How to mount an insert

- 1. Be sure to remove dust and chips from the insert mounting pocket.
- 2. Apply anti-seize compound on portion of taper and thread of clamp screw.(1) Attach the screw (magnetic head) to the front end of the wrench.
- (2) While lightly pressing the insert against the pocket walls,

put the screw into the hole of the insert and tighten. (Ref. to Fig. 1.) Tighten M3 screws (SB-3065TRP) slightly inclined from the insert. (Ref. to Fig. 2.) surface of the insert.

- When tightening the screw, make sure that the wrench is parallel to the screw. For recommended torque, Ref. to E7
- 4. After tightening the screw, make sure that there is no clearance between the insert seat surface and the pocket floor of the holder or between the insert side surfaces and the pocket walls of the holder. If there is any clearance, remove the insert and mount it again according to the above steps.

Recommended Cutting Conditions

ļ	econninended outling	Conditions			
		fz (ipt)	Recommended Insert Gr	ades (Cutting Speed:sfm)
		Desci	ription	MEGACO	AT NANO
	Workpiece Material	MEW0625~M0750 MEW16~MEW18	MEW1000~MEW1500 MEW1500R~MEW3000R MEW20~MEW50 MEW032R~MEW080R	PR1525	PR1510
	Carbon Steel	0.002~ 0.004 ~0.008	0.003~ 0.006 ~0.010	★ 390~ 600 ~820	-
	Alloy Steel	0.002~ 0.004 ~0.006	0.003~ 0.006 ~0.008	★ 325~ 530 ~720	-
	Mold Steel	0.002~ 0.003 ~0.005	0.003~ 0.005 ~0.008	★ 260~ 450 ~600	-
	Stainless Steel	0.002~ 0.003 ~0.005	0.003~ 0.005 ~0.006	325~ 530 ~650	-
	Gray Cast Iron	0.002~ 0.004 ~0.007	0.003~ 0.007 ~0.010	-	★ 390~ 600 ~820
	Nodular Cast Iron	0.002~ 0.003 ~0.005	0.003~ 0.006 ~0.008	-	★ 325~ 500 ~650
	Titanium Alloys	0.002~ 0.003 ~0.005	0.003~ 0.006 ~0.008	-	★ 100~ 160 ~225
	Carbon Steel	0.002~ 0.004 ~0.007	0.003~ 0.006 ~0.008	★ 390~ 600 ~820	-
	Alloy Steel	0.002~ 0.003 ~0.005	0.003~ 0.005 ~0.007	★ 325~ 530 ~720	-
	Mold Steel	0.002~ 0.003 ~0.005	0.003~ 0.004 ~0.006	★ 260~ 450 ~600	-
	Stainless Steel	0.002~ 0.003 ~0.005	0.003~ 0.004 ~0.006	★ 325~ 530 ~650	-
	Titanium Alloys	0.002~ 0.003 ~0.005	0.003~ 0.005 ~0.007	-	★ 100~ 160 ~225
	Carbon Steel	0.002~ 0.004 ~0.008	0.003~ 0.008 ~0.012	★ 390~ 600 ~820	-
	Alloy Steel	0.002~ 0.004 ~0.006	0.003~ 0.008 ~0.010	★ 325~ 530 ~720	-
	Mold Steel	0.002~ 0.003 ~0.005	0.003~ 0.006 ~0.009	★ 260~ 450 ~600	-
	Stainless Steel	0.002~ 0.003 ~0.005	0.003~ 0.005 ~0.006	★ 325~ 500 ~650	-
	Gray Cast Iron	0.002~ 0.004 ~0.008	0.003~ 0.009 ~0.012	-	★ 390~ 600 ~820
					-

0.003~0.007~0.010

0.003~0.006~0.008

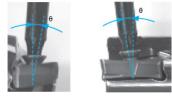
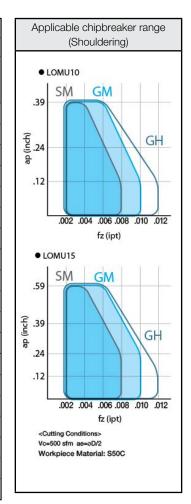



Fig.2

* Cutting with coolant is recommended for titanium alloys.

★: 1st Recommendation ☆: 2nd Recommendation

_

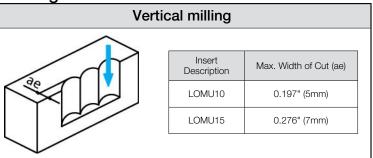
_

★ 325~**500**~650

100~160~225

Ramping, Helical milling and Vertical milling

0.002~**0.003**~0.006


0.002~0.003~0.005

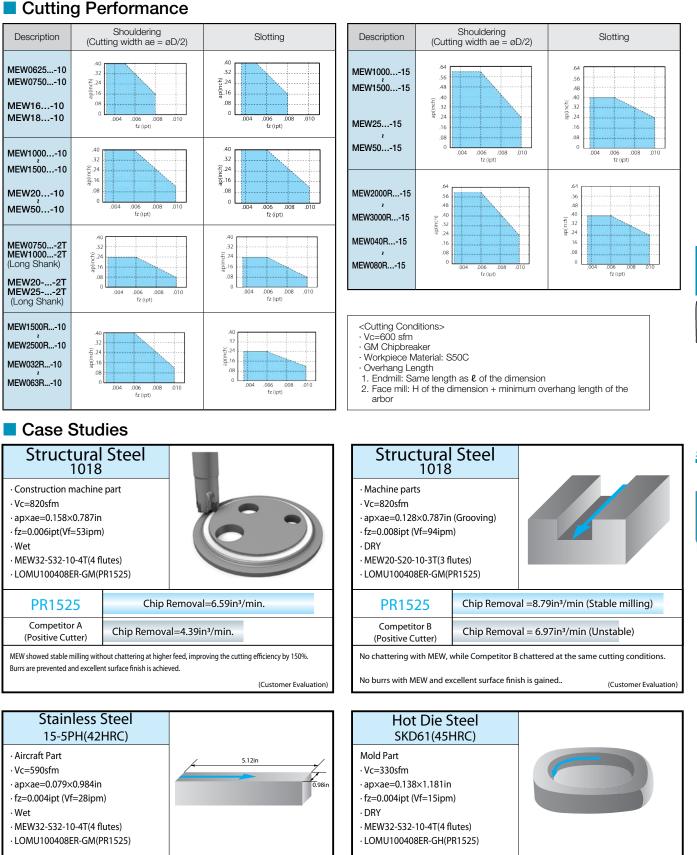
1. Available for vertical milling.

Nodular Cast Iron

Titanium Alloys

2. NOT available for ramping and helical milling, because interference between workpiece and insert may occur.

0° Lead Angle


> ≥ ⊒

Chipbreaker

GM

SM

GH

PR1525

Competitor D

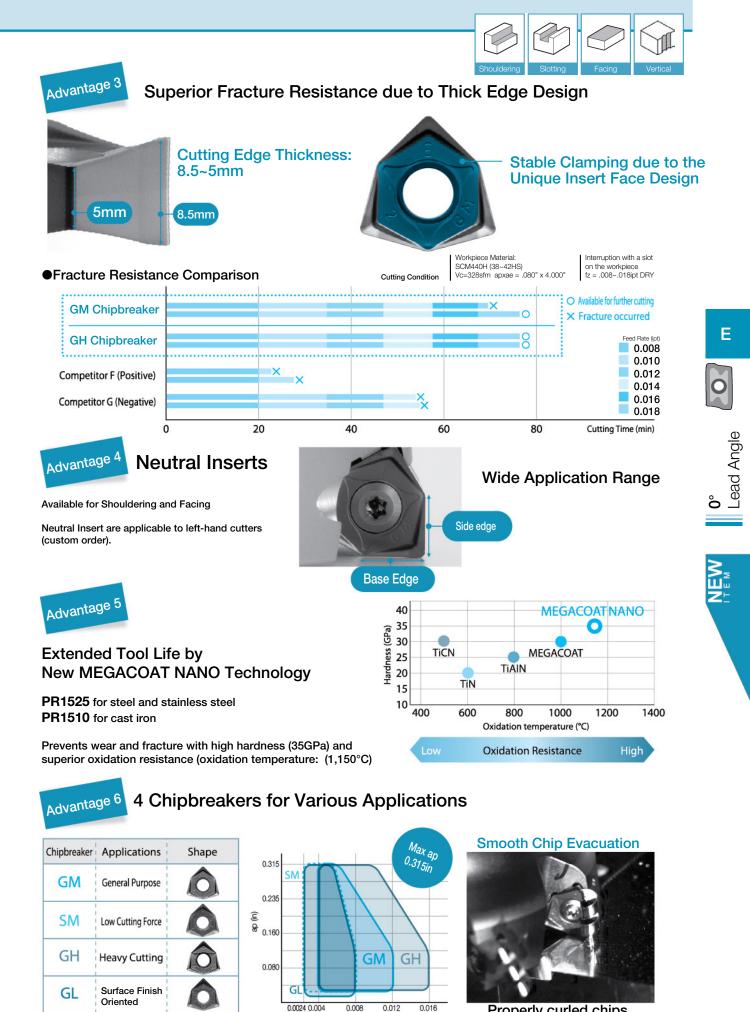
(Positive Cutter)

PR1525 Chip Removal = 2.18in³/min (Further Milling Possible)

Competitor C (Positive Cutter) Chip Removal = 1.64in³/min (Unable to continue cutting)

No chattering and more stable milling is possible with MEW.

Despite the milling difficulty because of the properties of the material, PR1525 kept good cutting edge form, minimizing wear and adhesion. (Customer Evaluation)


(Customer Evaluation)

Chip Removal = 2.56in³/min (Further Milling Possible)

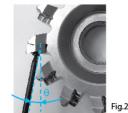
MEW doubled cutting efficiency. Furthermore, MEW inserts have double number of


edges (4-edge), which enables a drastic cost reduction.

Chip Removal = 1.28in³/min (Unable to continue cutting)

fz (ipt)

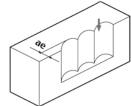
Properly curled chips (The photo was taken by a high speed camera.)


Precautions for use (How to mount the insert)

- 1. Be sure to remove dust and chips from the insert mounting pocket.
- 2. After applying anti-seize compound on portion of taper and thread, attach the screw to the front end of the wrench. While lightly pressing the insert against the pocket walls, put the screw into the hole of the insert and tighten. (Ref. to Fig. 1)
- 3. When tightening the screw, make sure that the wrench is parallel to the screw. Remember that the screw hole of the holder for Extra fine pitch is inclined to the pocket floor. (Ref. to Fig. 2 and Fig. 3)
- 4. Be careful not to tighten the screw with excessive torque. Recommended torque is 4.2N m for M5 screw (SB-50140TR) and 3.5N m for M4 screw (SB-40140TR)).
- 5. After tightening the screw, make sure that there is no clearance between the insert seat surface and the pocket floor of the holder or between the insert side surfaces and the pocket walls of the holder. If there is any clearance, remove the insert and mount it again according to the above steps.
- 6. To change the cutting edge of the insert, turn the insert counterclockwise. (Ref. to Fig. 4) The insert corner identification number is stamped on the top surface of the insert.

Е

0° Lead Angle



Recommended Cutting Conditions

Workpiece	Insert Grades	Cutting Speed Vc	Chipbreaker -			fz (ipt)			
Material		(sfm)		0.002				.012	0.016
			GM★		0.004		• 0.008	0.012	
Carbon Steel	PR1525	400~ 600 ~800	SM☆	0.002		• 0.005	0.008		
Carbon Oteen	1111325	400~000~000	GH			0.008		•0.012	0.016
			GL	0.002		• 0.005	0.008		
			GM★		0.004		• 0.008	0.012	
Alloy Steel	PR1525	320~ 520 ~720	SM☆	0.002		• 0.005	0.008		
Alloy Steel	FNIJZJ	320~ 320 ~720	GH ☆			0.008		•0.012	0.01
			GL	0.002		• 0.005	0.008		
			GM★		0.004	•0.006	0.010		
Mold Steel	PR1525	260~ 450 ~600	SM☆	0.002	0.003				
IVIOIU SLEEI	FR1525	260~ 430 ~600	GH 🕁			0.006	• 0.008	0.012	
			GL	0.002	0.003	0.006			
			GM☆		0.004	•0.006	0.010		
Stainless Steel	PR1525	320~ 500 ~650	SM ★	0.002		0.005	0.008		
			GL	0.002		• 0.005	0.008		
			GM★		0.004		• 0.008	0.012	
Over Cent Iver		000 600 000	SM	0.002		• 0.005	0.008		
Gray Cast Iron	PR1510	390~ 600 ~820	GH ☆			0.008		0.012	0.01
			GL	0.002		• 0.005	0.008		
			GM★		0.004	0.006	0.010		
	001510	005 500 050	SM	0.002	0.003	0.006			
Nodular Cast Iron	PR1510	325~ 500 ~650	GH ☆			0.006	0.008	0.012	
			GL	0.002	0.003	0.006			
	001510	100 100 005	SM ★	0.002	0.003	0.006			
Titanium Alloys	PR1510	100~ 160 ~225	GL	0.002	0.003	0.006			
	Coar	se pitch (with shim)	·						
	500								
Cutter Specification	(For GH Ch	oitch (without shim) ipbreaker, fz=0.0118ij ecommended.)	ot is						
	Extra fin	e pitch (without shim)							
		of the GH breaker is not recommended.)	t						

Vertical milling

Cutting Dia.	Max. Width of Cut (ae)
All items	0.315in (8mm)

Recommended Cutting Conditions (MEC Endmill / Face Mill)

·JT Chipbreaker

	fz	(ipt)	F	Recommended li	nsert Grades (Cu	itting Speed: sfm	n)
	Но	lder	Cermet	MEGA	COAT	PVD Coate	ed Carbide
Workpiece Material	MEC0500~MEC0750 MEC10~MEC19	MEC1000~MEC1500 MEC20~MEC40 MEC1500R~MEC4000R MEC040R~MEC160R	TN100M	PR1225	PR1210	PR830	PR905
Stainless Steel	0.002~0.003~0.004	0.003~0.005~0.006	-	☆ 325~525~656	-	☆ 325~560~600	-
Carbon Steel	0.002~0.004~0.006	0.003~0.006~0.010	☆ 400~525~656	★ 400~600~820	-	☆ 400~525~656	-
Alloy Steel	0.002~0.004~0.005	0.003~0.006~0.008	☆ 325~560~600	★ 325~525~725	-	☆ 325~560~600	-
Mold Steel	0.002~0.003~0.004	0.003~0.005~0.008	☆ 250~400~492	★ 250~560~600	-	☆ 250~400~492	-
Gray Cast Iron	0.002~0.004~0.006	0.003~0.007~0.010	-	-	★ 400~600~820	-	☆ 325~560~600
Nodular Cast Iron	0.002~0.003~0.004	0.003~0.006~0.008	-	-	★ 325~492~656	-	☆ 250~400~525
Titanium Alloys	0.002~0.003~0.004	0.003~0.006~0.008	-	-	★ 98~164~225	-	☆ 75~115~164

 * Cutting with coolant is recommended for Titanium Alloy.

★: 1st Recommendation ☆: 2nd Recommendation

30,000~

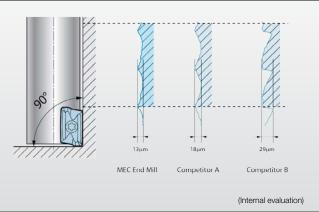
G2.5

·JS Chipbreaker

	fz ((ipt)	Insert Gr	ades (Cutting Spe	eed: sfm)
	Ho	lder	MEGACOAT	PVD Coate	ed Carbide
Workpiece Material	MEC0500~MEC0750 MEC10~MEC19	MEC1000~MEC1500 MEC20~MEC40 MEC1500R~MEC4000R	PR1225	PR830	PR1025
		MEC1500R~MEC4000R MEC040R~MEC160R			
Stainless Steel	0.002-0.003-0.004	0.003~0.004~0.005	*	☆	☆
Oldin iless Oleen	0.002~0.003~0.004	0.003~0.004~0.003	400~600~820	325~450~600	325~450~600
Carbon Steel		0.003~0.006~0.007	*	${\simeq}$	☆
Calbon Steel	0.002~0.004~0.005	0.003~0.000~0.007	400~600~820	400~525~656	325~400~500
Alloy Steel	0.000 0.002 0.004	0.003~0.005~0.006	*	☆	
AllOy Steel	0.002~0.003~0.004	0.003~0.005~0.006	325~525~725	325~450~600	-
Mold Steel	0.002~0.003~0.004	0.003~0.004~0.005	★ 250~450~600	☆ 250~400~500	-

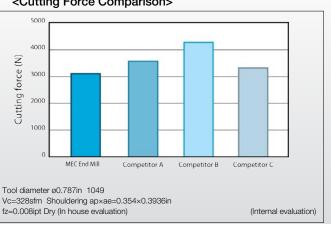
★: 1st Recommendation ☆: 2nd Recommendation

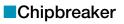
· JA Chipbreaker				· PCD				
Workpiece		Insert Grades (Cutting Speed: sfm)		Workpiece				Insert Grades tting Speed: sfm)
Material	fz (ipt)	Carbide		Material	fz (ipt)			PCD
		GW25					KPD	0230 (KPD001)
Aluminium Alloys (Si 13% or below)	0.002~0.012	656~2625		Aluminium Alloys (Si 13% or bellow)	0.002~0.0)12	1	640~4921
Aluminium Alloys (Si 13% or above)	0.002~0.008	656~984		Aluminium Alloys (Si 13% or above)	0.002~0.0	006	Ç	984~3280
Warning about Max. Rev	human body. olution indicated on ma	,			erious damage		Revolution min ⁻¹)	Balance quality grade G ISO 1940-1 / 8821 (JIS B0905)
1. When running the endmill ar the inserts or toolholder may b		s exceeding the maximum revolution	limit	,		~2	0,000	G16
2. For actual practical revolution						~3	0,000	G6.3

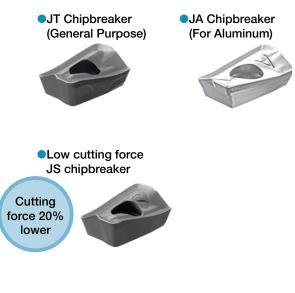

3. When using at a higher revolution, please set within recommended cutting condition.

E 0

Features of MEC

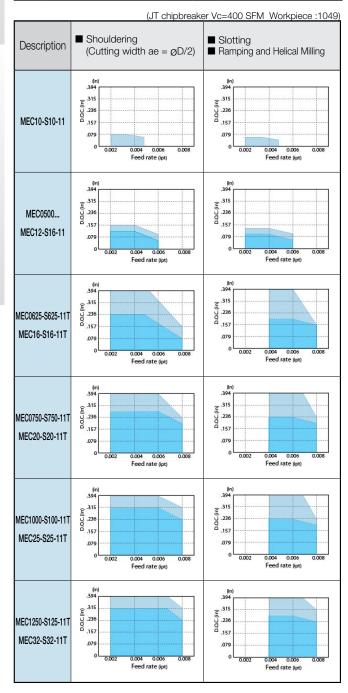

Perfect 90° Shoulders


<Cutting Surface Comparison>



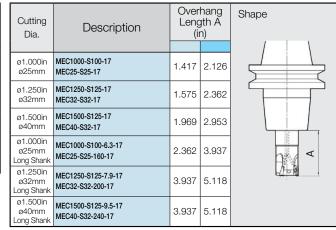
Low cutting force

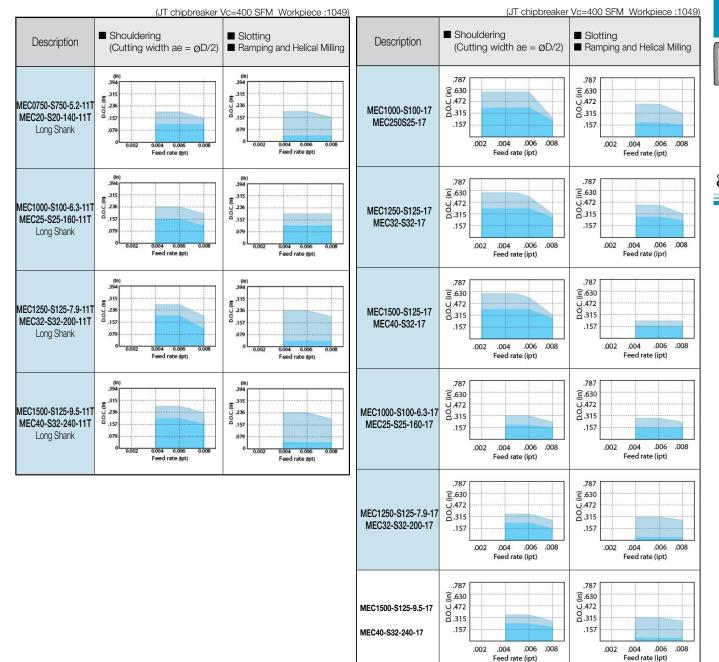
<Cutting Force Comparison>



Cutting Performance of MEC Endmill

(1) Overhang Length When Using BDMT 11mm-type Insert (Standard / Straight Shank)

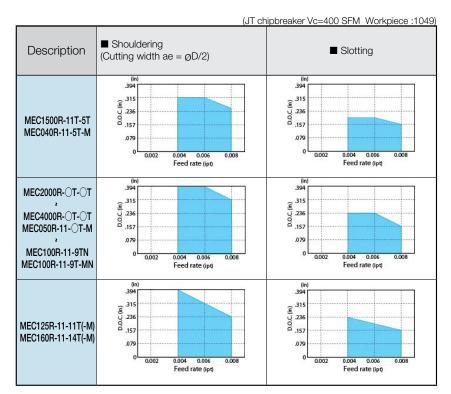

Cutting Dia.	Description (mm / in)	Leng	hang gth A า)	Shape
ø8mm	MEC10-S10-11	0.670	-	
ø12mm	MEC0500 MEC12-S16-11	0.787	1.180	
	MEC0625-S625-11T MEC16-S16-11T	1.180	1.790	
	MEC0750-S750-11T MEC20-S20-11T	1.180	1.790	
	MEC1000-S100-11T MEC25-S25-11T	1.260	1.890	
	MEC1250-S125-11T MEC32-S32-11T	1.580	2.360	, हिंची/-



(2) Overhang Length When Using BDMT 11mm-type Insert (Long Shank)

Cutting Dia.	Description		hang gth A n)	Shape
ø0.750in ø20mm Long Shank	MEC20-S20-140-11T MEC0750-S750-5.2-11T	2.362	3.543	
ø1.000in ø25mm Long Shank	MEC25-S25-160-11T MEC1000-S100-6.3-11T	2.362	3.957	
ø1.250in ø32mm Long Shank	MEC32-S32-200-11T MEC1250-S125-7.9-11T	3.957	5.118	
ø1.500in ø40mm Long Shank	MEC40-S32-240-11T MEC1500-S125-9.5-11T	3.957	5.119	

(3) Overhang Length When Using BDMT 17mm-type Insert



Е

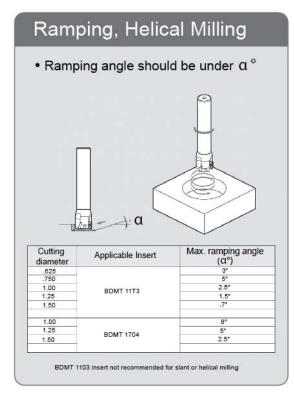
Cutting Performance of MEC Milling Cutter

Overhang Length When Using BDMT 11mm-type Insert

Cutting Dia.	Description	Overhang Length A (in)
ø40mm ø1.500in	MEC1500R-11T-5T MEC040R-11-5T-M	4.528
ø50mm ø2.000in	MEC2000R-11T-5T MEC050R-11-OT-M	3.937
ø63mm	MEC2500R-11T-6T MEC063R-11-OT(-M)	3.740
ø2.500in	MEC063R-11-OT-M	3.740
ø80mm ø3.000in	MEC3000R-11T-7T MEC080R-11-OT(-M)	3.740
ø100mm ø4.000in	MEC4000R-11-9TN MEC100R-11-9TN	
ø125	MEC125R-11-11T(-M)	4.252
ø160	MEC160R-11-14T(-M)	
Shape		
[
l		

0° Lead Angle

Е


Overhang Length When Usin	a BDMT 17mm-type Insert
	<u>j</u>

Overnany L	ength when Using BDIVIT T/	min-type mse
Cutting Dia.	Description	Overhang Length A (mm)
Bia.		
ø40mm	MEC040R-17-4T-M	4.528
ø50mm ø2.000in	MEC2000R-17-4T MEC050R-17-OT-M	3.937
ø63mm	MEC2500R-17-4T MEC063R-17-OT	3.740
ø2.500in	MEC3000R-17-6T MEC063R-17-OT-M	0.1 40
ø80mm ø3.000in	MEC4000R-17-7T MEC080R-17-0T	3.740
ø100mm ø4.000in	MEC100R-17-OTN	
ø125mm	MEC125R-17-9T(-M)	4.252
ø160mm	MEC160R-17-12T(-M)	
Shape		ī
l		
		<u>l</u>

Shouldering Description Slotting (Cutting width ae = $\wp D/2$) .787 .787 <u>_</u>.630 <u>_</u>.630 .472 0.315 .472 0.315 MEC040R-17-4T-M .157 .157 .004 .006 .008 .002 .004 .006 .008 .002 Feed rate (ipt) Feed rate (ipt) .787 .787 <u>£</u>.630 <u>_</u>.630 472.ن 0.315 .472 0.315 MEC2000R-17-4T .157 .157 MEC050R-17-OT-M .004 .006 .008 .004 .006 .008 .002 .002 Feed rate (ipt) Feed rate (ipt) .787 .787 MEC2500R-17-OT <u>_</u>.630 j<u>∈</u>.630 472.ن 472.ض 315. .472 0.315 MEC4000R-17-OTN .157 .157 MEC063R-17-OT(-M) .002 .004 .006 .008 .002 .004 .006 .008 MEC100R-17-OTN Feed rate (ipt) Feed rate (ipt) MEC100R-17-7T-MN .787 .787 j<u>e</u>.630 j<u>≘</u>.630 0.472 0.315 0.472 0.315 MEC125R-17-9T(-M) .157 MEC160R-17-12T(-M) .157 .002 .004 .006 .008 .002 .004 .006 .008 Feed rate (ipt) Feed rate (ipt)

(JT chipbreaker Vc=400 SFM Workpiece :1049)

Ramping, Helical milling and Vertical milling

	0	
		7
Cutting		
Cutting diameter	Applicable Insert	Max. D.O.C. (W)
.625"		Max. D.O.C. (W) .060
diameter	Applicable Insert	

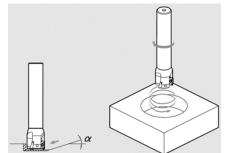
0° Lead Angle

Е

MECX

Recommended Cutting Conditions

	fz (ipt)		Recommended Insert Grades (Cutting Speed Vc: sfm)					
Workpiece Material		IT Objekvestver	MEGA	COAT	PVD Coated Carbide			
	JS Chipbreaker	JT Chipbreaker	PR1225	PR1210	PR830	PR1025	PR905	
Stainless Steel	0.0012~0.0016~0.0020	0.0020~0.0024~0.0028	★ 400~600~820	-	-	☆ 325~ 525 ~656	-	
Carbon Steel	0.0016~0.0031~0.0039	0.0024~0.0039~0.0047	★ 400~600~820	-	☆ 400~ 500 ~600	-	-	
Alloy Steel	0.0016~0.0024~0.0031	0.0024~0.0031~0.0039	★ 325~525~725	-	☆ 325~450~600	-	-	
Mold Steel	0.0016~0.0024~0.0031	0.0024~0.0031~0.0039	★ 250~450~600	-	☆ 250~ 400 ~500	-	-	
Gray Cast Iron	0.0016~0.0031~0.0039	0.0031~0.0039~0.0059	-	★ 400~600~820	-	-	☆ 325~450~600	
Nodular Cast Iron	0.0016~0.0024~0.0031	0.0031~0.0039~0.0047	-	★ 325~500~656	-	-	☆ 250~400~525	
Titanium Alloys	0.0016~0.0024~0.0031	0.0031~0.0039~0.0047	-	★ 98~164~225	-	-	☆ 75~ 11 5~164	


0

0° Lead Angle (

* Cutting with coolant is recommended for titanium alloys.

Slant Milling / Helical Milling For the plunge depth per revolution when helical milling, refer to the cutting

performance data for each tool. Use compressed air during machining.

Cutting Dia. (in)	Applicable Insert	Max.Ramping Angle (a °)		
ø .315		Not Recommended		
ø .400		1.5°		
ø .472, ø .551		2°		
ø .630		3°		
ø .669, ø .709		1.5°		
ø .787	BDMT0703	2°		
ø .827		1.8°		
ø 1.00		1.3°		
ø 1.02		1.2°		
ø 1.26		0.8°		
ø 1.30		0.5°		

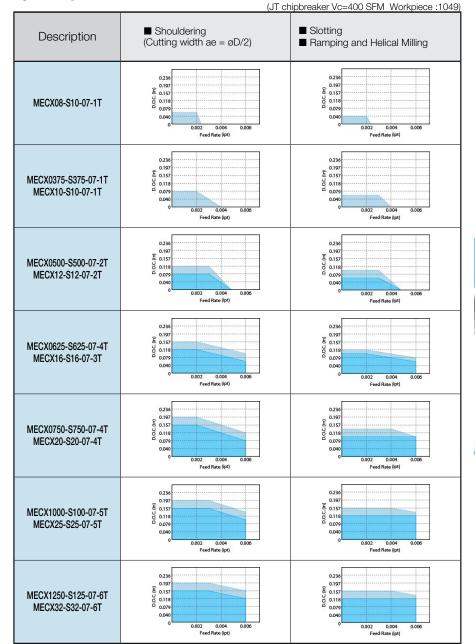
★: 1st Recommendation ☆: 2nd Recommendation

Cutting Performance of MECX Endmill

Cutting Dia.	Description	Overhang Length A (in)		
ø8mm	MECX08-S10-07-1T	0.630	-	
ø0.375in ø10mm	MECX0375-S375-07-1T MECX10-S10-07-1T	0.670	-	
ø0.500in ø12mm	MECX0500-S500-07-2T MECX12-S12-07-2T	0.709	1.18	
ø0.625in ø16mm	MECX0625-S625-07-4T MECX16-S16-07-3T	0.787	1.57	
ø0.750in ø20mm	MECX0750-S750-07-4T MECX20-S20-07-4T	0.787	1.57	
ø1.000in ø25mm	MECX1000-S100-07-5T MECX25-S25-07-5T	1.000	1.97	
ø1.250in ø32mm	MECX1250-S125-07-6T MECX32-S32-07-6T	1.180	1.97	
Shape				

* Machining with extended overhang length is not recommended for Ø0.315in and Ø0.394in.

* The cutting performance list shows applicable range of JT Chipbreaker (PR830) with Standard flute-number type.


For Multi-Edge type, use with 70% or less of ap.

* Cutting conditions of JS Chipbreaker

(1) For MECX0375~MECX0500 / MECX08~MECX12

Decrease the feed rate by 25% according to cutting capability list.

(2) For MECX 0625 / MECX16 and over Decrease the feed rate and ap by 30% according to cutting capability list.

Cutting Performance of MECX Face Mill

		Overhang Length A (in)	(JT chip	bbreaker Vc=400 SFM Workpiece :1049)
Cutting Dia.	Description	~ (III)	Description	■ Shouldering (Cutting width ae = øD/2)
ø1.250in ø32mm	MECX1250R-07-8T MECX032R-07-8T-M		· · ·	(Cutting width at = 0D/2)
ø1.500in ø40mm	MECX1500R-07-10T MECX040R-07-10T-M	3.937		0.236 0.197 © 0.157
ø2.000in ø50mm	MECX2000R-07-12T MECX050R-07-12T-M	3.937	MECX032R-07-8T-M MECX040R-07-10T-M	0.118
ø2.500in ø63mm	MECX2500R-07-14T MECX063R-07-14T-M			0.040 0 0.002 0.004 0.005 Feed Rate (Ipt)
Shape		A	MECX050R-07-12T-M MECX063R-07-14T-M	0.236 E. 0.177 G. 0.177 0.079 0.040 0.002 0.004 0.005 Feed Rate (ipt)
		,	* Not Recommended for Slottir	ng.

dle dle

E

0° Lead Angle

Recommended Cutting Conditions (When using a notched insert)

		Recommended Insert Grades (Cutting Speed: sfm)					
Workpiece Material	fz (ipt)		MEGACOAT		PVD Coate	ed Carbide	
		PR1225	PR1230	PR1210	PR830	PR905	
Carbon Steel	0.003~0.004~0.006	☆ 400~ 600 ~875	★ 400~600~725	-	☆ 325~450~600	-	
Alloy Steel	0.003~0.004~0.006	☆ 325~ 52 5~725	★ 325~525~650	-	☆ 325~450~600	-	
Mold Steel	0.003~0.004~0.006	☆ 250~450~600	★ 250~450~525	-	☆ 325~400~500	-	
Gray Cast Iron	0.003~0.006~0.007	-	-	★ 400~600~875	-	☆ 325~450~600	
Nodular Cast Iron	0.003~0.006~0.007	-	-	★ 325~500~725	-	☆ 325~400~500	
Titanium Alloys	0.003~0.004~0.006	-	-	★ 325~175~225	-	☆ 75~125~175	

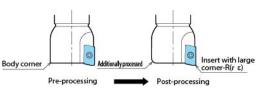
* Cutting with coolant is recommended for titanium alloy.

★: 1st Recommendation ☆: 2nd Recommendation

1. The recommended cutting conditions above are for notched inserts.

2. If using an insert without notch, the cutting depth (ap) and width (ae) should be less than 60% of those of a notched insert.

· JA Chipbreaker


Workpiece Material	fz (ipt)	Recommended Insert Grades (Cutting Speed Vc : sfm) Carbide
		GW25
Aluminum Alloy (Si 13% or less)	0.002~0.012	656~2625
Aluminum Alloy (Si 13% or less)	0.002~0.008	656~984

■ When using inserts with corner-R(rɛ)1.6 or larger, additional modifications of the cutter body will be necessary. Ref. to the table below for the recommended modifications. (Additional grind off is not necessary when corner-R is 1.2mm or less.)

Insert Corner-R(rɛ)	Additional Processing Dimension to Body Corner	
1.6	B1.0	
2.0	H1.0	
2.4	R1.2	
3.1	R1.6	
4.0	R2.5	

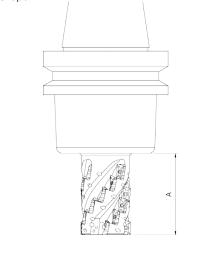
 * Round-shaped additional processing is recommended.
 When applying chamfer shaped additional

processing, do not cut away too much.

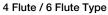
ion

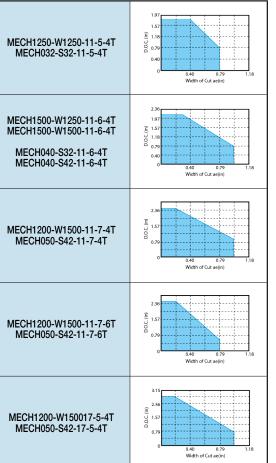
Е

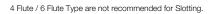
MECH


Cutting Performance (Used Machine: Machining center equivalent to AC15 / 18.5kW)

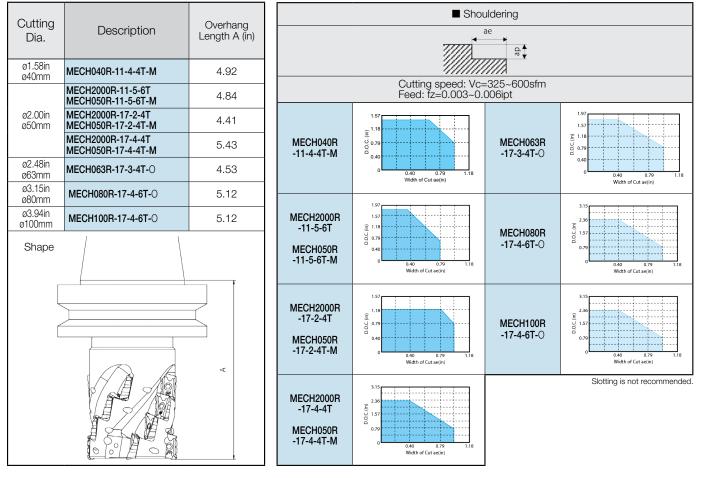
MECH Endmill Type


2 Flute Type

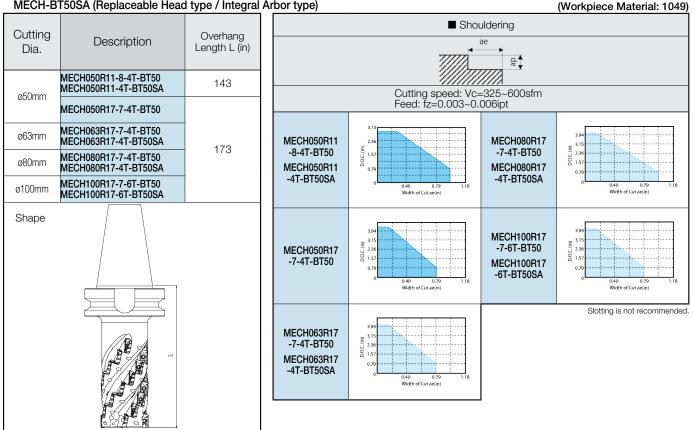

(Workpiece Material:1049)


Cutting Dia.	Description	Overhang Length A (in)
ø1.00in ø25mm	MECH1000-W1000-11-4-2T MECH025-S25-11-4-2T	1.89
ø1.25in	MECH1250-W1250-11-5-2T MECH032-S32-11-5-2T	0.04
ø32mm	MECH1250-W1250-11-5-4T MECH032-S32-11-5-4T	2.24
ø1.50in	MECH1500-W1250-11-6-4T MECH040-S32-11-6-4T	2.56
ø40mm	MECH1500-W1500-11-6-4T MECH040-S42-11-6-4T	2.30
ø2.00in	MECH2000-W1500-11-7-4T MECH050-S42-11-7-4T	0.00
ø50mm	MECH2000-W1500-11-7-6T MECH050-S42-11-7-6T	2.99
ø1.50in	MECH1500-W1250-17-4-2T MECH040-S32-17-4-2T	0.01
ø40mm	MECH1500-W1500-17-4-2T MECH040-S42-17-4-2T	2.91
ø2.00in ø50mm	MECH2000-W1500-17-5-4T MECH050-S42-17-5-4T	3.50
Shape		

2 Flute Type		(Workpiece Material:1049)
	■ Shouldering	■ Slotting
Description	ae B	
	Cutting Speed: Vc=325~590sfm Feed: fz=0.003~0.006 ipt	Cutting speed: Vc=325~400sfm Feed: fz=0.003~0.005 ipt
MECH1000-W1000-11-4-2T MECH025-S25-11-4-2T	1.57 1.18 0.79 0.40 0.40 0.40 0.79 1.18 Width of Cut ae(in)	1.57 1.18 0.79 0.40 0.00 Feed Rate (z(pt))
MECH1250-W1250-11-5-2T MECH032-S32-11-5-2T	197 157 G 1.18 0 0.79 0.40 0 0.40 0.79 1.18 Width of Cut ae(in)	1.97 1.57 G 0.79 0.40 0.003 004 Feed Rate fz(pt)
MECH1500-W1250-17-4-2T MECH1500-W1500-17-4-2T MECH040-S32-17-4-2T MECH040-S42-17-4-2T	2.36 1.57 g 1.57 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.57 1.15 1.57	2.36 1.97 G 1.57 1.18 0.40 0.00 0.00 0.00 Feed Rate (z(pt)



6


Е

MECH Shell Mill Type

(Workpiece Material: 1049)

MECH-BT50 (Integral Arbor type) MECH-BT50SA (Replaceable Head type / Integral Arbor type)

uč Lead Angle

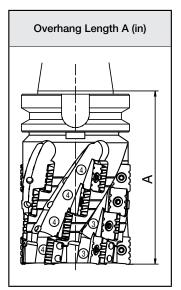
Е

Recommended Cutting Conditions

Workpiece	fz (ipt)		Recommended Insert Grades (Cutting Speed: sfm)					
	Low Cutting Force	General Purpose	MEGACOAT		PVD Coated Carbide			
Material	NB3P+NB4P	NB3+NB4	PR1230	PR1210	PR660	PR830	PR905	
Cast Iron	0.006	0.008		*			*	
Cast from	0.006	0.006	-	325~ 500 ~650	-	-	325~ 450 ~600	
Oartham Otaal	0.000	0.000	*		\$	\$		
Carbon Steel	0.006	0.008	325~ 500 ~650	-	325~ 450 ~600	325~ 500 ~600	-	
Stainless Steel	Not recommended							
Aluminum / Copper	Not recommended							

For MSR, cutting speed should be carefully adjusted depending on the length of toolholder protruding from the end of machine spindle.

★: 1st Recommendation ☆: 2nd Recommendation


When the protruding length of toolholder is small, → set the cutting speed to slightly higher than the recommended cutting conditions.
When the protruding length of toolholder is large, ⇒ set the cutting speed to slightly lower than the recommended cutting conditions.

Cutting Conditions

1) Shouldering

When using MSR100R-1

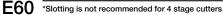
Material A (in) Cutting speed fz apxae (in) (in3/min) Cast Iron Less than 3.94in Vc=590sfm fz=0.008ipt 0.79×3.15 67.13 Cast Iron 3.94~7.87in Vc=590sfm fz=0.008ipt 0.79×1.57 33.56 7.91 in and over Vc=400sfm fz=0.008ipt 0.79×1.18 16.84 Less than 3.94in Vc=500sfm fz=0.008ipt 0.79×3.15 56.14 Carbon Steel 3.94~7.87in Vc=500sfm fz=0.008ipt 0.79×1.57 28.07 7.91 in and over Vc=325sfm fz=0.008ipt 0.79×1.18 13.91	Workpiece	Overhang Length	Cutting C	Conditions		Chip Removal Rate
Cast Iron 3.94~7.87in Vc=590sfm fz=0.008ipt 0.79×1.57 33.56 7.91in and over Vc=400sfm fz=0.008ipt 0.79×1.18 16.84 Less than 3.94in Vc=500sfm fz=0.008ipt 0.79×3.15 56.14 Carbon Steel 3.94~7.87in Vc=500sfm fz=0.008ipt 0.79×1.57 28.07	Material	A (in)	Cutting speed fz		ap×ae (in)	(in3/min)
T.91in and over Vc=400sfm fz=0.008ipt 0.79×1.18 16.84 Less than 3.94in Vc=500sfm fz=0.008ipt 0.79×3.15 56.14 Carbon Steel 3.94~7.87in Vc=500sfm fz=0.008ipt 0.79×1.57 28.07		Less than 3.94in	Vc=590sfm	fz=0.008ipt	0.79×3.15	67.13
Less than 3.94in Vc=500sfm fz=0.008ipt 0.79×3.15 56.14 Carbon Steel 3.94~7.87in Vc=500sfm fz=0.008ipt 0.79×1.57 28.07	Cast Iron	3.94~7.87in	Vc=590sfm	fz=0.008ipt	0.79×1.57	33.56
Carbon Steel 3.94~7.87in Vc=500sfm fz=0.008ipt 0.79×1.57 28.07		7.91 in and over	Vc=400sfm	fz=0.008ipt	0.79×1.18	16.84
		Less than 3.94in	Vc=500sfm	fz=0.008ipt	0.79×3.15	56.14
7.91in and over Vc=325sfm fz=0.008ipt 0.79x1.18 13.91	Carbon Steel	3.94~7.87in	Vc=500sfm	fz=0.008ipt	0.79×1.57	28.07
		7.91 in and over	Vc=325sfm	fz=0.008ipt	0.79×1.18	13.91

When using MSR100R-2

Workpiece	Overhang Length	v	onditions	ap×ae (in)	Chip Removal Rate
Material	A (in)	Cutting speed	fz	,	(in3/min)
	Less than 5.12in	Vc=590sfm	fz=0.008ipt	1.57×1.57	67.13
Cast Iron	5.12~9.06in	Vc=590sfm	fz=0.008ipt	1.57×0.79	33.56
	9.09in and over	Vc=400sfm	fz=0.008ipt	1.57×0.79	22.46
	Less than 5.12in	Vc=500sfm	fz=0.008ipt	1.57×1.57	56.14
Carbon Steel	5.12~9.06in	Vc=500sfm	fz=0.008ipt	1.57×0.79	28.07
	9.09in and over	Vc=325sfm	fz=0.008ipt	1.57×0.79	18.55

When using MSR100R-4

Workpiece	Overhang Length	Cutting C	onditions	<i>(</i> ,)	Chip Removal Rate	
Material	A (in)	Cutting speed	fz	ap×ae (in)	(in3/min)	
Cast Iron	Less than 7.09 in	Vc=590sfm	fz=0.008ipt	2.95×0.79	63.16	
	7.09~11.02in	Vc=590sfm	fz=0.008ipt	2.95×0.39	31.61	
	11.06in and over	Vc=400sfm	fz=0.008ipt	2.95×0.39	21.05	
Carbon Steel	Less than 7.09 in	Vc=500sfm	fz=0.008ipt	2.95×0.79	52.66	
	7.09~11.02in	Vc=500sfm	fz=0.008ipt	2.95×0.39	26.30	
	11.06in and over	Vc=325sfm	fz=0.008ipt	2.95×0.39	17.39	


2) Slotting

•When using MSR100R-1

Workpiece	Overhang Length	Cutting C	onditions	()	Chip Removal Rate
Material	A (in)	Cutting speed	fz	ap×ae (in)	(in3/min)
	Less than 3.94in	Vc=590sfm	fz=0.008ipt	0.55×3.94	58.95
Cast Iron	3.94~7.87in	Vc=500sfm	fz=0.008ipt	0.28×3.94	24.59
	7.91 in and over	Vc=400sfm	fz=0.008ipt	0.16×3.94	11.23
Carbon Steel	Less than 3.94in	Vc=500sfm	fz=0.008ipt	0.28×3.94	24.59
	3.94~7.87in	Vc=400sfm	fz=0.008ipt	0.16×3.94	11.23
	7.91 in and over	Vc=325sfm	fz=0.008ipt	0.12×3.94	6.96

When using MSR100R-2

Workpiece	Overhang Length	Cutting Conditions		ap×ae (in)	Chip Removal Rate
Material	A (in)	Cutting speed	fz	apxae (iii)	(in3/min)
Cast Iron	Less than 5.12in	Vc=590sfm	fz=0.008ipt	0.55×3.94	58.95
	5.12~9.06in	Vc=500sfm	fz=0.008ipt	0.28×3.94	24.59
	9.09in and over	Vc=400sfm	fz=0.008ipt	0.16×3.94	11.23
Carbon Steel	Less than 5.12in	Vc=500sfm	fz=0.008ipt	0.28×3.94	24.59
	5.12~9.06in	Vc=400sfm	fz=0.008ipt	0.16×3.94	11.23
	9.09in and over	Vc=325sfm	fz=0.008ipt	0.12×3.94	6.96

E

2) Slotting When using MSR160R-1

Workpiece Overhang Length		Cutting C	onditions		Chip Removal Rate
Material	A (in) Cutting speed fz		ap×ae (in)	(in³/min)	
Cast Iron	Less than 3.94in	Vc=600sfm	fz=0.008ipt	0.39×6.30	56.63
	3.94~7.87in	Vc=500sfm	fz=0.008ipt	0.20×6.30	28.32
	7.91 in and over	Vc=400sfm	fz=0.008ipt	0.16×6.30	14.83
Carbon Steel	Less than 3.94in	Vc=500sfm	fz=0.008ipt	0.20×6.30	23.43
	3.94in~7.87in	Vc=400sfm	fz=0.008ipt	0.12×6.30	14.04
	7.91 in and over	Vc=325sfm	fz=0.008ipt	0.08×6.30	6.22

When using MSR160R-2

Workpiece	Overhang Length Cutting Conditions		<i>(</i>)	Chip Removal Rate	
Material	A (in)	Cutting speed	fz	ap×ae (in)	(in³/min)
	Less than 5.12in	Vc=600sfm	fz=0.008ipt	0.39×6.30	56.63
Cast Iron	5.12~9.06in	Vc=500sfm	fz=0.008ipt	0.20×6.30	23.43
	9.09in and over	Vc=400sfm	fz=0.008ipt	0.16×6.30	14.83
Carbon Steel	Less than 5.12in	Vc=500sfm	fz=0.008ipt	0.20×6.30	23.43
	5.12~9.06in	Vc=400sfm	fz=0.008ipt	0.12×6.30	11.11
	9.09in and over	Vc=325sfm	fz=0.008ipt	0.08×6.30	6.22

Slotting is not recommended for 4 stage cutters

ap×ae: 1.77×0.98

e.g.) Load meter 90%

3rd Pass 2nd Pass 1st Pass

In case of MSR100R-2

e.g.) Load meter 120%

ap×ae:

0.59×2.95in

1st Pass

2nd Pass

3rd Pass

Q&A

Q-1 What cutting conditions are recommended in most cases for MSR?
 A-1 Vc=500sfm, fz=0.008ipt, larger cutting depth and smaller cutting width
 Q-2 What is the required equipment for MSR?
 A-2 Maximum spindle revolution should be lower than 4000RF

* The reason it is not recommended for high RPM spindle machines is due to their lower torque value. * Although MSR works with BT40 shank, maximum available fz is about 0.004ipt.

What are the points to remember when using a lower horsepower machine?

A-3

Do not use large size cutters. ⇒⊘2.5" or ⊘3.0" are recommended Please increase cutting speed and decrease feed rate. Set up conditions to get the largest available torque by checking torque curve of the machine. In conditions of Vc=500sfm, insufficient torque was amiable due to being in high gear. In this case, use Vc which can exert enough torque, such as Vc=400sfm. * Machine torque curve is a priority.

How do I deal with an unstable workpiece? Decrease feed rate during the * Vibr

* Vibration and workpiece movement are most likely to occur upon the cutters initial entry entry into the cut. • Effective combinations for maintaining cycle time while reducing the feedrate. Vc=500sfm, fz=0.008ipt Vc=650sfm, fz=0.006ipt

What tool life can I expect?

initial cut.

A-5 Q-6	Example: Chip weight: 700kg/Corner (Result by PR660) Cutting time: 90min. (calculated value) Cutting distance: 65m (calculated value) Metal Removal Rate? → About 7.8kg chips remov Tool life time = 700kg (Chip weight)÷7.8kg (Chip e Cutting distance= 90min (Time by the end of tool 1 * Cutting Vc=150m/min, apxae: 20x70mm, Vf=717 * Tool: MSR100R-2 (6 Flutes) How do I reduce chattering?	vacuation amount p life) x 717mm/min (T	,
A-6	If chattering occurs, then the following conditions Reduce cutting speed and increase feed rate.	are recommended.	In case of Cast Iron

cutting speed and increase feed rate.	In case of Ste
	· Vc=250sfm
	· fz=0.010ipt

In case of Cast Iron
• Vc=250sfm

· fz=0.014ipt