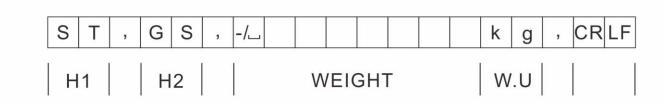

TVD, TVD-D RS-232 OUTPUT

1. RS-232 (9pin D type connector)

Pin 2	RXD	Input	Receiving data
Pin 3	TXD	Output	Transmission data
Pin 5	GND	_	Signal ground


9pin D Connecter:

Scale
Pln 2:
Pln 3:
Pln 3:
Pln 5:
Pln 5

2. Specifications:

RS-232 output of weighing data ASCII code 600~9600 Baud 8 data blts No Parity

3. Continuously output protocol

H1=HEADER1: ST=STABLE, US=UNSTABLE

H2=HEADER2: GS=GROSS, NT=NET

W.U=WEIGHT UNIT TERMINATOR= CR LF

4. Toledo

W = 57 $\langle STX \rangle = 02$ $\langle CR \rangle = 0D$? = 3F

Register Scale Action

W-----> The register requests the weight from the scale.

<---- $\langle STX \rangle X_1X_2X_3X_4X_5 \langle CR \rangle$ If (Weight \neq 0) && (Weight > 0) && (Weight < Capacity + 9 divisions) && (Weight is Stable) then:

The scale transmits the weight in 7 bytes where <STX> is the first byte, X_1 Is the 2^{nd} byte and represents the MSD (Most Significant Digit) of the weight value, etc, X_5 Is the 6^{th} byte and represents the LSD (Least SIgnificant Digit) of the weight, and <CR> is the 7^{th} and final byte. In this protocol the register decides the decimal place and units (Ib or kg.) Must use leading zeros whenever necessary.

Else:

The scale transmits a status response in 4 bytes where <STX> is the first byte, 3F is the 2^{nd} byte, Y_1 is the 3^{rd} byte and represents the status byte, and <CR> is the 4^{th} and final byte.

End if

<____ <STX> ? Y₁ <CR>

Status Byte Definition:

Motion	Y ₁ = 61	а	01100001
Scale at 7EPO	Y ₁ = 70	р	01110000
Scale at ZERO Weight < 0	Y ₁ = 64	d	01100100
Weight > Capacity	Y ₁ = 62	b	01100010
Weight < 0 & Motion	Y ₁ = 65	е	01100101
Weight > Capacity & Motion	Y ₁ = 63	С	01100011

Status Byte Formation				
Bit	Description			
Bit 7 (MSB)	Parity Bit.			
Bit 6	(Not used.)	Always = 1.		
Bit 5	Net Weight Bit.	Gross = 0, Net = 1.		
Bit 4	Zero Bit.	Zero = 1, Not Zero = 0.		
Bit 3	Outside Zero Range Bit.	Within = 0, Outside = 1.		
Bit 2	Negative Weight Bit.	Negative = 1, Non-Negative = 0.		
Bit 1	Overload Bit.	Overload = 1, Non-Overload = 0.		
Bit 0 (LSB)	Motion Bit.	Motion = 1, Stable = 0.		

Example 1:

If weight is 21.30 lb and the scale is stable, it will transmit the following 7 bytes:

02	30	32	31	33	30	0D
<stx></stx>	0	2	1	3	0	<cr></cr>

Example 2:

If weight is unstable, it will transmit the following 4 bytes:

02	3F	61	0 D
<stx></stx>	?	а	<cr></cr>

Exceptions: If Weight = 12345.6 then $X_1X_2X_3X_4X_5X_6 = 123456$

5. NCI-ECR

W = 57 < CR > = 0D < LF > = 0A L = 4C B = 42 K = 4B G = 47 S = 53 < ETX > = 03 . = 2E

Register	Scale	Action
W <cr></cr>		The register requests the weight from the scale by sending a W followed by a <cr>.</cr>
< <lf> X₁X₂X₃X</lf>	₄ X ₅ X ₆ U ₁ U ₂ <cr></cr>	<lf> $S_1S_2S_3$ <cr> <etx> The scale always responds to a valid request. The scale transmits the weight in 16 bytes where:</etx></cr></lf>

<LF> is the first byte.

 \mathbf{x}_1 to \mathbf{x}_6 are bytes 2 thru 7 and represent the weight value **Including the decimal point.** Therefore, a weight of 3.02 will be $003.02 = \mathbf{x}_1$ to \mathbf{x}_6 , or a weight of 3.002 will be $03.002 = \mathbf{x}_1$ to \mathbf{x}_6 .

 U_1 to U_2 are bytes 8 & 9 and represent the unit. For pounds $U_1 = 4C = "L"$ and $U_2 = 42 = "B"$; for kilos $U_1 = 4B = "K"$ and $U_2 = 47 = "G"$.

<CR> Is the 10th byte.

<LF> Is the 11th byte.

 S_1 Is the 12th byte and is always $S_1 = 53 = "S"$.

 S_2 to S_3 are the 13^{th} & 14^{th} bytes. They form the status word.

<CR> Is the 15th byte.

<ETX> Is the 16th byte.

Status Word Definition:

OK (Stable)	$S_2 = 30$ $S_3 = 30$	"00"
Motion	$S_2 = 31 S_3 = 30$	"10"
Scale at ZERO	$S_2 = 32$ $S_3 = 30$	"20"
Weight < 0	$S_2 = 30$ $S_3 = 31$	"01"
Weight > Capacity	S ₂ = 30 S ₃ = 32	"02"
Motion & Weight < 0*	$S_2 = 31$ $S_3 = 30$	"11"
Motion & Weight > Capacity*	$S_2 = 31$ $S_3 = 30$	"12"

Note*: Whenever the Weight > Max Capacity + 9 divisions then the scale must transmit a "zero" weight value. This is 0.00 or 0.000 or whatever the "zero" weight needs to be for that scale's capacity/resolution/unit setting.

Bit	S ₂ Bit Description	S ₃ Bit Description
7 (MSB)	Parity Bit.	Parity Bit.
6	(Not used) Always = 0.	(Not used) Always = 0.
5	(Not used) Always = 1.	(Not used) Always = 1.
4	(Not used) Always = 1.	(Not used) Always = 1.
3	(Not used) Always = 0.	(Not used) Always = 0.
2	(Not used) Always = 0.	(Not used) Always = 0.
1	Zero Bit: Zero = 1, Non-Zero = 0.	Overload Bit: Overload = 1, Non-Overload = 0.
0 (LSB)	Motion Bit: Motion = 1, Stable = 0.	Negative Weight Bit: Negative = 1, Non-Negative = 0.

Example:

If weight is 21.30 lb and the scale is **Stable**, it will transmit the following 16 bytes:

0A	30	32	31	2E	33	30	4C	42	0D	0A	53	30	30	0D	03
<lf></lf>	0	2	1		3	0	L	В	<cr></cr>	<lf></lf>	S	0	0	<cr></cr>	<etx></etx>

6. NCI-General

W = 57 < CR > = 0D < LF > = 0A L = 4C B = 42 K = 4B G = 47 < ETX > = 03 . = 2E

Register	Scale	Action
W <cr></cr>		The register requests the weight from the scale by sending a W followed by a <cr>.</cr>
< <lf> X₁X₂X₃</lf>	$_{0}X_{4}X_{5}X_{6}U_{1}U_{2}$ <cr></cr>	<lf> S_1S_2 <cr> <etx> The scale always responds to a valid request. The scale transmits the weight in 15 bytes where:</etx></cr></lf>

<LF> is the first byte.

 \mathbf{x}_1 to \mathbf{x}_6 are bytes 2 thru 7 and represent the weight value **Including the decimal point.** Therefore, a weight of 3.02 will be $003.02 = \mathbf{x}_1$ to \mathbf{x}_6 , or a weight of 3.002 will be $03.002 = \mathbf{x}_1$ to \mathbf{x}_6 .

 U_1 to U_2 are bytes 8 & 9 and represent the unit. For pounds $U_1 = 4C = "L"$ and $U_2 = 42 = "B"$; for kilos $U_1 = 4B = "K"$ and $U_2 = 47 = "G"$.

<CR> Is the 10th byte.

<LF> Is the 11th byte.

 S_1 to S_2 are the 12^{th} & 13^{th} bytes. They form the status word.

<CR> is the 14th byte.

<ETX> Is the 15th byte.

Status Word Definition:

OK (Stable)	$S_2 = 30$ $S_3 = 30$	"00"
Motion	$S_2 = 31 S_3 = 30$	"10"
Scale at ZERO	$S_2 = 32$ $S_3 = 30$	"20"
Weight < 0	$S_2 = 30$ $S_3 = 31$	"01"
Weight > Capacity*	S ₂ = 30 S ₃ = 32	"02"
Motion & Weight < 0	$S_2 = 31$ $S_3 = 30$	"11"
Motion & Weight > Capacity*	$S_2 = 31$ $S_3 = 30$	"12"

Note*: Whenever the Weight > Max Capacity + 9 divisions then the scale must transmit a "zero" weight value. This is 0.00 or 0.000 or whatever the "zero" weight needs to be for that scale's capacity/resolution/unit setting.

Bit	S ₁ Bit Description	S ₂ Bit Description
7 (MSB)	Parity Bit.	Parity Bit.
6	(Not used) Always = 0.	(Not used) Always = 0.
5	(Not used) Always = 1.	(Not used) Always = 1.
4	(Not used) Always = 1.	(Not used) Always = 1.
3	(Not used) Always = 0.	(Not used) Always = 0.
2	(Not used) Always = 0.	(Not used) Always = 0.
1	Zero Bit: Zero = 1, Non-Zero = 0.	Overload Bit: Overload = 1, Non-Overload = 0.
0 (LSB)	Motion Bit: Motion = 1, Stable = 0.	Negative Weight Bit: Negative = 1, Non-Negative = 0.

Example:

If weight is 11.300 kg and the scale is **Stable**, it will transmit the following 15 bytes:

0A	31	31	2E	33	30	30	4B	47	0D	0A	30	30	0D	03
<lf></lf>	1	1		3	0	0	K	G	<cr></cr>	<lf></lf>	0	0	<cr></cr>	<etx></etx>

7. TEC

$$= 05, = 06, = 15, = 07, = 11, = 12, = 02, = 03, = 7F, = 00$$

Register	Scale	Action
<enq></enq>	>	1) The register establishes communications by sending <enq>.</enq>
<	<ack></ack>	2) If (Weight is stable) then The scale will transmit <ack>.</ack>
<	<bel></bel>	Else The scale will transmit <bel>. Go back to step 1.</bel>
		End If
<dc2></dc2>	>	3) The register requests the weight by sending <dc2>.</dc2>4) Scale will transmit the following 9 bytes:
<	<stx></stx>	Start of text.
<	<id></id>	Identification byte defined bellow.
<	$$	MSD (Most significant digit) of weight data.
<	<w<sub>4></w<sub>	2 nd MSD (Most significant digit) of weight data.
<	<w3></w3>	3 rd MSD (Most significant digit) of weight data.
<	<w<sub>2></w<sub>	4 th MSD (Most significant digit) of weight data.
<	$$	LSD (Least significant digit) of weight data.
<	<bcc></bcc>	Block check character defined below.
<	<etx></etx>	End of text.
<ack></ack>	>	 If (Register verified data correctly) then The register will transmit <ack>. </ack>
		Go back to step 1.
		Else Go back to stop 1
		Go back to step 1.
		End If

		Identifier Byte Definition
7F		If (Weight < 0) OR (Weight > Max Capacity + 9 divisions) then $$<$ ID> = 7F $$W_5 = W_4 = W_3 = W_2 = W_1 = 30;$ however, W_1 or W_5 can be sometimes (see below.) Else Follow the codes below. End If$
41	Α	Not Used
42	В	Not Used
43	С	Not Used
44	D	Not Used
45	Е	For 120 lb or 300 lb scales with 2 decimal places: Format 0 00 b
46	F	Not Used
	_	

<BCC> Definition

The BCC character is formed by performing an XOR operation on the following 6 bytes: <ID>, W₅, W₄, W₃, W₂, and W₁

<BCC> = **<ID>** XOR W_5 XOR W_4 XOR W_3 XOR W_2 XOR W_1

See the examples below for the formation of the BCC character.

Example 1:

If weight is 250.05 lb, you are using a 300×0.05 lb scale, the scale is **Stable**, and F16 = Even, it will transmit the following 9 bytes:

02	45	32	35	30	30	35	77	03
<stx></stx>	<id></id>	2	5	0	0	5	<bcc></bcc>	<etx></etx>

Example 2:

If weight is 39.55 lb, you are using a 300×0.01 lb scale, the scale is **Stable**, and F16 = Even, it will transmit the following 9 bytes:

	02	45	0	33	39	35	35	4F	03
Ī	<stx></stx>	<id></id>	<nul></nul>	3	9	5	5	<bcc></bcc>	<etx></etx>

Example 3:

If weight is -5.01 lb, you are using a 300 x 0.05 lb scale, the scale is **Stable**, and F16 = Even, it will transmit the following 9 bytes:

02	7F	30	30	30	30	30	4F	03
<stx></stx>	<id></id>	0	0	0	0	0	<bcc></bcc>	<etx></etx>

8. Easy

R>	The register requests the Raw A/D Counts from the scale.
< <stx> X₁X₂X₃X₄X₅X₆ <cr></cr></stx>	The scale transmits the Raw A/D Counts in 8 bytes where $\langle STX \rangle$ is the first byte, X_1 Is the 2^{nd} byte and represents the MSD (Most Significant Digit) of the data, etc, X_6 Is the 7^{th} byte and represents the LSD (Least Significant Digit) of the data, and $\langle CR \rangle$ is the 8^{th} and final byte. The Raw A/D Counts are like the counts displayed in F9 CAL mode.

Example:

If the Raw A/D counts are 22,130 counts then it will transmit the following 8 bytes:

Action

02	30	32	32	31	33	30	0D
<stx></stx>	0	2	2	1	3	0	<cr></cr>

 $<---- < STX> X_1X_2X_3X_4X_5X_6 < CR>$ The scale transmits the CZP in 8 bytes where <STX> is the first byte, X_1 is the 2^{nd} byte and represents the MSD (Most Significant Digit) of the data, etc, X_6 is the 7^{th} byte and represents the LSD (Least Significant Digit) of the data, and <CR> is the 8^{th} and final byte.

Example:

If the CZP is 2,542 counts then it will transmit the following 8 bytes:

Scale

02	30	30	32	35	34	32	0D
<stx></stx>	0	0	2	5	4	2	<cr></cr>

<DC2>____>
<---- <STX> X₁X₂X₃X₄X₅X₆ <CR>

The register requests the CSP data from the scale. This is the Calibrated Span Point of the scale and is expressed as the Raw A/D counts with the full capacity load on the scale. The CSP should not be Zero Adjusted. The scale transmits the CSP in 8 bytes where <STX> is the first byte, X_1 is the 2^{nd} byte and represents the MSD (Most Significant Digit) of the data, etc, X_6 is the 7^{th} byte and represents the LSD (Least Significant Digit) of the data, and <CR> is the 8^{th} and final byte.

Example:

If the CSP is 202,542 counts then it will transmit the following 8 bytes:

02	32	30	32	35	34	32	0D
<stx></stx>	2	0	2	5	4	2	<cr></cr>