HSS

i-DREAM DRILLS

D	RE	
	RI	

- DREAM DRILLS
- DREAM DRILLS

DREAM DRILLS

- DREAM DRILLS for HARDEN
- STANDARD CARBIDE
- MULTI-1

HPD DRILLS

GOLD-P DRILLS

STRAIGHT SHANK DRILLS

AIRCRAFT DRILLS

SILVER & DEMING DRILLS

TAPER SHANK DRILLS

NC SPOTTINC DRILLS

COMBINATIO DRILL & COUNTER SINK

SPADE DRILLS

Material		Suengui			Speed							
	material		[N/mm²]	HB	HRc	Vc [M/min]	∅12.0 ~ ∅14.9	∅15.0 ~∅17.9	∅18.0 ~Ø21.9	⊘22.0 ∼⊘26.9	⊘27.0 ~ ⊘31.9	
Non-alloyed steels,	1213, 13L13, 1215,		~500	100~150		95~120	0.16~0.28	0.21~0.35	0.27~0.40	0.34~0.52	0.37~0.55	
Cast steels Free-machining steels	12L14,1118 etc		500~850	150~250	~24	80~105	0.14~0.24	0.21~0.35	0.27~0.40	0.34~0.52	0.37~0.55	
			~450	85~125		90~115	0.14~0.25	0.20~0.33	0.25~0.39	0.31~0.47	0.34~0.50	
Low-alloyed steels,	1015, 1020, 1140,		450~755	125~225	~19	70~90	0.12~0.20	0.17~0.28	0.22~0.32	0.30~0.46	0.33~0.49	
Cast steels(<5%)	1025,1035, 1050,		755~900	225~265	19~27	60~80	0.12~0.20	0.17~0.28	0.22~0.32	0.30~0.46	0.33~0.4	
Carbon steels	1045, 1055 etc		900~1200	265~350	27~37	55~70	0.10~0.16	0.15~0.25	0.21~0.30	0.25~0.38	0.29~0.43	
		1	~600	125~175	~7	80~100	0.14~0.24	0.17~0.28	0.22~0.32	0.30~0.46	0.34~0.50	
	8620, 4130, 4137,		600~800	175~235	7~22	70~90	0.12~0.20	0.17~0.28	0.22~0.32	0.30~0.46	0.34~0.50	
Alloyed steels			800~950	235~280	22~29	60~80	0.12~0.20	0.15~0.25	0.22~0.32	0.30~0.46	0.34~0.50	
	4140,6150 etc		950~1110	280~330	29~35	55~70	0.10~0.16	0.13~0.21	0.21~0.30	0.25~0.38	0.29~0.43	
			1110~1230	330~360	35~39	45~60	0.08~0.12	0.13~0.21	0.21~0.30	0.25~0.38	0.29~0.43	
		1	600~1020	225~300	19~32	45~60	0.12~0.20	0.15~0.25	0.21~0.30	0.20~0.31	0.24~0.3	
High-alloyed steels A355. 9840, 4340 etc	A355. 9840, 4340 etc		1020~1200	300~355	32~38	40~55	0.10~0.16	0.11~0.18	0.21~0.30	0.20~0.31	0.24~0.3	
		1200~1330	355~390	38~42	40~50	0.08~0.12	0.09~0.14	0.18~0.26	0.19~0.29	0.23~0.3		
Structural steels A36, A516, A182 etc		1	350~500	100~150		75~95	0.14~0.24	0.21~0.35	0.27~0.39	0.29~0.44	0.32~0.4	
	A36, A516, A182 etc		500~850	150~250	~24	60~75	0.12~0.20	0.20~0.33	0.22~0.32	0.25~0.38	0.29~0.4	
	YI3[850~1200	250~355	24~38	50~65	0.10~0.16	0.17~0.28	0.21~0.30	0.21~0.32	0.26~0.3		
Tool steels	1112 1121 A2 61 ato	N	500~705	150~210	~16	50~65	0.10~0.16	0.13~0.21	0.18~0.26	0.20~0.31	0.24~0.3	
Tool Steels	H13, H21, A2, S1 etc	ò	705~950	210~280	16~29	40~50	0.10~0.16	0.13~0.21	0.18~0.26	0.20~0.31	0.24~0.3	
Grey cast iron	Pearlitic, Ferritic	Y03	500~700	150~210	~16	100~125	0.15~0.26	0.20~0.37	0.27~0.42	0.36~0.51	0.40~0.5	
Grey Cast II OII	Pearlitic	^	700~850	210~250	16~24	75~95	0.11~0.20	0.16~0.29	0.20~0.30	0.25~0.35	0.29~0.4	
Cast iron nodular	Ferritic		540	165	4	95~120	0.13~0.22	0.17~0.31	0.21~0.32	0.28~0.40	0.32~0.4	
Cast II on nouulai	Pearlitic			850	250	24	75~95	0.11~0.20	0.14~0.26	0.19~0.29	0.25~0.35	0.29~0.4
Malleable cast iron	Ferritic		450	125		100~125	0.13~0.22	0.17~0.31	0.21~0.32	0.28~0.40	0.32~0.4	
	Pearlitic		780	230	21	75~95	0.11~0.18	0.14~0.26	0.19~0.29	0.25~0.35	0.29~0.4	
Aluminum alloys (Wrought)	not heat treatable			65		250~330	0.30~0.40	0.35~0.45	0.40~0.50	0.45~0.55	0.50~0.6	
(Wrought)	hardened			150		200~250	0.30~0.40	0.35~0.45	0.40~0.50	0.45~0.55	0.50~0.6	
Aluminum alloys	$\leq\!\!12\%$ Si, not heat treatable			75		200~50	0.25~0.35	0.30~0.40	0.35~0.45	0.40~0.50	0.45~0.5	
(Cast)	≤12% Si, hardened			90		150~220	0.25~0.35	0.30~0.40	0.35~0.45	0.40~0.50	0.45~0.5	
(0031)	>12% Si, not heat treatable			130		100~200	0.20~0.30	0.25~0.35	0.30~0.40	0.35~0.45	0.40~0.5	
	Free machining(Pb>1%)			110		115~145	0.16~0.28	0.23~0.36	0.29~0.36	0.37~0.45	0.41~0.4	
Copper alloys	Brass			90		145~185	0.17~0.29	0.24~0.37	0.30~0.38	0.38~0.46	0.42~0.4	
	Electrolitic copper			100		95~120	0.06~0.09	0.09~0.13	0.11~0.13	0.15~0.18	0.19~0.2	
Non ferrous	Duroplastics											
material	Fiber plastics											
	Hard rubber											
Stainless steels	Austenitic and Austenitic/ferritic	VI3 🗆	450~610	135~185	~9	45~60	0.10~0.16	0.12~0.18	0.14~0.20	0.15~0.26	0.18~0.28	
Stalliess Steels			610~930	185~275	9~28	30~45	0.08~0.14	0.09~0.15	0.10~0.16	0.12~0.20	0.14~0.22	

RECOMMENDED CUTTING CONDITIONS

Feed [mm/rev]

Cutting

Speed

Hardness

RPM = revolution per minute (rev/min) M/min = surface meter per minute(M/min) DIA. = diameter of drill (mm) mm/rev = feed rate(mm/rev)

76 *i*-Dream Drills

Material

Tensile

Strength

METRIC

*Formulas : $M/\min = \frac{(RPM) \bullet \pi \bullet (DIA.)}{1000}$ $mm/\min = (RPM) \bullet (mm/rev)$ $RPM = \frac{(M/\min) \bullet 1000}{(\pi) \bullet (DIA.)}$

- ► The recommendations for speeds, feeds and other parameters presented in this chart are nominal recommendations and should be considered only as good starting points.
- Speed and feed reductions (20% reduction in speed and 10% reduction in feed) are recommended.
- ▶ Recommend you to reduce the feed rate to 85%,70% when you use 5xD,7xD holders.
- For use of 7xD holder, we recommend to drill a centering pre-hole with equal to or larger than 140° point angle to min. 2/3 cutting diameter.

The use of the centering pre-hole improves hole location, roundness and surface finish.

76 *i*-Dream Drills

RECOMMENDED CUTTING CONDITIONS

INCH

Material			Tensile Strength			Cutting Feed [IPR]						
iviale: iai			MPa	НВ	HRc	Vc [SFM]	Ø31/64 ~ Ø37/64	∅19/32 ~ Ø45/64	Ø23/32 ~Ø55/64	Ø7/8 ~Ø1-1/16	∅1 -3/32 ~ ∅1-1/4	
Non-alloyed steels,	1213, 13L13, 1215,		~500	100~150		312~394	.006~.011	.008~.014	.011~.016	.013~.020	.015~.022	
Cast steels Free-machining steels	12L14,1118 etc		500~850	150~250	~24	262~344	.006~.009	.008~.014	.011~.016	.013~.020	.015~.022	
3			~450	85~125		295~377	.006~.010	.008~.013	.010~.015	.012~.019	.013~.020	
Low-alloyed steels,	1015, 1020, 1140,		450~755	125~225	~19	230~295	.005~.008	.007~.011	.009~.013	.012~.018	.013~.019	
Cast steels(<5%)	1025,1035, 1050, 1045, 1055 etc		755~900	225~265	19~27	197~262	.005~.008	.007~.011	.009~.013	.012~.018	.013~.019	
Carbon steels			900~1200	265~350	27~37	180~230	.004~.006	.006~.010	.008~.012	.010~.015	.011~.017	
			~600	125~175	~7	262~328	.006~.009	.007~.011	.009~.013	.012~.018	.013~.020	
			600~800	175~235	7~22	230~295	.005~.008	.007~.011	.009~.013	.012~.018	.013~.020	
Alloyed steels	8620, 4130, 4137, 4140,6150 etc		800~950	235~280	22~29	197~262	.005~.008	.006~.010	.009~.013	.012~.018	.013~.020	
,			950~1110	280~330	29~35	180~230	.004~.006	.005~.008	.008~.012	.010~.015	.011~.017	
			1110~1230	330~360	35~39	148~197	.003~.005	.005~.008	.008~.012	.010~.015	.011~.017	
			600~1020	225~300	19~32	148~197	.005~.008	.006~.010	.008~.012	.008~.012	.009~.014	
gh-alloyed steels A355. 9840, 4340 etc		1020~1200	300~355	32~38	131~180	.004~.006	.004~.007	.008~.012	.008~.012	.009~.014		
			1200~1330	355~390	38~42	131~164	.003~.005	.004~.006	.007~.010	.007~.011	.009~.013	
			350~500	100~150		246~312	.006~.009	.008~.014	.011~.015	.011~.017	.013~.019	
Structural steels A36, A516, A182 etc	YI3 🗆	500~850	150~250	~24	197~246	.005~.008	.008~.013	.009~.013	.010~.015	.011~.017		
		850~1200	250~355	24~38	164~213	.004~.006	.007~.011	.008~.012	.008~.013	.010~.015		
Tool steels H13, H21, A2, S1 etc	\sim	500~705	150~210	~16	164~213	.004~.006	.005~.008	.007~.010	.008~.012	.009~.014		
	H13, H21, A2, S1 etc	Y03 [].	705~950	210~280	16~29	131~164	.004~.006	.005~.008	.007~.010	.008~.012	.009~.014	
Ones and inco	Pearlitic, Ferritic		500~700	150~210	~16	328~410	.006~.010	.008~.015	.011~.017	.014~.020	.016~.022	
Grey cast iron	Pearlitic		^	^	700~850	210~250	16~24	246~312	.004~.008	.006~.011	.008~.012	.010~.014
	Ferritic		540	165	4	312~394	.005~.009	.007~.012	.008~.013	.011~.016	.013~.017	
Cast iron nodular	Pearlitic		850	250	24	246~312	.004~.008	.006~.010	.007~.011	.010~.014	.011~.016	
Valleable cast iron	Ferritic		450	125		328~410	.005~.009	.007~.012	.008~.013	.011~.016	.013~.017	
vidiled die Cast II Uli	Pearlitic		780	230	21	246~312	.004~.007	.006~.010	.007~.011	.010~.014	.011~.016	
Aluminum allovs	not heat treatable			65		820~1083	.0118~.0157	.0138~.0177	.0157~.0197	.0177~.0217	.0197~.0236	
Aluminum alloys Wrought)	hardened			150		656~820	.0118~.0157	.0138~.0177	.0157~.0197	.0177~.0217	.0197~.0236	
	\leq 12% Si, not heat treatable			75		656~820	.0098~.0138	.0118~.0157	.0138~.0177	.0157~.0197	.0177~.0217	
Aluminum alloys Cast)	≤12% Si, hardened			90		492~722	.0098~.0138	.0118~.0157	.0138~.0177	.0157~.0197	.0177~.0217	
Castj	>12% Si, not heat treatable			130		328~656	.0079~.0118	.0098~.0138	.0118~.0157	.0138~.0177	.0157~.0197	
	Free machining(Pb>1%)			110		377~476	.006~.011	.009~.014	.011~.014	.015~.018	.016~.019	
Copper alloys	Brass			90		476~607	.007~.011	.009~.015	.012~.015	.015~.018	.017~.019	
	Electrolitic copper			100		312~394	.002~.004	.004~.005	.004~.005	.006~.007	.007~.009	
Jon ferrous	Duroplastics											
von terrous naterial	Fiber plastics											
naterial	Hard rubber											
	Austenitic and		450~610	135~185	~9	145~197	.004~.006	.005~.007	.006~.008	.006~.011	.007~.011	
Stainless steels	Austenitic/ferritic	YI3[610~930	185~275	9~28	89~145	.003~.005	.004~.006	.004~.006	.005~.008	.006~.009	

	*Formulas :
RPM = revolution per minute (rev/min) SFM = surface feet per minute (ft/min)	SFM = $\frac{(\text{RPM}) \bullet \pi \bullet (\text{DIA.})}{12}$
DIA. = diameter of drill (inch)	$IPM = (RPM) \cdot (IPR)$
IPR = feed rate (inch/rev) IPM = inch per minute penetration rate	$RPM = \frac{(SFM) \bullet 12}{(\pi) \bullet (DIA.)}$

The recommendations for speeds, feeds and other parameters presented in this chart are nominal recommendations and should be considered only as good starting points.

Speed and feed reductions (20% reduction in speed and 10% reduction in feed) are recommended.

▶ Recommend you to reduce the feed rate to 85%,70% when you use 5xD,7xD holders.

► For use of 7xD holder, we recommend to drill a centering pre-hole with equal to or larger than 140° point angle to min. 2/3 cutting diameter.

The use of the centering pre-hole improves hole location, roundness and surface finish.

HSS

i-DREAM DRILLS

> REAM RILLS

DREAM DRILLS -INOX

OREAM ORILLS

DREAM DRILLS

REAM RILLS or HARDENED

STANDARD CARBIDE

```
MULTI-1
DRI<u>LLS</u>
```

HPD DRILLS

gold-p Drills

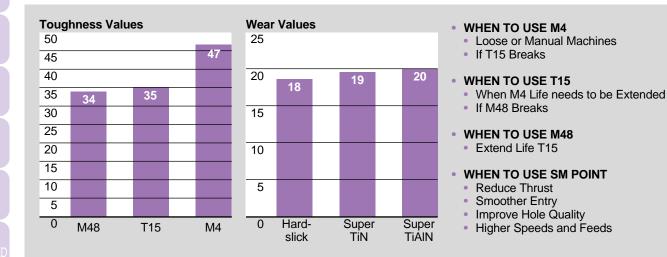
STRAIGHT SHANK DRILLS

AIRCRAFT

SILVER & DEMING DRILLS

SHANK DRILLS

NC SPOTTING DRILLS


COMBINATION DRILL & COUNTER SINK

SPADE DRILLS

''/G SPADE DRILLS

SPADE BLADE INSERTS SELECTION & APPLICATIONS HSS

SPEEDS – FEED RECOMMENDATIONS (STD POINT-SM POINT)

STANDARD GEOMETRY

	Material	SF	M							Feed	(IPR)						
Material	Hardness (BHN)		Surface Footage		3/8 ~ 1/2 33/64 ~ 11/16			45/6 15/		31/3 1-3		1-13/32 ~ 1-7/8		1-29/32 ~ 2-9/16		2-19/32 ~ 4-1/2	
Free Machining Steel 1118, 1215, 12L14	100 - 150 150 - 200 200 - 250	280 260 240	330 305 285	.007 .007 .007	.008 .007 .006	.010 .010 .010	.012 .011 .010	.013		.016 .016 .016	.019 .017 .016	.020 .020 .020	.020 .020 .020	.023 .023 .023	.023 .023 .023	.028 .028 .028	
Low & Medium Carbon Steel 1018, 1040, 1140		240 225 210 195	280 265 245 230	.006 .005 .005 .004	.007 .006 .006 .005	.009 .008 .008 .007	.010 .009 .009 .008		.014 .013 .013 .012	.015 .014 .014 .012	.017 .016 .016 .015	.019 .018 .018 .016	.019 .018 .018 .016	.023 .021 .021 .021	.023 .021 .021 .021	.027 .024 .024 .022	.02 .02 .02 .02
Alloy Steel 4140, 5140, 8640	125 - 175 175 - 225 225 - 275 275 - 325 325 - 375	210 195 180 170 155	245 230 215 200 185	.006 .005 .005 .004 .003	.007 .006 .006 .005 .004	.008 .008 .007 .006 .006	.010 .009 .009 .008 .007	.010 .010 .010 .009 .009	.014 .013 .013 .012 .011	.014 .014 .014 .012 .012	.017 .016 .016 .015 .014	.017 .017 .017 .015 .015	.017 .017 .017 .015 .015	.019 .019 .019 .017 .017	.019 .019 .019 .017 .017	.022 .022 .022 .020 .020	.02 .02 .02 .02
High Strength Alloy Stee 4340, 4330V, 300M		110 85 70	130 105 85	.005 .004 .003	.006 .005 .004	.007 .007 .006	.009 .008 .007	.009 .009 .008	.011 .010 .009	.010 .010 .009	.013 .012 .011	.014 .014 .012	.014 .014 .012	.017 .017 .015	.017 .017 .015	.020 .020 .018	.02 .02 .01
Structural Steel A36, A285, A516	100 - 150 150 - 250 250 - 350	200 170 140	240 195 165	.006 .005 .004	.008 .006 .005	.010 .009 .008	.011 .010 .009	.012 .010 .009	.015 .013 .012	.014 .012 .010	.017 .015 .013	.018 .016 .014	.018 .016 .014	.021 .019 .017	.021 .019 .017	.026 .024 .020	.02 .02 .02
High Temp, Alloy Hastelloy B, Inconel 600		40 35	50 45	.003 .003	.004 .004	.006 .006	.007 .006	.007 .007	.009 .008	.008 .008	.011 .010	.010 .010	.012 .010	.012 .012	.015 .012	.015 .015	.01 .01
Stainless Steel 303, 416, 420, 17-4 PH	135 - 185 185 - 275	105 90	125 110	.006 .005	.007 .006	.008 .007	.009 .008	.009 .008	.012 .011	.011 .010	.014 .012	.014 .012	.014 .012	.016 .014	.016 .014	.020 .018	.02 .01
Tool Steel H-13, H021, A04, 0-2, S-3		110 90	130 110	.004 .004	.004 .004	.006 .006	.007 .007	.008 .008	.010 .010	.010 .010	.012 .012	.012 .012	.012 .012	.015 .015	.015 .015	.017 .017	.01 .01
Aluminum	30 180	850 450	-	.008 .008	-	.013 .013	-	.016 .016	-	.020 .018	-	.022 .022	.022 .022	.025 .025	.025 .025	.025 .025	.02 .02
Cast Iron Gray, Ductile, Nodular		250 225 195 165 135	295 265 230 195 160	.007 .006 .006 .005 .004	.008 .007 .006 .005 .005	.012 .011 .009 .007 .006	.012 .011 .009 .008 .007	.016 .014 .012 .009 .007	.016 .015 .013 .011 .010	.020 .018 .016 .012 .009	.020 .019 .017 .014 .011	.024 .022 .018 .014 .012	.024 .022 .018 .014 .012	.027 .025 .021 .017 .014	.027 .025 .021 .017 .014	.030 .028 .024 .020 .016	.03 .02 .02 .02 .02

The recommendations for speed, feeds and other parameters presented in this chart are nominal recommendations and should be considered only as good starting points. Speed and feed reduction (20% reduction in speed and 10% reduction in feed) are recommended.

-DREAM DRILLS

DREAM DRILLS

DREAM DRILLS

DREAM DRILLS -ALU

DREAM DRILLS

DREAM DRILLS for HARDENE STEELS

STANDARD CARBIDE DRILLS

MULTI-1 DRILLS

HPD DRILLS

GOLD-P DRILLS

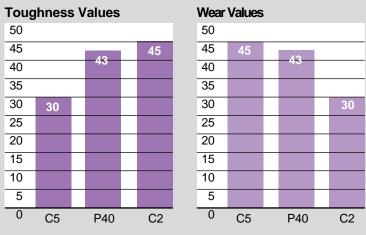
STRAIGHT SHANK DRILLS

AIRCRAFT DRILLS

SILVER & DEMING DRILLS

TAPER SHANK DRILLS

NC SPOTTING DRILLS


COMBINATION DRILL & COUNTER SINK

SPADE DRILLS

TECHNICAL DATA

HSS

SPADE BLADE INSERTS SELECTION & APPLICATIONS CARBIDE

If C5 chips try C2 at 10% – 20% lower S.F.M. than C5 rating

SPEEDS – FEED RECOMMENDATIONS (STD POINT-SM POINT)

Material

Low & Medium Carbon Steel

Free Machining Steel

1118, 1215, 12L14

1018, 1040, 1140

4140, 5140, 8640

High Strength Alloy Stee

Alloy Steel

Material Hardness (BHN)

100 - 150

150 - 200

200 - 250

125 - 175

175 - 225

225 - 275

275 - 325

125 - 175

175 - 225

225 - 275

275 - 325

325 - 375

225 - 300

SFM

Surface

Footage

485

420

395

395

360

315

270

380

350

315

290

260

235

420

360

340

340

310

270

230

325

300

270

250

220

200

Grade	Geometry and Application	Stocked Coatings
P40 & C5	Steel Cutting	Super TiN TiAIN
C3	Cast Iron	Super TiN TiAIN
P40 & C2	Ductile Iron Stainless Steel Aluminum Exotic Alloys	Super TiN TiAINE
	ide has a lower trans	

strength than HSS and is prone to chipping and breakage.

Feed (IPR)

45/64 ~

15/16

016

.015

.014

.014

.013

.013

.012

.014

.013

.013

.012

.011

011

.012

.011

.010

.010

.008

.008

.006

.010

.009

.009

.008

.008

008

33/64 ~

11/16

012

011

010

010

.009

.009

.008

.010

009

.009

.008

.007

009

.009

.008

.008

.008

.007

.007

.006

.008

.007

.007

.006

.005

007

3/8 ~ 1/2

.008

.007

.006

.007

.006

.006

.005

.007

.006

.006

.005

.004

006

.006

.006

.005

.005

.005

.004

004

.005

.005

.004

.004

.003

005

Recutting of chips or lack of rigidity can cause breakage.

Check Coolant Recommendations Chart on Page 461 for flow rates.

STANDARD GEOMETRY

31/32 ~

1-3/8

015

.013

.012

.014

.012

.012

.010

.013

.012

.012

.011

.010

.010

.019

.017

.016

.017

.016

.016

.015

.017

.016

.016

.015

.014

013

1-13/32 ~

1-7/8

.019

.017

.015

.017

.016

.015

.014

.016

.015

.015

.014

.013

014

-

-

for HARDEN STEELS STANDARD

MULTI-1

HPD DRILLS

GOLD-P DRILLS

STRAIGHT SHANK DRILLS

SILVER & DEMING

TAPER SHANK

NC SPOTTING

COMBINATION DRILL & COUNTER

SPADE DRILLS

TECHNICA DATA

300 - 350 180 210 .004 .005 .006 .008 .007 .010 .009 .012 .012 4340, 4330V, 300M 350 - 400 160 190 .003 .004 .005 .007 .006 .009 .008 .011 .010 100 - 150 310 360 .006 .008 .010 .011 .011 .015 .012 .017 .016 -Structural Steel 150 - 250 250 290 .005 .006 .008 010 .009 .013 .011 .015 .015 A36, A285, A516 250 - 350 230 270 .004 .005 .007 009 .008 .012 .009 .013 .013 -High Temp, Alloy 80 125 .003 .004 .006 .007 .007 .009 .009 .011 .011 140 - 220 -Hastelloy B, Inconel 600 220 - 310 .003 .004 .006 .006 .010 .010 60 100 .005 008 008 Stainless Steel 135 - 185 210 245 .006 .007 .008 .009 .009 .012 .011 .014 .013 -303, 416, 420, 17-4 PH 185 - 275 160 190 .005 .006 .007 .008 .008 .011 .010 .012 .011 -**Tool Steel** 150 - 200 220 260 .003 .004 .005 .007 .007 .010 .009 .012 .011 -H-13, H021, A04, 0-2, S-3 200 - 250 170 200 .003 .004 .005 .007 .007 .010 .009 .012 .011 30 1500 .008 .013 .016 .020 .022 ---Aluminum 180 1000 .020 .007 .011 .014 .018 .019 505 .009 .020 120 - 150 460 .006 .008 .012 .011 .015 .015 400 485 150 - 200 005 .007 008 011 .010 013 014 017 .018 -Cast Iron 200 - 220 360 435 .005 .006 .007 009 .008 .012 .012 .015 .015 Gray, Ductile, Nodular 220 - 260 310 375 .004 .005 .006 008 .007 .011 .010 .013 .013 260 - 320 270 340 .004 .005 .005 .007 .006 .010 .008 .011 .011 The recommendations for speed, feeds and other parameters presented in this chart are nominal recommendations and should be considered only as good starting points. Speed and feed reduction (20% reduction in speed and 10% reduction in feed) are recommended.

phone:+1-800-765-8665, fax:+1-866-941-8665, Technical Support : 888-868-5988, www.yg1usa.com · 239

HSS

-DREAM DRILLS

DREAM DRILLS

DREAM DRILLS

DREAM DRILLS

DREAM DRILLS for HARDEN STEELS

STANDARD CARBIDE DRILLS

MULTI-1 DRILLS

HPD DRILLS

GOLD-P DRILLS

STRAIGHT SHANK DRILLS

AIRCRAFT DRILLS

SILVER & DEMING DRILLS

TAPER SHANK DRILLS

NC SPOTTING DRILLS

IPR

IPM

= feed rate (in/rev)

= inch per minute penetration rate

COMBINATION DRILL & COUNTER

SPADE DRILLS

TECHNICAL DATA

SUPER COBALT T15 FLAT BOTTOM

YG SPADE DRILLS

	Material	Speed	(SFM)	Feed							
Material	Hardness (BHN)	TiN	TiAIN	3/8 ~ 1/2	33/64 ~ 11/16	45/64 ~ 15/16	31/32 ~ 1-3/8				
Free machining Steel 1213, 12L13, 1215 12L14, 1118	100 - 150 150 - 200 200 - 250	165 150 135	220 215 190	0.005 0.005 0.004	0.007 0.007 0.007	0.010 0.010 0.010	0.013 0.013 0.012				
Low Carbon Steel 1015, 1020, 1140, 1025	85 - 125 125 - 175 175 - 225 225 - 275	140 135 125 115	195 190 180 175	0.005 0.005 0.004 0.004	0.007 0.007 0.006 0.006	0.009 0.009 0.008 0.008	0.012 0.012 0.011 0.011				
Medium Carbon Steel 1035, 1050, 1045 1055, 1140	125 - 175 175 - 225 225 - 275 275 - 325	135 125 115 105	195 180 165 150	0.004 0.004 0.004 0.003	0.007 0.006 0.006 0.005	0.009 0.007 0.007 0.007	0.011 0.011 0.011 0.009				
Structural Steel A36, A516, A182	100 - 150 150 - 250 250 - 350	115 100 80	165 140 115	0.004 0.004 0.003	0.007 0.007 0.006	0.009 0.008 0.007	0.011 0.009 0.008				
Cast Iron / S,G Iron A48-76 GR30/GR45 A536-72 60-40-18 A220-76 GR40010	120 - 150 150 - 200 200 - 220 220 - 260 260 - 320	145 130 110 95 80	215 190 165 150 120	0.005 0.005 0.005 0.004 0.004	0.010 0.008 0.008 0.006 0.005	0.014 0.011 0.010 0.008 0.006	0.016 0.016 0.014 0.010 0.008				
Alloy Steel 8620, 4130, 4137 4140, 6150	125 - 175 175 - 225 225 - 275 275 - 325 325 - 375	125 115 105 100 90	165 150 145 140 120	0.005 0.004 0.004 0.003 0.003	0.006 0.006 0.005 0.005 0.005	0.008 0.008 0.007 0.007 0.007	0.011 0.011 0.011 0.009 0.009				
Tool Steel H13, H21, A2, S1	150 - 200 200 - 250	65 45	90 75	0.003 0.003	0.005 0.005	0.006 0.006	0.008 0.008				
High Temp. Alloy Hastelloy B,Inconel	140 - 220 220 - 310 225 - 300	20 15 65	30 25 90	0.003 0.003 0.004	0.005 0.004 0.006	0.006 0.006 0.007	0.008 0.006 0.008				
High Strength Alloy 9840, 4340, 4330V	300 - 350 350 - 400	45 40	70 60	0.003 0.003	0.006 0.005	0.007 0.006	0.008 0.007				
Aluminium 2014, 6061, 7075	30 180	520 255	700 390	0.007 0.007	0.011 0.011	0.014 0.014	0.017 0.016				
Stainless Steel 310, 316, 410, 330	135 - 185 185 - 275	60 50	90 80	0.005 0.004	0.007 0.006	0.008 0.007	0.009 0.009				
RPM = revolution per minute SFM = surface feet per minute	. ,	* Formul									
DIA = diameter of drill (inch	. ,		$SFM = (RPM) \cdot (.262) \cdot (DIA.)$								

RECOMMENDED CUTTING CONDITIONS

 $IPM = (RPM) \cdot (IPR)$ $RPM = \frac{(SFM) \cdot (3.82)}{(SFM) \cdot (3.82)}$

(DIA.)

The recommendations for speeds, feeds and other parameters presented in this chart are nominal recommendations and should be considered only as good starting points. Speed and feed reductions (20% reduction in speed and 10% reduction in feed) are recommended.