

DATE ISSUED 10/07/2022

SAMPLE NAME: Stratos 1000 CBD Full Spectrum

Infused, Colorado Infused

····, ··· · · · · · · · · · · · · · · ·				
CULTIVATOR / MANUFACTURER	DISTRIBUTOR / TEST	TED FOR		
Business Name:	Business Name: Ashford			
License Number:	International LLC			
Address:	License Number:			
	Address:			STRATOS"
SAMPLE DETAIL				CBD 1000 FULL SPECTRUM
Batch Number: 2195001	Date Collected: 10/01/20	022		
Sample ID: 221001H003	Date Received: 10/02/20			Property and a second s
Date of Sampling: 10/01/2022	Batch Size:			
Time of Sampling: 7:46 a.m.	Sample Size: 50.0 units			
Sampler Name:	Unit Mass: 50 milliliters pe	er Unit		
Sampler Company:	Serving Size: 1 milliliters	per Serving		Scan QR code to verify authenticity of results.
CANNABINOID ANALYSIS - SUMMARY				
	otal THC/CBD is calculated using the fol ccount the loss of a carboxyl group duri		Density: 0.9	9465 g/mL
	otal THC = Δ^9 -THC + (THCa (0.877)) otal CBD = CBD + (CBDa (0.877))			
S	um of Cannabinoids = Δ^9 -THC + THCa +	+ CBD + CBDa + CBG + CBGa +		
	otal Cannabinoids = $(\Delta^7 - 1HC + 0.877*1H)$	Ca) + (CBD+0.877*CBDa) +		
	CBG+0.877*CBGa) + (THCV+0.877*THC CBDV+0.877*CBDVa) + Δ ⁸ -THC + CBL +			
TERPENOID ANALYSIS - SUMMARY			39 1	TESTED, TOP 3 HIGHLIGHTED
Total Terpenoids: 0.2306%	athol 1 970 mg/g	uselyntel 0 107 mg/g	Limonon	0.0.058 mg/g
Me	nthol 1.879 mg/g 🛛 🔵 Ei	ucalyptol 0.197 mg/g		e 0.058 mg/g
SAFETY ANALYSIS - SUMMARY				
			Desident Cale	
Pesticides: PASS	Mycotoxins: OPASS		Residual Solve	ents: WPASS
Heavy Metals: 🔗 PASS	Microbiology (PCR): 🧟	PASS	Microbiology	(Plating): OPASS

For quality assurance purposes. Not a Regulatory Hemp Lab Test Report. These results relate only to the sample included on this report. This report shall not be reproduced, except in full, without written approval of the laboratory.

 $\label{eq:sample certification: 6 CCR 1010-21 Colorado Wholesale Food, Industrial Hemp, and Shellfish Regulations; where applicable$

Decision Rule: Statements of conformity (e.g. Pass/Fail) to specifications are made in this report without taking measurement uncertainty into account. Where statements of conformity are made in this report, the following decision rules are applied: PASS - Results within limits/specifications, FAIL - Results exceed limits/specifications.

References: limit of detection (LOD), limit of quantification (LOQ), not detected (ND), not tested (NT), too numerous to count >250 cfu/plate (TNTC), colony-forming unit (cfu)

Approved by: Josh Wurzer, President

Approved by: Josh Wurzer, President Date: 10/07/2022

SC Laboratories California LLC. | 100 Pioneer Street, Suite E, Santa Cruz, CA 95060 | (866) 435-0709 | sclabs.com | CDPHE Certified | ISO/IES 17025:2017 PJLA Accreditation Number 87168 © 2022 SC Labs all rights reserved. Trademarks referenced are trademarks of either SC Labs or their respective owners. MKT0002 REV9 2/22 CoA ID: 221001H003-001 Summary Page

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Cannabinoid Analysis

Tested by high-performance liquid chromatography with diode-array detection (HPLC-DAD).

Method: QSP 1157 - Analysis of Cannabinoids by HPLC-DAD

TOTAL THC: 42.400 mg/unit

Total THC (Δ^9 -THC+0.877*THCa)

TOTAL CBD: 1034.900 mg/unit

Total CBD (CBD+0.877*CBDa)

TOTAL CANNABINOIDS: 1148.000 mg/unit

 $\begin{array}{l} \mbox{Total Cannabinoids (Total THC) + (Total CBD) + \\ \mbox{(Total CBG) + (Total THCV) + (Total CBC) + } \\ \mbox{(Total CBDV) + } \Delta^8 \mbox{-} \mbox{THC + CBL + CBN} \end{array}$

TOTAL CBG: 17.150 mg/unit

Total CBG (CBG+0.877*CBGa)

TOTAL THCV: ND

Total THCV (THCV+0.877*THCVa)

TOTAL CBC: 41.700 mg/unit

Total CBC (CBC+0.877*CBCa)

TOTAL CBDV: 7.000 mg/unit

Total CBDV (CBDV+0.877*CBDVa)

CANNABINOID TEST RESULTS - 10/03/2022

COMPOUND	LOD/LOQ (mg/mL)	MEASUREMENT UNCERTAINTY (mg/mL)	RESULT (mg/mL)	RESULT (%)
CBD	0.004 / 0.011	±0.7720	20.698	2.1868
∆ ⁹ -THC	0.002/0.014	±0.0466	0.848	0.0896
CBC	0.003/0.010	±0.0269	0.834	0.0881
CBG	0.002/0.006	±0.0166	0.343	0.0362
CBDV	0.002/0.012	±0.0057	0.140	0.0148
CBL	0.003/0.010	±0.0021	0.056	0.0059
CBN	0.001/0.007	±0.0012	0.041	0.0043
∆ ⁸ -THC	0.01/0.02	N/A	ND	ND
THCa	0.001 / 0.005	N/A	ND	ND
THCV	0.002/0.012	N/A	ND	ND
THCVa	0.002/0.019	N/A	ND	ND
CBDa	0.001/0.026	N/A	ND	ND
CBDVa	0.001/0.018	N/A	ND	ND
CBGa	0.002/0.007	N/A	ND	ND
CBCa	0.001/0.015	N/A	ND	ND
Total THC		±0.0466	0.848	0.0896
SUM OF CANN	ABINOIDS		22.960 mg/mL	2.4258%

Unit Mass: 50 milliliters per Unit / Serving Size: 1 milliliters per Serving

Δ^9 -THC per Unit	42.400 mg/unit
Δ^9 -THC per Serving	0.848 mg/serving
Total THC per Unit	42.400 mg/unit
Total THC per Serving	0.848 mg/serving
CBD per Unit	1034.900 mg/unit
CBD per Serving	20.698 mg/serving
Total CBD per Unit	1034.900 mg/unit
Total CBD per Serving	20.698 mg/serving
Sum of Cannabinoids per Unit	1148.000 mg/unit
Sum of Cannabinoids per Serving	22.960 mg/serving
Total Cannabinoids per Unit	1148.000 mg/unit
Total Cannabinoids per Serving	22.960 mg/serving

DENSITY TEST RESULT

0.9465 g/mL

Tested 10/03/2022

Method: QSP 7870 - Sample Preparation

SC Laboratories California LLC. | 100 Pioneer Street, Suite E, Santa Cruz, CA 95060 | (866) 435-0709 | sclabs.com | CDPHE Certified | ISO/IES 17025:2017 PJLA Accreditation Number 87168 © 2022 SC Labs all rights reserved. Trademarks referenced are trademarks of either SC Labs or their respective owners. MKT0002 REV9 2/22 CoA ID: 221001H003-001 Page 2 of 8

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Terpenoid Analysis

Terpene analysis utilizing gas chromatographyflame ionization detection (GC-FID).

Method: QSP 1192 - Analysis of Terpenoids by GC-FID

Menthol

A monoterpenoid alcohol with a fragrance that can be described as fresh, cool and herbal. It is responsible for the distinct odor of mint. It is frequently added to cigarettes and mouthwash as a flavorant. Found in mint, sunflower, micromeria, mountain mint, rose geranium, pennyroyal, tarragon, savory, basil, juniper, couch grass, rhubarb, acinos (basil thyme), ironwort, muña...etc.

Eucalyptol

A monoterpenoid alcohol with a fragrance that can be described as a combination of fresh, spicy, herbal and minty. It is sometimes added to cigarettes and mouthwashes as a flavorant. Although sometimes used as an insect repellant, it is a powerful attractant to certain male bees. Found in eucalyptus, rosemary, wormwood, sage...etc.

Limonene

A monoterpene with a fragrance that can be described as orangey, citrusy, sweet and tart. It is most commonly found in nature as D-Limonene and is a primary contributor to the distinct scent of orange peels, from which it is commonly derived. Found in numerous pines, red maple, silver maple, aspens, cottonwoods, hemlocks, sumac, cedar, junipers...etc.

TERPENOID TEST RESULTS - 10/03/2022

COMPOUND	LOD/LOQ (mg/g)	MEASUREMENT UNCERTAINTY (mg/g)	RESULT (mg/g)	RESULT (%)
Menthol	0.008/0.025	±0.0586	1.879	0.1879
Eucalyptol	0.006/0.018	±0.0039	0.197	0.0197
Limonene	0.005/0.016	±0.0006	0.058	0.0058
α-Bisabolol	0.008/0.026	±0.0020	0.048	0.0048
Pulegone	0.003/0.011	±0.0014	0.044	0.0044
β-Caryophyllene	0.004/0.012	±0.0011	0.041	0.0041
Caryophyllene Oxide	0.010/0.033	±0.0014	0.039	0.0039
Sabinene Hydrate	0.006 / 0.022	N/A	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Terpineol	0.009/0.031	N/A	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Pinene	0.005 / 0.017	N/A	ND	ND
Camphene	0.005/0.015	N/A	ND	ND
Sabinene	0.004 / 0.014	N/A	ND	ND
β-Pinene	0.004/0.014	N/A	ND	ND
Myrcene	0.008 / 0.025	N/A	ND	ND
α-Phellandrene	0.006 / 0.020	N/A	ND	ND
Δ^3 -Carene	0.005/0.018	N/A	ND	ND
α-Terpinene	0.005/0.017	N/A	ND	ND
p-Cymene	0.005/0.016	N/A	ND	ND
β-Ocimene	0.006 / 0.020	N/A	ND	ND
γ-Terpinene	0.006/0.018	N/A	ND	ND
Fenchone	0.009/0.028	N/A	ND	ND
Terpinolene	0.008/0.026	N/A	ND	ND
Linalool	0.009/0.032	N/A	ND	ND
Fenchol	0.010/0.0 <mark>34</mark>	N/A	ND	ND
lsopulegol	0.005/0.016	N/A	ND	ND
Camphor	0.00 <mark>6/0.019</mark>	N/A	ND	ND
Isoborneol	0.004/0.012	N/A	ND	ND
Borneol	0.005/0.016	N/A	ND	ND
Nerol	0.003/0.011	N/A	ND	ND
Citronellol	0.003/0.010	N/A	ND	ND
Geraniol	0.002/0.007	N/A	ND	ND
Geranyl Acetate	0.004 / 0.014	N/A	ND	ND
α-Cedrene	0.005 / 0.016	N/A	ND	ND
trans-β-Farnesene	0.008 / 0.025	N/A	ND	ND
α-Humulene	0.009/0.029	N/A N/A	ND	ND
Valencene	0.009/0.030	N/A	ND	ND
Nerolidol	0.006/0.019	N/A	ND	ND
Guaiol	0.009/0.030	N/A N/A	ND	ND
Cedrol	0.008/0.027	N/A	ND	ND
TOTAL TERPENOIDS	0.0007 0.027		2.306 mg/g	0.2306%

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Pesticide Analysis

Pesticide and plant growth regulator analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) or gas chromatography-mass spectrometry (GC-MS).

*GC-MS utilized where indicated.

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS or QSP 1213 - Analysis of Pesticides by GC-MS

PESTICIDE TEST RESULTS - 10/03/2022 O PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (µg/g)	RESULT (µg/g)	RESULT
Abamectin	0.032/0.097	0.25	N/A	ND	PASS
Acephate	0.006 / 0.018	0.05	N/A	ND	PASS
Acequinocyl	0.009/0.027	≥LOQ	N/A	ND	PASS
Acetamiprid	0.016/0.049	0.05	N/A	ND	PASS
Aldicarb	0.030/0.090	0.5	N/A	ND	PASS
Allethrin	0.030/0.092	0.1	N/A	ND	PASS
Atrazine	0.006/0.019	≥LOQ	N/A	ND	PASS
Azadirachtin	0.082/0.248	0.5	N/A	ND	PASS
Azoxystrobin	0.003/0.009	0.01	N/A	ND	PASS
Benzovindiflupyr	0.003/0.009	0.01	N/A	ND	PASS
Bifenazate	0.003/0.009	0.01	N/A	ND	PASS
Bifenthrin	0.021/0.064	≥LOQ	N/A	ND	PASS
Boscalid	0.003/0.009	0.01	N/A	ND	PASS
Buprofezin	0.006/0.019	≥LOQ	N/A	ND	PASS
Carbaryl	0.007/0.020	0.025	N/A	ND	PASS
Carbofuran	0.003 / 0.008	0.01	N/A	ND	PASS
Chlorantraniliprole	0.006 / 0.018	≥LOQ	N/A	ND	PASS
Chlorfenapyr*	0.005 / 0.015	1.5	N/A	ND	PASS
Chlorpyrifos	0.013/0.039	0.5	N/A	ND	PASS
Clofentezine	0.003/0.009	0.01	N/A	ND	PASS
Clothianidin	0.008 / 0.025	0.025	N/A	ND	PASS
Coumaphos	0.003 / 0.010	0.01	N/A	ND	PASS
Cyantraniliprole	0.003 / 0.010	0.01	N/A	ND	PASS
Cyfluthrin	0.052/0.159	≥LOQ	N/A	ND	PASS
Cypermethrin	0.051 / 0.153	≥LOQ	N/A	ND	PASS
Cyprodinil	0.003 / 0.008	0.01	N/A	ND	PASS
Daminozide	0.026/0.077	≥LOQ	N/A	ND	PASS
Deltamethrin	0.059/0.180	≥LOQ	N/A	ND	PASS
Diazinon	0.006/0.017	≥LOQ	N/A	ND	PASS
Dichlorvos (DDVP)	0.012/0.038	0.05	N/A	ND	PASS
Dimethoate	0.003/0.009	0.01	N/A	ND	PASS
Dimethomorph	0.016/0.050	≥LOQ	N/A	ND	PASS
Dinotefuran	0.010/0.030	0.05	N/A	ND	PASS
Diuron	0.013/0.040	≥LOQ	N/A	ND	PASS
Dodemorph	0.012/0.035	≥LOQ	N/A	ND	PASS
' Endosulfan sulfate	0.016/0.048	2.5	N/A	ND	PASS
Endosulfan-α*	0.004/0.014	2.5	N/A	ND	PASS
Endosulfan-β*	0.006/0.019		N/A	ND	PASS
Ethoprophos	0.003/0.009		N/A	ND	PASS
Etofenprox	0.014/0.042	≥LOQ	N/A	ND	PASS
Etoxazole	0.007/0.020	≥LOQ	N/A	ND	PASS

Continued on next page

SC Laboratories California LLC. | 100 Pioneer Street, Suite E, Santa Cruz, CA 95060 | (866) 435-0709 | sclabs.com | CDPHE Certified | ISO/IES 17025:2017 PJLA Accreditation Number 87168 © 2022 SC Labs all rights reserved. Trademarks referenced are trademarks of either SC Labs or their respective owners. MKT0002 REV9 2/22 CoA ID: 221001H003-001 Page 4 of 8

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Pesticide Analysis Continued

PESTICIDE TEST RESULTS - 10/03/2022 continued 🔗 PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (µg/g)	RESULT (µg/g)	RESULT
Etridiazole*	0.002/0.005	0.15	N/A	ND	PASS
Fenhexamid	0.003/0.008	≥LOQ	N/A	ND	PASS
Fenoxycarb	0.003/0.010	0.01	N/A	ND	PASS
Fenpyroximate	0.007/0.020	≥LOQ	N/A	ND	PASS
Fensulfothion	0.003/0.010	0.01	N/A	ND	PASS
Fenthion	0.003/0.010	0.01	N/A	ND	PASS
Fenvalerate	0.033/0.099	≥LOQ	N/A	ND	PASS
Fipronil	0.003/0.010	0.01	N/A	ND	PASS
Flonicamid	0.007/0.022	0.025	N/A	ND	PASS
Fludioxonil	0.003/0.010	0.01	N/A	ND	PASS
Fluopyram	0.003/0.009	0.01	N/A	ND	PASS
Hexythiazox	0.003/0.010	≥LOQ	N/A	ND	PASS
Imazalil	0.003/0.009	0.01	N/A	ND	PASS
Imidacloprid	0.003/0.010	0.01	N/A	ND	PASS
Iprodione	0.077/0.233	0.5	N/A	ND	PASS
Kinoprene	0.077/0.233	1.25	N/A	ND	PASS
Kresoxim-methyl	0.006/0.019	0.15	N/A	ND	PASS
λ -Cyhalothrin	0.068/0.206	≥LOQ	N/A	ND	PASS
Malathion	0.003/0.009	0.01	N/A	ND	PASS
Metalaxyl	0.003/0.010	0.01	N/A	ND	PASS
Methiocarb	0.003/0.008	0.01	N/A	ND	PASS
Methomyl	0.008/0.025	0.025	N/A	ND	PASS
Methoprene	0.172/0.521	≥LOQ	N/A	ND	PASS
Mevinphos	0.008/0.024	0.025	N/A	ND	PASS
MGK-264	0.01 <mark>5 / 0.047</mark>	≥LOQ	N/A	ND	PASS
Myclobutanil	0.0 <mark>03 / 0.009</mark>	0.01	N/A	ND	PASS
Naled	0.021 / 0.064	≥LOQ	N/A	ND	PASS
Novaluron	0.002/0.005	0.025	N/A	ND	PASS
Oxamyl	0.017/0.051	1.5	N/A	ND	PASS
Paclobutrazol	0.003/0.010	0.01	N/A	ND	PASS
Parathion-methyl	0.016/0.050	≥LOQ	N/A	ND	PASS
Pentachloronitrobenzene*	0.004/0.012	≥LOQ	N/A	ND	PASS
Permethrin	0.056 / 0.168	≥LOQ	N/A	ND	PASS
Phenothrin	0.016/0.047	≥LOQ	N/A	ND	PASS
Phosmet	0.007/0.020	≥LOQ	N/A	ND	PASS
Piperonyl Butoxide	0.010/0.029	1.25	N/A	ND	PASS
Pirimicarb	0.003/0.009	0.01	N/A	ND	PASS
Prallethrin	0.015/0.046	≥LOQ	N/A	ND	PASS
Propiconazole	0.027/0.080	≥LOQ	N/A	ND	PASS
Propoxur	0.003/0.008	0.01	N/A	ND	PASS
Pyraclostrobin	0.003/0.010	0.01	N/A	ND	PASS

Continued on next page

SC Laboratories California LLC. | 100 Pioneer Street, Suite E, Santa Cruz, CA 95060 | (866) 435-0709 | sclabs.com | CDPHE Certified | ISO/IES 17025:2017 PJLA Accreditation Number 87168 © 2022 SC Labs all rights reserved. Trademarks referenced are trademarks of either SC Labs or their respective owners. MKT0002 REV9 2/22 CoA ID: 221001H003-001 Page 5 of 8

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Pesticide Analysis Continued

PESTICIDE TEST RESULTS - 10/03/2022 continued 🔗 PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (µg/g)	RESULT (µg/g)	RESULT
Pyrethrins	0.016/0.049	≥LOQ	N/A	ND	PASS
Pyridaben	0.005/0.017	0.02	N/A	ND	PASS
Pyriproxyfen	0.003/0.009	≥LOQ	N/A	ND	PASS
Resmethrin	0.013/0.039	0.05	N/A	ND	PASS
Spinetoram	0.003/0.010	0.01	N/A	ND	PASS
Spinosad	0.003/0.010	0.01	N/A	ND	PASS
Spirodiclofen	0.031/0.093	≥LOQ	N/A	ND	PASS
Spiromesifen	0.016/0.050	≥LOQ	N/A	ND	PASS
Spirotetramat	0.003/0.010	0.01	N/A	ND	PASS
Spiroxamine	0.020/0.062	≥LOQ	N/A	ND	PASS
Tebuconazole	0.003/0.010	0.01	N/A	ND	PASS
Tebufenozide	0.003/0.008	0.01	N/A	ND	PASS
Teflubenzuron	0.007/0.022	0.025	N/A	ND	PASS
Tetrachlorvinphos	0.003/0.008	0.01	N/A	ND	PASS
Tetramethrin	0.021/0.063	≥LOQ	N/A	ND	PASS
Thiabendazole	0.006 / 0.020	≥LOQ	N/A	ND	PASS
Thiacloprid	0.003/0.009	0.01	N/A	ND	PASS
Thiamethoxam	0.003/0.010	0.01	N/A	ND	PASS
Thiophanate-methyl	0.013/0.040	≥LOQ	N/A	ND	PASS
Trifloxystrobin	0.003/0.009	0.01	N/A	ND	PASS

Mycotoxin Analysis

Mycotoxin analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS).

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS

MYCOTOXIN TEST RESULTS - 10/03/2022 O PASS

COMPOUND	LOD/LOQ (µg/kg)	ACTION LIMIT (µg/kg)	MEASUREMENT UNCERTAINTY (μg/kg)	RESULT (µg/kg)	RESULT
Aflatoxin B1	1.6 <mark>/ 5.0</mark>	5	N/A	ND	PASS
Aflatoxin B2	1. <mark>4 / 4.1</mark>		N/A	ND	
Aflatoxin G1	<mark>1.6 / 4.9</mark>		N/A	ND	
Aflatoxin G2	1.6/5.0		N/A	ND	
Total Aflatoxin		20		ND	PASS
Ochratoxin A	1.6 / 5.0	5	N/A	ND	PASS

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Residual Solvent analysis utilizing gas chromatography-mass spectrometry (GC-MS).

Method: QSP 1204 - Analysis of Residual Solvents by GC-MS

Total Butanes = n-Butane + 2-Methylpropane (Isobutane) Total Heptanes = 2,2-Dimethylpentane (Neoheptane) + 2,3-Dimethylpentane + 2,4-Dimethylpentane + 3,3-Dimethylpentane + 2,2,3-Trimethylbutane (Triptane) + 2-Methylhexane (Isoheptane) + 3-Methylhexane + 3-Ethylpentane + n-Heptane Total Xylenes = 1,2-Dimethylbenzene (o-Xylene) +

1,3-Dimethylbenzene (m-Xylene) / 1,4-Dimethylbenzene (p-Xylene)

RESIDUAL SOLVENTS TEST RESULTS - 10/04/2022 🔗 PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (µg/g)	RESULT
Propane	0.234 / 0.781	1000	N/A	ND	PASS
2-Methylpropane (Isobutane)	0.052/0.173		N/A	ND	
n-Butane	0.019/0.063		N/A	ND	
Total Butanes		1000		ND	PASS
n-Pentane	0.310/1.033	1000	N/A	ND	PASS
n-Hexane	0.110/0.366	60	N/A	ND	PASS
2,2-Dimethylpentane (Neoheptane)	0.493 / 1.642		N/A	ND	
2,3-Dimethylpentane	1.009/3.365		N/A	ND	
2,4-Dimethylpentane	0.737/2.458		N/A	ND	
3,3-Dimethylpentane	0.198/0.660		N/A	ND	
2,2,3-Trimethylbutane (Triptane)	0.521 / 1.738		N/A	ND	
2-Methylhexane (Isoheptane)	0.610/2.034		N/A	ND	
3-Methylhexane	0.235 / 0.785		N/A	ND	
3-Ethylpentane	0.304 / 1.012		N/A	ND	
n-Heptane	13.12/43.72		N/A	ND	
Total Heptanes		1000		ND	PASS
Benzene	0.089/0.295	2	N/A	ND	PASS
Toluene	0.115/0.382	180	N/A	ND	PASS
1,3-Dimethylbenzene / 1,4-Dimethylbenzene	0.451 / 1.502		N/A	ND	
1,2-Dimethylbenzene (o-Xylene)	0.387 / 1.289		N/A	ND	
Total Xylenes		430		ND	PASS
Methanol	5.534 <mark>/ 16.77</mark>	600	N/A	ND	PASS
Ethanol	8.9 <mark>84 / 27.23</mark>	1000	N/A	ND	PASS
2-Propanol (Isopropyl Alcohol)	8.421 / 25.52	1000	N/A	ND	PASS
Acetone	9.510/28.82	1000	N/A	ND	PASS

Heavy Metals Analysis

Heavy metal analysis utilizing inductively coupled plasma-mass spectrometry (ICP-MS).

Method: QSP 1160 - Analysis of Heavy Metals by ICP-MS

HEAVY METALS TEST RESULTS - 10/07/2022 O PASS

COMPOUND	L <mark>OD/LOQ</mark> (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (µg/g)	RESULT (µg/g)	RESULT
Arsenic	0.0 <mark>2 / 0.1</mark>	1.5	N/A	ND	PASS
Cadmium	0.02 / 0.0 <mark>5</mark>	0.5	N/A	ND	PASS
Lead	0.04/0.1	0.5	N/A	<loq< th=""><th>PASS</th></loq<>	PASS
Mercury	0.002/0.01	1.5	N/A	ND	PASS

STRATOS 1000 CBD FULL SPECTRUM | DATE ISSUED 10/07/2022

Microbiology Analysis

PCR AND PLATING

Analysis conducted by polymerase chain reaction (PCR) and fluorescence detection of microbiological contaminants.

Method: QSP 1221 - Analysis of Microbiological Contaminants

MICROBIOLOGY TEST RESULTS (PCR) - 10/05/2022 🔗 PASS

COMPOUND	ACTION LIMIT (cfu/g)	RESULT (cfu/g)	RESULT
Shiga toxin-producing Escherichia coli	Not Detected in 1g	ND	PASS
Salmonella spp.	Not Detected in 1g	ND	PASS
Listeria monocytogenes		ND	
Bile-Tolerant Gram-Negative Bacteria		ND	

Analysis conducted by $3M^{{\rm TM}}$ Petrifilm^{{\rm TM}} and plate counts of microbiological contaminants.

Method: QSP 6794 - Plating with 3M[™] Petrifilm[™]

MICROBIOLOGY TEST RESULTS (PLATING) - 10/05/2022 O PASS

COMPOUND	ACTION LIMIT (cfu/g)	RESULT (cfu/g)	RESULT
Total Aerobic Bacteria	10000	ND	PASS
Total Yeast and Mold	1000	ND	PASS
Coliforms	100	ND	PASS