RS-232 Protocol Specifications For all known scale products

Type 1: Toledo

W = 57	<stx> = 02</stx>	$<\!\!CR\!\!> = 0D$? = 3F
Register		Scale	Action
W	>		The register requests the weight from the scale.
<	<stx> X₁X₂X</stx>	₃ X ₄ X ₅ <cr></cr>	If (Weight \neq 0) && (Weight > 0) && (Weight <= Capacity + 9 divisions) && (Weight is Stable) then: The scale transmits the weight in 7 bytes where <stx> is the first byte, x_1 is the 2nd byte and represents the MSD (Most Significant Digit) of the weight value, etc, x_5 is the 6th byte and represents the LSD (Least Significant Digit) of the weight, and <cr> is the 7th and final byte. In this protocol the register decides the decimal place and units (lb or kg.) Must use leading zeros whenever necessary.</cr></stx>
<	<stx> ? Y₁</stx>	<cr></cr>	Else:
			The scale transmits a status response in 4 bytes where <stx> is the first byte, 3F is the 2nd byte, Y₁ is the 3rd byte and represents the status byte, and <cr> is the 4th and final byte. <i>End if</i></cr></stx>

Status Byte Definition:

Definition	Hex	ASCII Text	Binary
Motion	Y ₁ = 61	а	01100001
Scale at ZERO	Y ₁ = 70	р	01110000
Weight < 0	Y ₁ = 64	d	01100100
Weight > Capacity	Y ₁ = 62	b	01100010
Weight < 0 & Motion	Y ₁ = 65	е	01100101
Weight > Capacity & Motion	Y ₁ = 63	С	01100011

Status Byte Formation					
Bit	Description				
Bit 7 (MSB)	Parity Bit.				
Bit 6	(Not used.)	Always = 1.			
Bit 5	Net Weight Bit.	Gross = 0, Net = 1.			
Bit 4	Zero Bit.	Zero = 1, Not Zero = 0.			
Bit 3	Outside Zero Range Bit.	Within = 0, Outside = 1.			
Bit 2	Negative Weight Bit.	Negative = 1, Non-Negative = 0.			
Bit 1	Overload Bit.	Overload = 1, Non-Overload = 0.			
Bit 0 (LSB)	Motion Bit.	Motion = 1, Stable = 0 .			

Example 1:

If weight is 21.30 lb and the scale is stable, it will transmit the following 7 bytes:

02	30	32	31	33	30	0D
<stx></stx>	0	2	1	3	0	<cr></cr>

Example 2:

If weight is unstable, it will transmit the following 4 bytes:

02	3F	61	0D
<stx></stx>	?	а	<cr></cr>

Type 2: NCI-ECR

$W = 57 \quad \langle CR \rangle = 0D \quad \langle LF \rangle = 0A \quad L = 4C \quad B = 42 \quad K = 4B \quad G = 47 \quad S = 53 \quad \langle ETX \rangle = 03 \quad . = 2E$

Register	Scale	Action	
W	>	The register requests the weight from the scale by sending a W followed by a <cr>.</cr>	
< <lf> X1X2X</lf>	X ₃ X ₄ X ₅ X ₆ U ₁ U ₂ <cr></cr>	<lf> $S_1S_2S_3$ <cr> <etx> The scale always responds to a valid request. The scale transmits the weight in 16 bytes where:</etx></cr></lf>	

<LF> is the first byte.

 \mathbf{x}_1 to \mathbf{x}_6 are bytes 2 thru 7 and represent the weight value **including the decimal point.** Therefore, a weight of 3.02 will be 003.02 = \mathbf{x}_1 to \mathbf{x}_6 , or a weight of 3.002 will be 03.002 = \mathbf{x}_1 to \mathbf{x}_6 .

 u_1 to u_2 are bytes 8 & 9 and represent the unit. For pounds $u_1 = 4C = "L"$ and $u_2 = 42 = "B"$; for kilos $u_1 = 4B = "K"$ and $u_2 = 47 = "G"$.

<CR> is the 10th byte.

<LF> is the 11th byte.

 s_1 is the 12th byte and is always $s_1 = 53 = "S"$.

 s_2 to s_3 are the 13th & 14th bytes. They form the status word.

<CR> is the 15th byte.

<ETX> is the 16th byte.

Status Word Definition:

Definition	Hex	ASCII String S ₂ S ₃
OK (Stable)	$S_2 = 30, S_3 = 30$	"00"
Motion	$S_2 = 31, S_3 = 30$	"10"
Scale at ZERO	$S_2 = 32, S_3 = 30$	"20"
Weight < 0	$S_2 = 30, S_3 = 31$	"01"
Weight > Capacity	$S_2 = 30, S_3 = 32$	"02"
Motion & Weight < 0*	$S_2 = 31, S_3 = 30$	"11"
Motion & Weight > Capacity*	$S_2 = 31, S_3 = 30$	"12"

Note*: Whenever the Weight > Max Capacity + 9 divisions then the scale must transmit a "zero" weight value. This is 0.00 or 0.000 or whatever the "zero" weight needs to be for that scale's capacity/resolution/unit setting.

Bit	s ₂ Bit Description	s ₃ Bit Description
7 (MSB)	Parity Bit.	Parity Bit.
6	(Not used) Always = 0.	(Not used) Always = 0.
5	(Not used) Always = 1.	(Not used) Always = 1.
4	(Not used) Always = 1.	(Not used) Always = 1.
3	(Not used) Always = 0.	(Not used) Always = 0.
2	(Not used) Always = 0.	(Not used) Always = 0.
1	Zero Bit: Zero = 1, Non-Zero = 0.	Overload Bit: Overload = 1, Non-Overload = 0.
0 (LSB)	Motion Bit: Motion = 1, Stable = 0.	Negative Weight Bit: Negative = 1, Non-Negative = 0.

Example:

If weight is 21.30 lb and the scale is **Stable**, it will transmit the following 16 bytes:

0A	30	32	31	2E	33	30	4C	42	0D	0A	53	30	30	0D	03
<lf></lf>	0	2	1		3	0	L	В	<cr></cr>	<lf></lf>	S	0	0	<cr></cr>	<etx></etx>

Type 3: NCI-General

 $W = 57 \quad \langle CR \rangle = 0D \quad \langle LF \rangle = 0A \quad L = 4C \quad B = 42 \quad K = 4B \quad G = 47 \quad \langle ETX \rangle = 03 \quad . = 2E$

Register	Scale	Action
W> <cr>></cr>		The register requests the weight from the scale by sending a W followed by a <cr></cr>
< <lf> X₁X₂X₃X₄X₅X</lf>	₆ U ₁ U ₂ <cr></cr>	<pre><lf> S_1S_2 <cr> <etx> The scale always responds to a valid request. The scale transmits the weight in 15 bytes where:</etx></cr></lf></pre>

<LF> is the first byte.

 \mathbf{x}_1 to \mathbf{x}_6 are bytes 2 thru 7 and represent the weight value **including the decimal point.** Therefore, a weight of 3.02 will be 003.02 = \mathbf{x}_1 to \mathbf{x}_6 , or a weight of 3.002 will be 03.002 = \mathbf{x}_1 to \mathbf{x}_6 .

 u_1 to u_2 are bytes 8 & 9 and represent the unit. For pounds $u_1 = 4C = "L"$ and $u_2 = 42 = "B"$; for kilos $u_1 = 4B = "K"$ and $u_2 = 47 = "G"$.

<CR> is the 10th byte.

<LF> is the 11th byte.

 s_1 to s_2 are the 12th & 13th bytes. They form the status word.

<CR> is the 14th byte.

<ETX> is the 15th byte.

Status Word Definition:

Definition	Hex	ASCII String S2S3
OK (Stable)	$S_2 = 30, S_3 = 30$	"00"
Motion	$S_2 = 31, S_3 = 30$	"10"
Scale at ZERO	$S_2 = 32, S_3 = 30$	"20"
Weight < 0	$S_2 = 30, S_3 = 31$	"01"
Weight > Capacity*	$S_2 = 30, S_3 = 32$	"02"
Motion & Weight < 0	$S_2 = 31, S_3 = 30$	"11"
Motion & Weight > Capacity*	$S_2 = 31, S_3 = 30$	"12"

Note*: Whenever the Weight > Max Capacity + 9 divisions then the scale must transmit a "zero" weight value. This is 0.00 or 0.000 or whatever the "zero" weight needs to be for that scale's capacity/resolution/unit setting.

Bit	s ₁ Bit Description	s ₂ Bit Description
7 (MSB)	Parity Bit.	Parity Bit.
6	(Not used) Always = 0.	(Not used) Always = 0.
5	(Not used) Always = 1.	(Not used) Always = 1.
4	(Not used) Always = 1.	(Not used) Always = 1.
3	(Not used) Always = 0.	(Not used) Always = 0.
2	(Not used) Always = 0.	(Not used) Always = 0.
1	Zero Bit: Zero = 1, Non-Zero = 0.	Overload Bit: Overload = 1, Non-Overload = 0.
0 (LSB)	Motion Bit: Motion = 1, Stable = 0.	Negative Weight Bit: Negative = 1, Non-Negative = 0.

Example:

If weight is 11.300 kg and the scale is **Stable**, it will transmit the following 15 bytes:

0A	31	31	2E	33	30	30	4B	47	0D	0A	30	30	0D	03
<lf></lf>	1	1	•	3	0	0	К	G	<cr></cr>	<lf></lf>	0	0	<cr></cr>	<etx></etx>

RS-232 Protocol Specifications For all known scale products

Type 4: TEC

<ENQ> = 05, <ACK> = 06, <NAK> = 15, <BEL> = 07, <DC1> = 11, <DC2> = 12, <STX> = 02, <ETX> = 03, = 7F, <NUL> = 00

Register	Scale	Action
<enq></enq>	>	1) The register establishes communications by sending <enq>.</enq>
<	<ack></ack>	 If (Weight is stable) then The scale will transmit <ack>.</ack>
<	<bel></bel>	Else The scale will transmit <bel>. Go back to step 1.</bel>
		End If
<dc2></dc2>	>	3) The register requests the weight by sending <dc2>.</dc2>4) Scale will transmit the following 9 bytes:
<	<stx></stx>	Start of text.
<	<id></id>	Identification byte defined bellow.
<	<w<sub>5></w<sub>	MSD (Most significant digit) of weight data.
<	<w<sub>4></w<sub>	2 nd MSD (Most significant digit) of weight data.
<	<w<sub>3></w<sub>	3 rd MSD (Most significant digit) of weight data.
<	<w<sub>2></w<sub>	4 th MSD (Most significant digit) of weight data.
<	<w1></w1>	LSD (Least significant digit) of weight data.
<	<bcc></bcc>	Block check character defined below.
<	<etx></etx>	End of text.
<ack></ack>	>	 If (Register verified data correctly) then The register will transmit <ack>. Go back to step 1.</ack>
		Else Go back to step 1.

End If

		Identifier Byte Definition
<id></id>	ASCII Text	Description
7F		If (Weight < 0) OR (Weight > Max Capacity + 9 divisions) then <id> = 7F $W_5 = W_4 = W_3 = W_2 = W_1 = 30$; however, W_1 or W_5 can be <nul> sometimes (see below.) Else Follow the <id> codes below. End If</id></nul></id>
41	А	Not Used
42	В	Not Used
43	С	Not Used
44	D	Not Used
45	E	For 120 lb or 300 lb scales with 2 decimal places: Format 0.00 lb
46	F	Not Used
47	G	For 600 lb or 120 kg or 300 kg or 60 kg scales.

<BCC> Definition

The BCC character is formed by performing an XOR operation on the following 6 bytes: <ID>, W₅, W₄, W₃, W₂, and W₁

 $\langle BCC \rangle = \langle ID \rangle$ XOR W_5 XOR W_4 XOR W_3 XOR W_2 XOR W_1

See the examples below for the formation of the BCC character.

Example 1:

If weight is 250.05 lb, you are using a 300 x 0.05 lb scale, the scale is **Stable**, and F16 = Even, it will transmit the following 9 bytes:

02	45	32	35	30	30	35	77	03
<stx></stx>	<id></id>	2	5	0	0	5	<bcc></bcc>	<etx></etx>

Example 2:

If weight is 39.55 lb, you are using a 300 x 0.01 lb scale, the scale is **Stable**, and F16 = Even, it will transmit the following 9 bytes:

02	45	0	33	39	35	35	4F	03
<stx></stx>	<id></id>	<nul></nul>	3	9	5	5	<bcc></bcc>	<etx></etx>

Example 3:

If weight is -5.01 lb, you are using a 300 x 0.05 lb scale, the scale is **Stable**, and F16 = Even, it will transmit the following 9 bytes:

02	7F	30	30	30	30	30	4F	03
<stx></stx>	<id></id>	0	0	0	0	0	<bcc></bcc>	<etx></etx>

Type 5: Easy Weigh Protocol

Register	Scale	Action
R	>	The register requests the Raw A/D Counts from the scale.
< <s'< td=""><td>TX> X₁X₂X₃X₄X₅X₆ <cr></cr></td><td>The scale transmits the Raw A/D Counts in 8 bytes where <stx> is the first byte, x_1 is the 2nd byte and represents the MSD (Most Significant Digit) of the data, etc, x_6 is the 7th byte and represents the LSD (Least Significant Digit) of the data, and <cr> is the 8th and final byte. The Raw A/D Counts are like the counts displayed in F9 CAL mode.</cr></stx></td></s'<>	TX> X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ <cr></cr>	The scale transmits the Raw A/D Counts in 8 bytes where <stx> is the first byte, x_1 is the 2nd byte and represents the MSD (Most Significant Digit) of the data, etc, x_6 is the 7th byte and represents the LSD (Least Significant Digit) of the data, and <cr> is the 8th and final byte. The Raw A/D Counts are like the counts displayed in F9 CAL mode.</cr></stx>

Example:

If the Raw A/D counts are 22,130 counts then it will transmit the following 8 bytes:

02	30	32	32	31	33	30	0D
<stx></stx>	0	2	2	1	3	0	<cr></cr>

```
F---->
```

The register requests All Displays Data from the scale.

 $<---- < STX > W_1 W_2 W_3 W_4 W_5 W_6 W_7 \ Z_1 Z_2 \ U_1 U_2 U_3 U_4 U_5 U_6 U_7 \ X_1 X_2 X_3 X_4 X_5 X_6 X_7 \ T_1 T_2 T_3 T_4 T_5 T_6 T_7 \ P_1 P_2 P_3 P_4 P_5 P_6 < CR > 0$

The scale transmits the data in 38 bytes where: <STX> is the 1st byte W_1 to W_7 are the 2nd to 8th bytes and represent the Weight value Z_1 to Z_2 are the 9th and 10th bytes and are either "LB" or "KG"

 Z_1 to Z_2 are the 9th and 10th bytes and are either "LB" or "KG" U_1 to U_7 are the 11th to 17th bytes and represent the Unit Price X_1 to X_7 are the 18th to 24th bytes and represent the Total Price T_1 to T_7 are the 25th to 31st bytes and represent the Tare P_1 to P_6 are the 32nd to 37th bytes and represent the PLU Number <CR> is the 38th byte

Example:

If the Weight = 22.005 lb, Unit Price = \$1.99, Total Price = \$43.79, Tare = 0.010, and the PLU Number = 4, then it will transmit the following 38 bytes:

02	30	32	32	2E	30	30	35	4C	42	30	30	30	31	2E	39	39	30	30	34	33	2E	37	39	30	30	30	2E	30	31	30	30	30	30	30	30	34	0D
<stx></stx>	0	2	2	•	0	0	5	L	В	0	0	0	1		9	9	0	0	4	3	•	7	9	0	0	0	•	0	1	0	0	0	0	0	0	4	<cr></cr>

Note: If you are not using a PLU or Speed Key on the scale, then the PLU Number = 0.

<dc1>></dc1>	The register requests the CZP data from the scale. This is the Raw A/D
	counts with no load on the scale.
< <stx> X₁X₂X₃X₄X₅X₆ <cr></cr></stx>	The scale transmits the CZP in 8 bytes where $\langle STX \rangle$ is the first byte, x_1 is the 2 nd byte and represents the MSD (Most Significant Digit) of the data, etc, x_6 is the 7 th byte and represents the LSD (Least Significant Digit) of the data, and $\langle CR \rangle$ is the 8 th and final byte.

Example:

If the CZP is 2,542 counts then it will transmit the following 8 bytes:

02	30	30	32	35	34	32	0D
<stx></stx>	0	0	2	5	4	2	<cr></cr>

RS-232 Protocol Specifications For all known scale products

<DC2>---->

<---- <STX> X1X2X3X4X5X6 <CR>

The register requests the CSP data from the scale. This is the Calibrated Span Point of the scale and is expressed as the Raw A/D counts with the full capacity load on the scale. The CSP should not be Zero Adjusted. The scale transmits the CSP in 8 bytes where $\langle STX \rangle$ is the first byte, x_1 is

the 2nd byte and represents the MSD (Most Significant Digit) of the data, etc, x_6 is the 7th byte and represents the LSD (Least Significant Digit) of the data, and <CR> is the 8th and final byte.

Example:

If the CSP is 202,542 counts then it will transmit the following 8 bytes:

02	32	30	32	35	34	32	0D								
<stx></stx>	2	0	2	5	4	2	<cr></cr>								
<dc3> < <stx> X</stx></dc3>		ζ ₄ X ₅ X ₆	> <cr></cr>	ACK> 	>	Th Th is etc da Th sc	The register requests to set the CZP data from the scale. The scale transmits the <ack>. The register transmits the CZP in 8 bytes where <stx> is the first byte, x_1 is the 2nd byte and represents the MSD (Most Significant Digit) of the data, etc, x_6 is the 7th byte and represents the LSD (Least Significant Digit) of the data, and <cr> is the 8th and final byte. The scale transmits the <ack> if the CZP was stored and accepted by the scale; otherwise, it will transmit a <nak>.</nak></ack></cr></stx></ack>								
<dc4> < <stx> X</stx></dc4>			> <cr></cr>	ACK> 	>	Th Th is etc da Th sc	e register the scale tra- the 2 nd by c, x_6 is the ta, and <0 te scale tra- ale; otherv	requests to set the CSP data from the scale. ansmits the <ack>. transmits the CSP in 8 bytes where <stx> is the first byte, x_1 te and represents the MSD (Most Significant Digit) of the data, 7th byte and represents the LSD (Least Significant Digit) of the CR> is the 8th and final byte. ansmits the <ack> if the CSP was stored and accepted by the vise, it will transmit a <nak>.</nak></ack></stx></ack>							
Z <	 STX>	> X ₁ X ₂ X	3X4X5	X ₆ <c₽< td=""><td>2></td><td colspan="9">The register requests the ZP data from the scale. This is the current Ze Point of the scale. The scale transmits the ZP in 8 bytes where $\langle STX \rangle$ is the first byte, x_1 the 2nd byte and represents the MSD (Most Significant Digit) of the dat etc, x_6 is the 7th byte and represents the LSD (Least Significant Digit) of the data, and $\langle CR \rangle$ is the 8th and final byte.</td></c₽<>	2>	The register requests the ZP data from the scale. This is the current Ze Point of the scale. The scale transmits the ZP in 8 bytes where $\langle STX \rangle$ is the first byte, x_1 the 2 nd byte and represents the MSD (Most Significant Digit) of the dat etc, x_6 is the 7 th byte and represents the LSD (Least Significant Digit) of the data, and $\langle CR \rangle$ is the 8 th and final byte.									
s <		>	<p< td=""><td>ACK></td><td></td><td colspan="8">The register requests the scale to Zero itself. This is like pressing the Zero key on the scale. Doing this will change the current Zero Point of the scale. The scale transmits the <ack> if the Re-Zero was accepted by the scale otherwise, it will transmit a <nak>.</nak></ack></td></p<>	ACK>		The register requests the scale to Zero itself. This is like pressing the Zero key on the scale. Doing this will change the current Zero Point of the scale. The scale transmits the <ack> if the Re-Zero was accepted by the scale otherwise, it will transmit a <nak>.</nak></ack>									
<eot></eot>			>			Th	e register	sends the command to quit Continuous data transfer.							
<			< <i>I</i>	ACK>		The scale transmits the <ack>.</ack>									

W---->

The register requests Continuous Weight data from the scale.

<---- <STX> P1 W1W2W3W4W5W6 Z1Z2 S1<CR>

The scale transmits the data in 12 bytes once and then will continue to transmit data whenever the Weight display changes. It will do this until the scale receives a <EOT> which is the command to guit continuous data transfer.

<STX> is the 1st byte

 P_1 is the 2nd byte, is the sign of the Weight value, & can be 2B or 2D

 W_1 to W_6 are the 3rd to 8th bytes & is the displayed Weight with decimal point Z_1 to Z_2 are the 9th and 10th bytes and are either "LB" or "KG"

 s_1 is the 11th byte, is the Status byte of the scale (see below)

<CR> is the 12th byte

Definition	Hex	ASCII Text	Binary
Motion	Y ₁ = 61	а	01100001
Scale at ZERO	Y ₁ = 70	р	01110000
Weight < 0	Y ₁ = 64	d	01100100
Weight > Capacity	Y ₁ = 62	b	01100010
Weight < 0 & Motion	Y ₁ = 65	е	01100101
Weight > Capacity & Motion	Y ₁ = 63	С	01100011

Status Byte Formation				
Bit	Description			
Bit 7 (MSB)	Parity Bit.			
Bit 6	(Not used.)	Always = 1.		
Bit 5	Net Weight Bit.	Gross = 0, Net = 1.		
Bit 4	Zero Bit.	Zero = 1, Not Zero = 0.		
Bit 3	Outside Zero Range Bit.	Outside = 1, Within = 0.		
Bit 2	Negative Weight Bit.	Negative = 1, Non-Negative = 0.		
Bit 1	Overload Bit.	Overload = 1, Non-Overload = 0.		
Bit 0 (LSB)	Motion Bit.	Motion = 1, Stable = 0 .		

<stx> S</stx>	= 02 P = 5 = 53	< CR > = 0E	a $R = 52$ $L = 4C$ $B = 42$ $K = 4B$ $G = 47$ $. = 2E$ $\langle ETX \rangle = 03$ $0 = 30$ $1 = 31$
Registe	ər	Scale	Action
			PLU Programming: The PC sends 63 Bytes of programming data.
<stx></stx>	P N_1N_2 O	$R_1R_2R_3R_4R_5R_6$	$P_{1}P_{2}P_{3}P_{4}P_{5} U_{1}U_{2}U_{3}U_{4}U_{5}U_{6}U_{7} C_{1}C_{2}C_{3}C_{4}C_{5}C_{6} F_{1}F_{2} S_{1}S_{2}S_{3} T_{1} \sim T_{28} < ETX > > OR$
<stx></stx>	P N_1N_2 1	$Q_1Q_2Q_3Q_4Q_5Q_6$	$W_1W_2W_3W_4W_5 U_1U_2U_3U_4U_5U_6U_7 C_1C_2C_3C_4C_5C_6 F_1F_2 S_1S_2S_3 T_1 \sim T_{28} \langle ETX \rangle \rangle$
			P is the character "P", ASCII hex = 50 N_1N_2 is the PLU number in ASCII text, from 1 to 34 0 is the number 0, ASCII hex = 30, and represents a By-Weight PLU 1 is the number 1, ASCII hex = 31, and represents a By-Count PLU $R_1 \sim R_6$ is the Tare in ASCII text including the decimal point $Q_1 \sim Q_6$ is the Quantity in ASCII text $P_1 \sim P_6$ is the %Tare in ASCII text including the decimal point $W_1 \sim W_6$ is the Net Weight Statement in ASCII text $U_1 \sim U_7$ is the Unit Price or Price in ASCII text including the decimal point $C_1 \sim C_6$ is the UPC Code in ASCII text $F_1 \sim F_6$ is the UPC Format in ASCII text, 00 to 15 $S_1 \sim S_3$ is the Sell By Date in ASCII text, always 28 bytes Note: All numeric values must always use leading zeros and all text should use trailing <nul> characters.</nul>
<	<ack></ack>		The Scale Responds with: The scale transmits <ack> if it received the data and stored it</ack>
<	<nak></nak>		The scale transmits <nak> if there was a problem with the data.</nak>
			Store Name Programming: The PC sends 60 Bytes of programming data.
<stx></stx>	S N ₁ T ₁ ~7	Γ ₅₆ <ΕΤΧ>	s is the character "S", ASCII hex = 53 N_1 is the Store Name Line number in ASCII text, from 1 to 3 $T_1 \sim T_{56}$ is the Store Name Text in ASCII text, always 56 bytes <u>Note:</u> All numeric values must always use leading zeros and all text should use trailing <nul> characters.</nul>
<	<ack></ack>		The Scale Responds with: The scale transmits <ack> if it received the data and stored it OR The scale transmits <nak> if there was a problem with the data</nak></ack>
· 			

Date Programming: The PC sends 10 Bytes of programming data.

<STX> D N₁N₂N₃N₄N₅N₆N₇N₈ <ETX> ----->
D is the character "D", ASCII hex = 44
N₁~N₈ is the Date in ASCII text format MM DD YYYY,
<u>Note:</u> All numeric values must always use leading zeros and all text should
use trailing <NUL> characters.
The Scale Responds with:
The scale transmits <ACK> if it received the data and stored it
OR
<---- <NAK>
The scale transmits <NAK> if there was a problem with the data.