIFRIDI	DNA repair	
RRM1	Nucleotide	15%	HIGH RISK	related gene	HIGH RISK
IXIXIVII	polymerizationss	13/0		Telated gelle	
	porymenzacionss				

MARKERS

NAME	RELATED	RESULTS	<u>OUTCOME</u>	CLINICAL RISK
CD33	Myeloid cellorigin	normal	LOW RISK	LOW RISK
CD52	Leukaemia marker	normal	LOW RISK	LOW RISK
CD20	Lymphoma related antigen	normal	LOW RISK	LOW RISK
EpCAM	Epithelial marker	20%	HIGH RISK	HIGH RISK
PD-L1	Immunoregulatory factor	normal	LOW RISK	LOW RISK

ONCONOMICS [®] 12 / 12

PD 1	normal	LOW RISK	LOW RISK
PD-L2	normal	LOW RISK	LOW RISK

From the investigation above we concluded to the following:

- 1. From the whole neoplasmic population we have an expression of MRP in a percentage of 50% over control sample (positive in the check of resistance).
- 2. The activity of GST is stable in the low limits (no resistance to platinum compounds).
- 3. The activity of GammaGC is in normal range (no resistance to platinum compounds).
- 4. The activity of CES1 and CES2 is in low limits (no resistance to camptothecin compounds).
- 5. The concentration of p180 is in normal range.
- 6. Increased activity of the Laminin and the MMP (increased invasive ability).
- 7. There is great sensitivity in taxanes (Docetaxel, Abraxane).
- 8. There is no sensitivity in alkaloids of vinca.
- 9. There is no sensitivity in Eribulin.
- 10. Partial sensitivity noticed in MTX, in Gemcitabine, in Fudr, in UFT, in Raltitrexed, in Pemetrexed, but no sensitivity noticed in Cytarabine, in Fludarabine but there is great sensitivity in (5FU, Capecitabine).
- 11. There is no sensitivity in Epothilones.
- 12. Increased sensitivity in alkylating factors (Oxaliplatin, Mitomycin).
- 13. There is great overexpression of EGF (40% over control), TGF-b (55% over control), there is normal expression of IkB(a, b, c), NFkB.
- 14. It appears to have no sensitivity in the inhibitors of topoisomerase II a and II b.
- 15. There is partial sensitivity in the inhibitors of Topoisomerase I.
- 16. There is great over-expression of COX2 (25% over control), C-erb-B1 (55% over control), there is normal expression of 5-LOX, SS-r, C-erb-B2, Estrogen-Receptor, Progesterone-Receptor.
- 17. We notice great neoangiogenetic ability (overexpression of VEGF-R 25% over control sample).
- 18. Finally, there is no sensitivity in Dacarbazine.
- 19. We notice that taurolidine cannot induce the apoptosis to the malignant cells (in IV route dosage).
- 20. We notice that taurolidine can induce the apoptosis to the malignant cells (in intraperitoneal route dosage).
- 21. We notice down-regulation of HSP27 (Heat Shock Protein) at 20% below control, HSP72 (Heat Shock Protein) at 10% below control, HSP90 (Heat Shock Protein) at 25% below control.
- 22. There is over-expression of ANG 1 at 20% over control, ANG 2 at 10% over control, IGF-r 1 at 10% over control, but we notice no down-regulation of ALK, EML-4-ALK, C-MET, NPM-ALK, CD 117 (c-kit), IGF-r 2, HDAC, HAT, NR3C4-A, NR3C4-B.

Conclusion:

- The specific tumor appears to have resisting populations because of the MRP overexpression that can be reversed by the use of inhibitors of ABCG2 pumps.
- The neoplasmatic cells have the greatest sensitivity in the alkylating agent (Oxaliplatin, Mitomycin), in the nucleous spindle stabilizer (Docetaxel, Abraxane), in the antagonist (5FU, Capecitabine)
- Also can be used **Erlotinib** as inhibitor of EGFr, **Regorafenib** as inhibitor of angiopoietin 1, PDGF r and RET, **Sorafenib** as inhibitor of Ras/Raf/MEK/Erk transaction pathway, **Everolimus/Temsirolimus** as inhibitor of Akt/mTOR pathway.

Sincerely,

Ioannis Papasotiriou MD., PhD Head of molecular medicine dpt. of

R.G.C.C.-RESEARCH GENETIC CANCER CENTRE S.A.

INDEX: M0: Abnormal p16, normal p53 and hTERT,
M1: Normal hTERT, abnormal p53, p16,
M2 crisis: over-expression of hTERT, p53, p16
Sample viability:<35% no sensitivity, 35%-80% partial sensitivity, >80% great sensitivity

*Be advised that any nutritional program suggested is not intended as a treatment for any disease. The intent of any nutritional recommendation is to support the physiological and biochemical processes of the human body, and not to diagnose, treat, cure, prevent any disease or condition. Always work with a qualified healthcare provider before making changes to your diet, prescription medication, lifestyle or exercise activities