RECOMMENDED CUTTING CONDITIONS

These are general cutting speed recommendations of SFM rates, and may vary from application to application.

Material* To Be Cut	Hardness Range (Bhn**)	Carbide Saw Cutting Speed SFM / (m/min.)	Material* To Be Cut	Hardness Range (Bhn**)	Carbide Saw Cutting Speed SFM / (m/min.)
Free Machining Carbon Steels-Wrought	100-425	130-555 (40-170)	Malleable Cast Irons	110-320	130-470 (40-145)
Carbon Steels- Wrought	85-425	105-530 (35-165)	Chromium-Nickel Alloy Castings	275-375	85-105 (25-35)
Carbon & Ferritic Alloy Steels (High Temp. Service)	150-200	320-425 (100-130)	Aluminum Alloys-Wrought	30-150	3400-4250 (1042-1300)
Free Machining Alloy Steels-Wrought	150-425	35-470 (11-145)	Aluminum Alloys-Cast	40-125	2125-5315 (640-1615)
Alloy Steels, Wrought	125-425	35-425 (11-130)	Magnesium Alloys-Wrought	40-125	5100-6375 (1555-1955)
High Strength Steels-Wrought	225-400	35-255 (11-80)	Magnesium Alloys-Cast	50-90	5100-6375 (1555-1955)
Maraging Steels- Wrought	275-425	35-215 (11-65)	Titanium Alloys-Wrought	110-440	65-530 (25-165)
Tool Steels- Wrought	100-375	35-470 (11-145)	Titanium Alloys-Cast	150-350	170-470 (55-145)
Nitriding Steels- Wrought	200-350	150-215 (50-65)	Copper Alloys-Wrought	10Rв-100Rв	340-2125 (105-640)
Armor Plate, Ship Plate, Aircraft Plate-Wrought	200-350	65-215 (25-65)	Copper Alloys-Cast	40-200	340-1700 (105-510)
Structural Steels- Wrought	100-400	35-255 (11-80)	Nickel Alloys- Wrought and Cast	80-360	65-300 (25-90)
Free Machining Stainless Steels-Wrought	135-425	150-470 (50-145)	Beryllium Nickel Alloys- Wrought and Cast	200-425 47-52Rc	35-215 (11-65)
Stainless Steels- Wrought	135-425	35-425 (11-130)	High Temp. Alloys- Wrought and Cast	140-475	35-255 (11-80)
Precipitation Hardening Stainless Steels-Wrought	150-440	85-340 (25-105)	Refractory Alloys- Cast, P/M	170-320	150-300 (50-90)
Stainless Steels- Cast	135-425	105-425 (35-130)	Zinc Alloys- Cast	80-100	1380-1700 (425-510)
Precipitation Hardening Stainless Steels-Cast	325-450	65-130 (25-40)	Lead Alloys- Cast	5-20	1065-1275 (325-385)
Carbon Steels- Cast	100-300	170-530 (55-165)	TiN Alloys- Cast	15-30	1065-1275 (325-385)
Alloy Steels- Cast	150-400	105-340 (35-105)	Zirconium Alloys- Wrought	140-280	215-255 (65-80)
Tool Steels- Cast	150-375 & 48-50Rc	35-300 (11-90)	Manganese- Wrought	140-220	105-130 (35-40)
Gray Cast Irons	120-320	105-470 (35-145)	P/M Alloys- Copper	50-70RF	170-215 (55-65)
Compacted Graphite Cast Irons	120-330	105-170 (35-55)	P/M Alloys- Brasses	35-81Rн	215-255 (65-80)
Ductile Cast Irons	120-330	85-510 (25-160)	P/M Alloys- Bronzes	30-75R⊧	170-215 (55-65)

(Continued on Next Page)

*Materials list from Machining Data Handbook-3rd Edition, published by the Machinability Data Center. For specific metals/materials within each material category, refer to Machining Data Handbook.

**Hardness range listed in Brinell unless otherwise noted. 'Range' covers all metals/materials listed within each material group.

***Thermosetting plastics have various hardness scales. Refer to Machining Data Handbook.

Material* To Be Cut	Hardness Range (Bhn**)	Carbide Saw Cutting Speed SFM / (m/min.)	
P/M Alloys- Copper-Nickel Alloys	22-100Rн	170-215 55-65	
P/M Alloys- Nickel and Nickel Alloys	70-83	170-215 55-65	
P/M Alloys- Refractory Metal Base	101-260	405-510 124-160	
P/M Alloys- Irons	50-67	215-255 65-80	
P/M Alloys- Steels	101-426	150-255 50-80	
P/M Alloys- Stainless Steels	107-285	170-215 55-65	
P/M Alloys- Aluminum Alloys	55-98Rн	510-640 160-195	
Machinable Carbides	40-51Rc	35-45 11-13	
Free Machining Magnetic Alloys	185-240	215-340 65-105	
Magnetic Alloys	185-240	55-215 16-65	
Free Machining Controlled Expansion Alloys	125-220	215-255 65-80	
Controlled Expansion Alloys	125-250	35-45 11-13	
Carbons and Graphites	8-100 Shore	150-215 50-65	
Glasses and Ceramics- Machinable	250 Knoop	85-105 25-35	
Plastics- Thermoplastics	60-120Rм	1065-1490 325-450	
Plastics- Thermosetting	50-120Rr ***	340-1490 105-450	

*Materials list from Machining Data Handbook-3rd Edition, published by the Machinability Data Center. For specific metals/materials within each material category, refer to Machining Data Handbook.

**Hardness range listed in Brinell unless otherwise noted. 'Range' covers all metals/materials listed within each material group.

***Thermosetting plastics have various hardness scales. Refer to Machining Data Handbook.

USEFUL METALWORKING FORMULAS						
SFM	=	.262 X (CUTTER DIA. X RPM) (or) (RPM X CUTTER DIA.) ÷ .382				
RPM	=	$(3.82 \text{ X SFPM}) \div \text{CUTTER DIA.}$ (or) SFPM \div (CUTTER DIA. X .262)				
IPM	=	IPR X (# TEETH X RPM)				
IPT	=	IPM ÷ (# TEETH X RPM)				
IPR	=	IPM ÷ RPM				
CIM	=	IPR X SPD. X DOC				
HP	=	CIM X UHF				
FORCE	=	(33,000 X HP) ÷ SFM				

FEED RATES:

Carbide Saws: .0002"-.0015" (in.per tooth - IPT or chip load per tooth - CLPT)

NOTE: This is a conservative recommendation as a starting point for feed rates, and may vary depending on material being cut and cutting speed (SFM).

COATINGS FOR SAWS AND CUTTERS

Cutting tool surface coatings are available upon request. Tool coatings provide tool wear resistance while significantly improving the performance of saws in most applications, particularly when cutting ferrous materials. These coatings are extremely thin, harder than steel and greatly reduce friction and wear. The most common coatings available for carbide saws are:

TiN: Titanium Nitride - General purpose TiN hard coating. Best suited for iron-based materials, unalloyed and alloyed steels and hardened steels.

TiCN: Titanium Carbonitride - Enhanced hardness and wear resistance over TiN with better surface lubricity. Suited for difficult to machine materials such as cast iron, aluminum alloys, tool steels, copper, Inconel, titanium alloys and nonferrous materials.

TiAIN: Titanium Aluminum Nitride - Nano-layered coating, high toughness and oxidation resistance. Recommended for high temperature cutting, and a good choice when coating carbide. Suited for difficult materials like cast iron, aluminum alloys, tool steels and nickel alloys.

AlCrN: Aluminum Chromium Nitride - Expanded performance capabilities over titanium-based coatings. Highest oxidation resistance and hot hardness for high temperature wear resistance. Can be used in wet/dry cutting applications. Well suited for a wide range of materials - cast iron, unalloyed steels, high strength steels, high hardness steels.

SAWS