

Accredited for compliance with ISO17034 and ISO/IEC17025. This document shall not be reproduced except in full. Accreditation Number: 20126

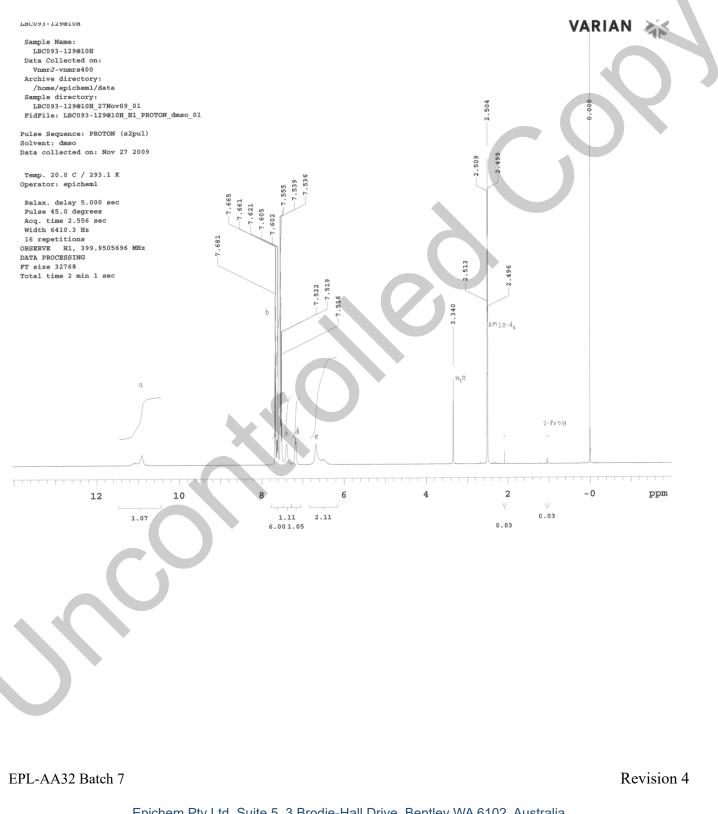
NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of reference materials certificates.

D C					
	ence Material Product Information Sheet				
Epichem's Quality System confe	orms to ISO9001:2015 as certified by ECAAS Pty Ltd - Certification number 616061.				
	$ \begin{array}{c} $				
Name	(2-amino-1 <i>H</i> -benzimidazol-5-yl)(phenyl)methanone				
BP/EP Name	Mebendazole Impurity A				
Synonym(s)	2-amino-5-benzoylbenzimidazole				
Epichem Item #	EPL-AA32 Batch 7				
CAS #	52329-60-9				
Molecular Formula	C14H11N3O				
Molecular Weight	237.26 g/mol				
Appearance	Off-white powder				
Melting Point	193.6-196.2°C (decomposition)				
Combustion Analysis	Required (%): C:70.9; H:4.7; N:17.7. Found (%): C:71.1; H:4.8; N:17.9.				
Purity*	99.4%				
Date of Manufacture	27 November 2009				
Storage Requirements	Protect from heat, light and moisture.				
Special Precautions	This compound is for laboratory use only. Its toxicological properties may not				
-	have been fully established. It should be handled only by suitably qualified personnel.				
Intended Use	This compound is suitable for the identification of impurities and degradants in pharmaceutical materials. The purity assay is considered as relative contribution.				
Date of Shipment	TBA This certificate is valid for one year from the date of shipment provided the substance is stored under the recommended conditions.				
Retest Date	TBA (Proper Storage and Handling Required)				

* NATA accreditation does not cover the performance of this service

Revision 4

 Epichem Pty Ltd, Suite 5, 3 Brodie-Hall Drive, Bentley WA 6102, Australia

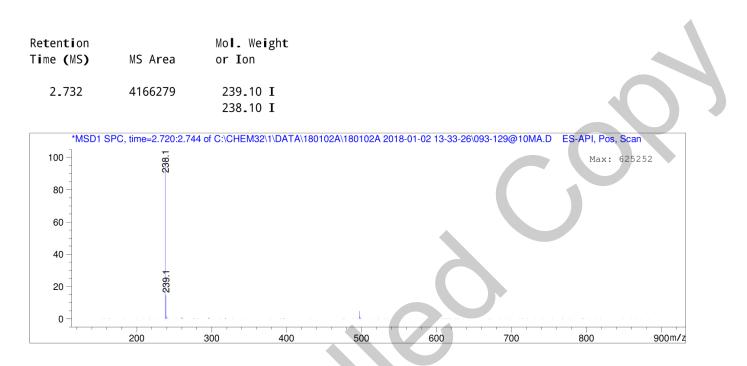

 Tel + 61 (0)8 6167 5200
 Fax + 61 (0)8 6167 5201
 www.epichem.com.au
 ABN 80 106 769 902

I. Identity

The identity of this product was established using the following analyses:

Ia. ¹HNMR Spectrum

Conditions: 400 MHz, DMSO-d₆ ¹HNMR spectrum consistent with chemical structure.


 Epichem Pty Ltd, Suite 5, 3 Brodie-Hall Drive, Bentley WA 6102, Australia

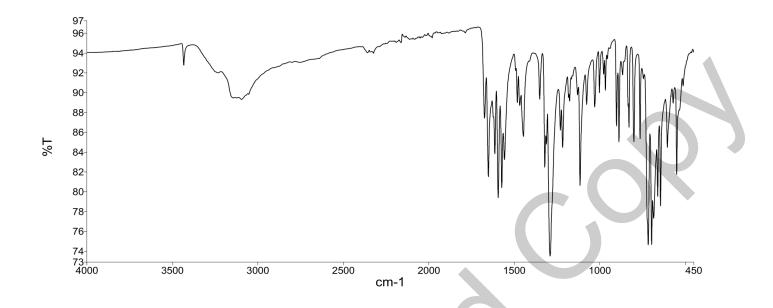
 Tel + 61 (0)8 6167 5200
 Fax + 61 (0)8 6167 5201
 www.epichem.com.au
 ABN 80 106 769 902

Ib. Mass Spectrum

The mass spectrum of this material was analysed by Liquid Chromatography Mass Spectroscopy (LCMS) using in-house EM005.WI08.

Method: 5% to 100% ACN in water gradient (+0.1% formic acid) Zorbax Eclipse XDB-C8, 3.0 x 100 mm, 3.5 micron

Theoretical value: 238.1 [M+H]+.


The signal of the Mass Spectrum is consistent with the theoretical value and its interpretation is consistent with the structural formula.

EPL-AA32 Batch 7

Revision 4

Ic. IR Spectrum

The infra-red spectrum of this material was analysed by Fourier-Transform Infrared Spectroscopy (FTIR) using in-house EM005.WI09.

The interpretation of the signals of the Fourier-Transform Infrared Spectrum is consistent with the structural formula.

EPL-AA32 Batch 7

Revision 4

II. Purity

The purity of this material was analysed by high performance liquid chromatography (HPLC) using inhouse EM005.WI07.

HPLC Conditions:

C C e % Line A (Water + n) 0.1% (v/v) TFA) 0 90 0 60 0 5 0 5 0 90 0 5 0 90 0 90 0 90 0 90	% Line B (Acetonitrile + 0.1% (v/v) TFA) 10 40 95 95 10 10 10	Flow rate (mL/min) 1.0 1.0 1.0 1.0 1.0 1.0	DAD 293nm	Auto 1.0 μL 0.30 mg/mL in 50% acetonitrile 50% water (+0.1% TFA)
n) 0.1% (v/v) TFA) 0) 90 0) 60 0) 5 0) 5 0) 90 0) 5 0) 90 0) 90 0) 90 0) 90 0) 90 0) 90 4EM32/TA\221115A\221115A 2022-11-1	+ 0.1% (v/v) TFA) 10 40 95 95 10 10	(mL/min) 1.0 1.0 1.0 1.0 1.0	293nm	0.30 mg/mL in 50% acetonitrile 50% water
0 90 0 60 0 5 0 5 0 90 0 90 4EM32LTA\221115A\221115A 2022-11-1	10 40 95 95 10 10	1.0 1.0 1.0 1.0 1.0		50% acetonitrile 50% water
0 60 0 5 0 5 0 90 0 90	40 95 95 10 10	1.0 1.0 1.0 1.0		50% acetonitrile 50% water
0 5 0 5 0 90 0 90 HEM32\TA\221115A\221115A 2022-11-1	95 95 10 10	1.0 1.0 1.0		50% water
0 5 0 90 0 90 HEM32\TA\221115A\221115A 2022-11-1	95 10 10	1.0 1.0		
0 90 0 90	10 10	1.0		
0 90 HEM32\TA\221115A\221115A 2022-11-1	10			
ieM32\TA\221115A\221115A 2022-11-1		1.0		
5.301)		
	10			
5				
4.748 5.769 6.769 6.056	8.585			
4 6	8 10	12	14	16 18 min
			- I Y C Y I C C I L C Y Y I C C Y Y C C Y	· [x c x] x c c [x x x] c c x 1 c x x [x x x x

EPL-AA32 Batch 7

Revision 4

 Epichem Pty Ltd, Suite 5, 3 Brodie-Hall Drive, Bentley WA 6102, Australia

 Tel + 61 (0)8 6167 5200
 Fax + 61 (0)8 6167 5201
 www.epichem.com.au
 ABN 80 106 769 902

Area Percent Report – Sorted by Signal

Peak Number	Retention Time (rounded)	Area	Area % (rounded)
1	3.27	0.25	0.03
2	4.75	0.08	0.01
3	5.30	809.82	99.66
4	5.77	0.16	0.02
5	6.06	1.94	0.24
6	7.67	0.15	0.02
7	8.58	0.13	0.02
8	10.23	0.03	0.00
Totals			100 (rounded)

For the calculation the system peaks were ignored. The content of the analyte was determined as a ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100%.

Results:

Average

99.7% (average of 10 duplicate runs)

EPL-AA32 Batch 7

Revision 4

III. Water Content

Method: Karl-Fischer titration using in-house EM005.WI04. **Results:** Average 0.1%

IV. Ash Content

Method: Combustion adjuvant added. **Result:** Contains 0.1% ash.

V. Residual Solvents

Method: ¹HNMR **Result:** Contains 0.1% Isopropanol by ¹H NMR analysis.

VI. Final Result

Chromatographic purity (HPLC)	99.7%	
Water content	0.1%	
Ash content	0.1%	
Residual solvents	0.1%	
Purity*	99.4%	

This purity is assessed to be 99.4%.

Product Reviewed By:

Product Released By:

Jacob Heppell, PhD Chemist Carol Worth, PhD Quality Manager Release Date: 18 November 2022

**NATA accreditation does not cover the performance of this service.* The calculation of the purity follows the formula:

 $Purity(\%) = \frac{((Chromatographicpurity[HPLC])x(100 - (watercontent + ashcontent + volatilecontents)))}{100}$

100

EPL-AA32 Batch 7

Revision 4