Feed Rate Guide: REGULAR STYLE

Material Guide		STEEL				STAINLESS STEEL			CAST IRON		HI-TEMP ALLOYS	
		$\begin{aligned} & 10 \mathrm{xx} \\ & 11 \mathrm{xx} \\ & 12 \mathrm{xx} \\ & 12 L \mathrm{Lx} \\ & 15 \mathrm{xx} \end{aligned}$	13xx 41xx 43xx 86xx 92xx 93xx Chromoly	$\begin{array}{cc} \text { A2 } & \text { H13 } \\ \text { A3 } & \text { M1 } \\ \text { D2 } & \text { O-1 } \\ \text { H11 } & \text { S-7 } \\ \text { NAK } 55 \end{array}$	$\begin{gathered} \text { P20 } \\ \text { P21 } \\ \text { S-136 } \\ \text { PX5 } \\ \text { NAK } 80 \end{gathered}$	$\begin{array}{ll} \hline 410 & 430 F \\ 416 & 440 C \\ 420 & \end{array}$	303 320 304 304 L 316 316 L 321 347 Kovar Invar 36	$13-8$ $15-5$ $17-4$ Carpenter Custom 465 Invar	Grey GG-10 GG-15 GG-20/25 GG-30/35 GG-40	Ductile (Nodular) Malleable GGG-40 GGG-50 GGG-60 GGG-70	Inconel 718 Inconel 600 Rene 100 Rene 41 A286 Haynes Waspalloy H-188 Hastalloy Hast-X Mar-M Stellite AirResist Monel	Ti61AL4V (grades 5-38)
Surface Feet per Minute (SFM)												
		Iow - high	1ow - high	Iow - high	Iow - high	Iow - high	Iow - high	low - high				
SFM	<42 Rc	360-440	200-400	200-300	200-300	270-330	160-300	130-250	300-450	200-320	70-110	160-220
	$\geq 42 \mathrm{Rc}$	270-330	210-250	190-230	170-210	210-250	170-210	140-170	230-290	160-200	50-60	140-170
Feed per Tooth (FPT)												
1/8	Slot	. $0006-.0008$. $0005-.0007$. $0005-.0006$. $0005-.0006$. $00005-.0007$. 0005 - . 0006	. $00005-.0006$. $0006-.0008$. $00005-.0006$. 0003 - . 0004	. $0004-.0005$
	HR	. 0008 - . 0010	. $0007-.0008$. 0006 - . 0008	. $0006-.0007$. $0007-.0008$. $0006-.0008$. 0006 - . 0007	. $0008-.0010$. $00007-.0008$. $0004-.0004$. $0005-.0006$
	LR	. $0010-.0012$. $0008-.0010$. 0000 - . 0010	. $0007-.0009$. 00008 - . 0010	. 0008 - . 0010	. 0007 -. 0009	. $0010-.0012$. $00008-.0010$. $0005-.0006$. $00006-.0008$
1/4	Slot	. $0013-.0015$. $0011-.0013$. $0010-.0012$. $0009-.0011$. $0011-.0013$. $0010-.0012$. $00009-.0011$. $0013-.0015$. $0010-.0013$. $0006-.0007$. 00008 - . 0010
	HR	. $0016-.0019$. $0014-.0017$. $0013-.0015$. 0011 -. 0014	. 0014 -. 0017	. $0013-.0015$. $0011-.0014$. $0016-.0019$. $0013-.0016$. 0007 - . 00009	. $0010-.0012$
	LR	. $0020-.0024$. $0017-.0021$. $0016-.0019$. $0014-.0017$. $0017-.0021$. $0016-.0019$. $0014-.0017$. $0020-.0024$. $0016-.0020$. $0009-.0011$. $0012-.0015$
3/8	Slot	. $0019-.0023$. $0016-.0020$. $0015-.0018$. $0014-.0017$. $0016-.0020$. $0015-.0018$. 0014 -. 0017	. $0019-.0023$. $0016-.0019$. $0009-.0011$. $0012-.0015$
	HR	. $0024-.0029$. $0020-.0025$. $0019-.0023$. 0017 -. 0021	. $0020-.0025$. $0019-.0023$. 0017 -. 0021	. $0024-.0029$. $0020-.0024$. $0011-.0013$. $0015-.0018$
	LR	. $0030-.0036$. $0025-.0031$. $0024-.0029$. $0021-.0026$. $0025-.0031$. $0024-.0029$. $0021-.0026$. $0030-.0036$. $0024-.0030$. $0014-.0017$. $0019-.0023$
1/2	Slot	. $0025-.0031$. 0022 -. 0026	. $0020-.0025$. 0018 - . 0022	. $0022-.0026$. $0020-.0025$. 0018 -. 0022	. $0025-.0031$. $0021-.0026$. $0012-.0014$. $0016-.0019$
	HR	. $0032-.0039$. 0027 - . 0033	. $0025-.0031$. $0023-.0028$. $0027-.0033$. $0025-.0031$. $0023-.0028$. $0032-.0039$. $0026-.0032$. $0014-.0018$. $0020-.0024$
	LR	. $0039-.0048$. $0034-.0041$. $0032-.0039$. 0028 - . 0034	. $0034-.0041$. $0032-.0039$. 0028 -. 0034	. $0039-.0048$. $0033-.0040$. 0018 - . 0022	. $0025-.0030$
5/8	Slot	. $0032-.0039$. $0027-.0033$. $0025-.0031$. $0023-.0028$. 0022 -. 0033	. $0025-.0031$. $0023-.0028$. $0032-.0039$. 0026 - . 0032	. $0014-.0018$. $0022-.0024$
	HR	. $0039-.0048$. $0034-.0041$. $0032-.0039$. 0028 -. 0034	. $0034-.0041$. $0032-.0039$. 0028 -. 0034	. $0039-.0048$. $0033-.0040$. 0018 - . 0022	. $0025-.0030$
	LR	. $0049-.0060$. $0042-.0052$. $0039-.0048$. $0035-.0043$. $0042-.0052$. $0039-.0048$. $0035-.0043$. $0049-.0060$. $0041-.0050$. $0023-.0028$. $0031-.0038$
3/4	Slot	. $0038-.0046$. $0032-.0040$. $0030-.0037$. $0027-.0033$. $0032-.0040$. $0030-.0037$. 0027 -. 0033	. $0038-.0046$. $0031-.0038$. $0017-.0021$. 0024 -. 0029
	HR	. 0047 -. 0058	. $0041-.0050$. $0038-.0046$. $0034-.0041$. 0041 -. 0050	. 0038 -. 0046	. 0034 -. 0041	. 0047 -. 0058	. $0039-.0048$. 0022 -. 0026	. $0030-.0036$
	LR	. $0059-.0072$. $0051-.0062$. $0047-.0058$. $0042-.0052$. $0051-.0062$. 0047 -. 0058	. $0042-.0052$. $0059-.0072$. 0049 -. 0060	. $0027-.0033$. $0037-.0045$
1	Slot	. $0050-.0062$. $0043-.0053$. $0040-.0049$. $0036-.0044$. 0043 -. 0053	. $0040-.0049$. $0036-.0044$. $0050-.0062$. $0042-.0051$. $0023-.0028$. $0032-.0039$
	HR	. $0063-.0077$. $0054-.0066$. $0050-.0062$. $0045-.0055$. $0054-.0066$. $0050-.0062$. $0045-.0055$. $0063-.0077$. $0052-.0064$. $0029-.0035$. $0040-.0048$
	LR	. $0079-.0096$. $0068-.0083$. $0063-.0077$. $0056-.0069$. $0068-.0083$. $0063-.0077$. $0056-.0069$. $0079-.0096$. $0065-. .0080$. $0036-.0044$. $0050-.0061$

		Depth of Cut Guide: REGULAR STYLE		
		Slotting (S)	Heavy Roughing (HR)	Light Roughing (LR)
O	\leq Regular LOC	ADOC $=$ up to 50% of dia.	$\begin{aligned} & \text { ADOC }=\text { up to } 1.5 \times \text { dia. } \\ & \text { RDOC }=30 \% \text { to } 50 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=L O C \\ & \text { RDOC }=15 \% \text { to } 25 \% \text { of dia. } \end{aligned}$
(1)	> Regular LOC	We recommend using reduced neck (RN) tooling for long reach	$\begin{aligned} & \text { ADOC }=\text { up to } 1 \times \text { dia. } \\ & \text { RDOC }=20 \% \text { to } 30 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\text { up to } 2 \times \text { dia. } \\ & \text { RDOC }=10 \% \text { to } 15 \% \text { of dia. } \end{aligned}$

Please visit our Technical Section on Pages 98-135 for further assistance.

HEVR \＆HKXR－RN
 Speed \＆Feed

Feed Rate Guide：REGULAR STYLE \＆REDUCED NECK STYLE

Material Guide		STEEL				HARD STEEL	STAINLESS STEEL			CAST IRON		HI－TEMP ALLOYS	
		$\begin{aligned} & 10 \mathrm{xx} \\ & 11 \mathrm{xx} \\ & 12 \mathrm{xx} \\ & 12 \mathrm{Lxx} \\ & 15 \mathrm{xx} \end{aligned}$	$13 x x$ $41 x x$ $43 x x$ $86 x x$ $92 x x$ $93 x x$ Chromoly	A2 H13 A3 M1 D2 $0-1$ H11 S－7 NAK 55	$\begin{gathered} \text { P20 } \\ \text { P21 } \\ \text { S-136 } \\ \text { PX5 } \\ \text { NAK } 80 \end{gathered}$	Steel Grades $>50 \mathrm{Rc}$ ．	$\begin{array}{ll}410 & 430 \mathrm{~F} \\ 416 & 440 \mathrm{C} \\ 420 & \end{array}$	303 320 304 304 L 316 316 L 321 347 Kovar Invar 36	13－8 $15-5$ $17-4$ Carpenter Custom 465 Invar	Grey GG－10 GG－15 GG－20／25 GG－30／35 GG－40	Ductile（Nodular） Malleable GGG－40 GGG－50 GGG－60 GGG－70		Ti61AL4V （grades 5－38）
Surface Feet per Minute（SFM）													
		low－high											
SFM	＜ 42 Rc	360－440	200－400	200－300	200－300	80－100	270－330	160－300	130－250	300－450	200－320	70－110	160－220
	$\geq 42 \mathrm{Rc}$	270－330	210－250	190－230	170－210		210－250	170－210	140－170	230－290	160－200	50－60	140－170
Feed per Tooth（FPT）													
1／4	Slot	． $0013-.0015$	． 0011 －． 0013	． $0010-.0012$	． $0009-.0011$	． $0009-.0011$	． $0011-.0013$	． $0010-.0012$	． $0009-.0011$	． 0013 －． 0015	． $0010-.0013$	． 0006 －． 0007	． 0008 －． 0010
	硡	． 0016 －． 0019	． 0014 －． 0017	． $0013-.0015$	． 0011 －． 0014	． $0011-.0013$	． 0014 －． 0017	． $0013-.0015$	． 0011 －． 0014	． $0016-.0019$	． $0013-.0016$	． 0007 －． 0009	． $0010-.0012$
	LR	． $0020-.0024$	． $0017-.0021$	． $0016-.0019$	． $0014-.0017$	． 0014 －． 0017	． $0017-.0021$	． $0016-.0019$	． $0014-.0017$	． $0020-.0024$	． $0016-.0020$	． $0000-.0011$	． $0012-.0015$
3／8	Slot	． $0019-.0023$	． $0016-.0020$	． $0015-.0018$	． $0014-.0017$	． 0013 －． 0016	． $0016-.0020$	． $0015-.0018$	． $0014-.0017$	． $0019-.0023$	． $0016-.0019$	． $0000-.0011$	． $0012-.0015$
	HR	． $0024-.0029$	． $0020-.0025$	． $0019-.0023$	． $0017-.0021$	． 0016 －． 0020	． $0020-.0025$	． $0019-.0023$	． $0017-.0021$	． $0024-.0029$	． $0020-.0024$	． $0011-.0013$	． $0015-.0018$
	LR	． $0030-.0036$	． $0025-.0031$	． $0024-.0029$	． $0021-.0026$	． $0020-.0025$	． $0025-.0031$	． $0024-.0029$	． $0021-.0026$	． $0030-.0036$	． $0024-.0030$	． $0014-.0017$	． $0019-.0023$
1／2	Slot	． $0025-.0031$	． $0022-.0026$	． $0020-.0025$	． $0018-.0022$	． $0017-.0021$	． $0022-.0026$	． $0020-.0025$	． $0018-.0022$	． $0025-.0031$	． 0021 － 00026	． $0012-.0014$	． $0016-.0019$
	HR	． $0032-.0039$	． 0027 －． 0033	． $0025-.0031$	． $0023-.0028$	． 0022 －． 0022	． $0027-.0033$	． $0025-.0031$	． $0023-.0028$	． $0032-.0039$	． $0026-.0032$	． $0014-.0018$	． $0020-.0024$
	$L R$	． $0039-.0048$	． $0034-.0041$	． $0032-.0039$	． 0028 －． 0034	． $0027-.0033$	． $0034-.0041$	． $0032-.0039$	． $0028-.0034$	． $0039-.0048$	． $0033-.0040$	． $0018-.0022$	． $0025-.0030$
5／8	Slot	． $0032-.0039$	． $0027-.0033$	． $0025-.0031$	． $0023-.0028$	． 0022 －． 0026	． $0027-.0033$	． $0025-.0031$	． $0023-.0028$	． $0032-.0039$	． $0026-.0032$	． $0014-.0018$	． $0020-.0024$
	HR	． $0039-.0048$	． $0034-.0041$	． $0032-.0039$	． $0028-.0034$	． 0027 －． 0033	． $0034-.0041$	． $0032-.0039$	． $0028-.0034$	． $0039-.0048$	． $0033-.0040$	． 0018 －． 0022	． $0025-.0030$
	LR	． $0049-.0060$	． $0042-.0052$	． $0039-.0048$	． $0035-.0043$	． $0034-.0041$	． $0042-.0052$	． $0039-.0048$	． $0035-.0043$	． $0049-.0060$	． $0041-.0050$	． $0023-.0028$	． $0031-.0038$
3／4	Slot	． $0038-.0046$	． $0032-.0040$	． $0030-.0037$	． $0027-.0033$	． 0026 －． 0032	． $0032-.0040$	． $0030-.0037$	． $0027-.0033$	． 0038 －． 0046	． $0031-.0038$	． $0017-.0021$	． $0024-.0029$
	HR	． $0047-.0058$	． 0041 －． 0050	． $0038-.0046$	． $0034-.0041$	． $0032-.0040$	． 0041 －． 0050	． $0038-.0046$	． $0034-.0041$	． $0047-.0058$	． $0039-.0048$	． 0022 －． 0026	． $0030-.0036$
	LR	． $0059-.0072$	． $0051-.0062$	． $0047-.0058$	． $0042-.0052$	． 0041 － 00050	． $0051-.0062$	． $0047-.0058$	． $0042-.0052$	． $0059-.0072$	． $0049-.0060$	． $0022-.0033$	． $0037-.0045$
1	Slot	． $0050-.0062$	． 0043 －． 0053	． $0040-.0049$	． $0036-.0044$	． $0035-.0042$	． 0043 －． 0053	． $0040-.0049$	． $0036-.0044$	． $0050-.0062$	． 0042 －． 0051	． $0023-.0028$	． $0032-.0039$
	HR	． $0063-.0077$	． $0054-.0066$	． $0050-.0062$	． $0045-.0055$	． $0043-.0053$	． $0054-.0066$	． $0050-.0062$	． $0045-.0055$	． $0063-.0077$	． $0052-.0064$	． $0029-.0035$	． $0040-.0048$
	LR	． $0079-.0096$	． $0068-.0083$	． $0063-.0077$	． $0056-.0069$	． $0054-.0066$	． $0068-.0083$	． $0063-.0077$	． $0056-.0069$	． $0079-.0096$	． $0065-.0080$	． $0036-.0044$	． $0050-.0061$

		Depth of Cut Guide：REGULAR STYLE		
		Slotting（S）	Heavy Roughing（HR）	Light Roughing（LR）
	＜Regular LOC	ADOC（4 flute）＝up to $1 \times$ dia． ADOC（5 flute）＝up to 50% of dia．	ADOC＝up to $1.5 \times$ dia． RDOC（4 flute）$=35 \%$ to 50% of dia． RDOC（ 5 flute）$=25 \%$ to 35% of dia．	$\begin{aligned} & \text { ADOC }=L O C \\ & \text { RDOC }=15 \% \text { to } 25 \% \text { of dia. } \end{aligned}$
	＞Regular LOC	Not Recommended－Utilize necked down tooling if long reach is needed	ADOC＝up to 1 x dia． RDOC（4 flute）$=25 \%$ to 35% of dia． RDOC（ 5 flute）$=15 \%$ to 25% of dia．	$\begin{aligned} & \text { ADOC }=\text { up to } 1.5 \times \text { dia. } \\ & \text { RDOC }=10 \% \text { to } 15 \% \text { of dia. } \end{aligned}$

Depth of Cut Guide：REDUCED NECK STYLE

	$\begin{gathered} \leq \text { Regular } \\ \text { LBS } \end{gathered}$
－	＞Regular
㞼	LBS

ADOC（4 flute）$=$ up to 50% of dia． ADOC（5 flute）$=$ up to 33% of dia．

ADOC（4 flute）$=$ up to 33% of dia． ADOC（5 flute）$=$ up to 20% of dia．

Heavy Roughing（HR）

ADOC $=1.0$ to $1.5 x$ dia．
RDOC（ 4 flute）$=30 \%$ to 40% of dia． RDOC（ 5 flute）$=20 \%$ to 30% of dia．

ADOC $=u p$ to $1 x$ dia．
RDOC（4 flute）$=20 \%$ to 30% of dia． RDOC（5 flute）$=10 \%$ to 20% of dia．

Light Roughing（LR）

ADOC＝LOC
RDOC $=15 \%$ to 25% of dia．
ADOC $=$ up to $1.5 x$ dia．
RDOC $=10 \%$ to 15% of dia．

Please visit our Technical Section on Pages 98－135 for further assistance．

HSV-4. HSV-RN-4 Speed \&FEGd

Feed Rate Guide: REGULAR STYLE \& REDUCED NECK STYLE

Material Guide		STEEL				STAINLESS STEEL			CAST IRON		H-TEMP ALLOYS	
		$\begin{gathered} 10 \mathrm{xx} \\ 11 \mathrm{xx} \\ 12 \mathrm{xx} \\ 12 \mathrm{Lxx} \\ 15 \mathrm{xx} \end{gathered}$	$\begin{gathered} \hline 13 x x \\ 41 x x \\ 43 x x \\ 86 x x \\ 92 x x \\ 93 x x \\ \text { Chromoly } \end{gathered}$	A2 H13 A3 M1 D2 O-1 H11 S-7 NAK 55	$\begin{gathered} \text { P20 } \\ \text { P21 } \\ \text { S-136 } \\ \text { PAK } \\ \text { NAK } 80 \end{gathered}$	410 $430 F$ 416 440 C 420	303 320 304 304 L 316 316 L 321 347 Kovar Invar 36	$13-8$ $15-5$ $17-4$ Carpenter Custom 465 Invar	Grey GG-10 GG-15 GG-20/25 GG-30/35 GG-40	Ductile (Nodular) Malleable GGG-40 GGG-50 GGG-60 GGG-70	Inconel 718 Inconel 600 Rene 100 Rene 41 A286 Haynes Waspalloy H-188 Hastalloy Hast-X Mar-M Stellite AirResist Monel	Ti61AL4V (grades 5-38)
Surface Feet per Minute (SFM)												
		low - high										
	< 42 Rc	320-480	200-400	200-300	200-300	200-300	160-300	130-250	300-450	200-320	70-110	160-220
	$\geq 42 \mathrm{Rc}$	160-240	120-160	110-150	100-140	110-175	110-160	90-130	170-220	90-180	60-80	100-150
						d per To	(FPT)					
	Slot	. 0006 - . 0008	. $0005-.0007$. $0005-.0006$. $0004-.0006$. 0005 - . 0007	. $0005-.0006$. $0004-.0006$. 0006 - . 0008	. $0005-.0007$. $0003-. .0004$. $0004-.0005$
1/8	HR	. $0007-.0010$. 0000 - . 0009	. $0006-.0008$. $0005-.0007$. $0006-.0009$. $0006-.0008$. $0005-.0007$. 0007 - . 0010	. $0006-.0008$. $0003-.0005$. $0005-.0006$
	LR	. $00009-.0013$. $00008-.0011$. $0007-.0010$. $0007-.0009$. $0000-.0011$. $0007-.0010$. $00007-.0009$. $0009-.0013$. $0008-.0010$. $00004-.0006$. $0000-.0008$
	Finish	. 00007 -. 0009	. $00006-.0008$. $0005-.0007$. $0000-.0006$. $0000-.0008$. $0000-.0007$. $00005-.0006$. 0007 - . 0009	.0005-. 0007	. $0003-.0004$. $0004-.0006$
	Slot	. $0012-.0016$. $0010-.0014$. $0010-.0013$. $0000-.0012$. $0010-.0014$. $0010-.0013$. $0009-.0012$. $0012-.0016$. $0010-.0013$. $00005-.0007$. $0007-.0010$
1/4	HR	. $0015-.0020$. $0013-.0017$. $0012-.0016$. $0011-.0014$. $0013-.0017$. $0012-.0016$. $0011-.0014$. $0015-.0020$. $0012-.0017$. $00007-.0009$. $00009-.0013$
$1 / 4$	LR	. $0019-.0025$. 0016 - . 0022	. $0015-.0020$. $0013-.0018$. $0016-.0022$. $0015-.0020$. $0013-.0018$. $0019-.0025$.0015-.0021	. 0000 - . 00012	. $0012-.0016$
	Finish	. 0013 - . 0018	. $0011-.0015$. $0010-.0014$. $0009-.0013$. $0011-.0015$. $0010-.0014$. $00009-.0013$. $0013-.0018$. $0011-.0015$. $0000-.0008$. 0008 - . 0011
	Slot	. 0018 - . 0024	. $0015-.0021$. $0014-.0019$. $0013-.0017$. $0015-.0021$. $0014-.0019$. $0013-.0017$. 0018 - . 0024	. $0015-.0020$. $0008-.0011$. $0011-.0015$
3/8	HR	. $0022-.0030$. $0019-.0026$. 0018 -. 0024	. $0016-.0022$. $0019-.0026$. 0018 -. 0024	. $0016-.0022$. $0022-.0030$. $0018-.0025$. $0010-.0014$. $0014-.0019$
3/8	$L R$. 0028 -. 0038	. $0024-.0032$. 0022 -. 0030	. $0020-.0027$. 0024 -. 0032	. 0022 -. 0030	. $0020-.0027$. 0028 -. 0038	. $0023-.0031$. $0013-.0017$. 0018 - . 0024
	Finish	. $0020-.0027$. $0017-.0023$. 0016 - . 0021	. 0014 - . 0019	. $0017-.0023$. $0016-.0021$. 0014 -. 0019	. $0020-.0027$.0016-.0022	. $0009-.0012$. $0012-.0017$
	Slot	. $0024-.0032$. $0020-.0028$. $0019-.0026$. $0017-.0023$. $0020-.0028$. $0019-.0026$. $0017-.0023$. $0024-.0032$. $0020-.0027$. $0011-.0015$. $0015-.0020$
$1 / 2$	HR	. $0030-.0040$. 0026 - . 0035	. $0024-.0032$. $0021-.0029$. $0026-.0035$. $0024-.0032$. $0021-.0029$. $0030-.0040$. $0025-.0033$. $0014-.0018$. $0019-.0025$
	LR	. $0037-.0050$. $0032-.0043$. $0030-.0040$. $0027-.0036$. $0032-.0043$. $0030-.0040$. 0022 -. 0036	. $0037-.0050$	0031-. 0042	.0017-. 0023	. $0023-.0032$
	Finish	. 0026 - . 0035	. $0022-.0030$. $0021-.0028$. $0019-.0025$. $0022-.0030$. $0021-.0028$. $0019-.0025$. 0026 - . 0035	.0022-.0029	. $0012-.0016$. $0016-.0022$
	Slot	. $0030-.0040$. 0022 -. 0035	. 0024 -. 0032	. $0021-.0029$. 0022 - . 0035	. $0024-.0032$. $0021-.0029$. $0030-.0040$.0025-.0033	. 0014 - . 00018	. $0019-.0025$
	HR	. $0037-.0050$. $0032-.0043$. $0030-.0040$. 0027 - . 0036	. $0032-.0043$. $0030-.0040$. 0022 -. 0036	. $0037-.0050$. $0031-.0042$. $0017-. .0023$. $0023-.0032$
	LR	. $0046-.0063$. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0046-.0063$.0039-.0052	. $0021-.0029$. $0029-.0040$
	Finish	. $0033-.0044$. $0028-.0038$. 0026 - . 0035	. $0023-.0032$. $0028-.0038$. $0026-.0035$. 0023 -. 0032	. $0033-.0044$. 0027 -. 0037	. $0015-.0020$. $0021-.0028$
	Slot	. $0036-.0048$. $0031-.0041$. $0029-.0039$. 0026 - . 0035	. $0031-.0041$. $0022-.0039$. 0026 -. 0035	. $0036-.0048$. $0030-.0040$. 0016 - . 0022	. 0022 -. 0030
3/4	HR	. $0045-.0060$. $0038-.0052$. $0036-.0048$. $0032-.0043$. $0038-.0052$. $0036-.0048$. $0032-.0043$. $0045-.0060$. $0037-.0050$. $0020-.0028$. 0028 -. 0038
	LR	. $0056-.0075$. $0048-.0065$. $0045-.0060$. $0040-.0054$. 0048 - . 0065	. $0045-.0060$. $0040-.0054$. $0056-.0075$. $0046-.0063$. $0026-.0035$. $0035-.0047$
	Finish	.0039-.0053	.0034-.0046	. $0031-.0043$. $0028-.0038$. $0034-.0046$. $0031-.0043$. $0028-.0038$. $0039-.0053$. $0033-.0044$	0018-. 0024	. $0025-.0033$
	Slot	. 0048 - . 0064	. $0041-.0055$. $0038-.0052$. $0034-.0046$. $0041-.0055$. $0038-.0052$. $0034-.0046$. 0048 -. 0064	. $0039-.0053$. 0022 -. 0022	. $0030-.0040$
	HR	. $0060-.0081$. $0051-.0069$. 0048 -. 0064	. $0043-.0058$. $0051-.0069$. $0048-.0064$. $0043-.0058$. $0060-.0081$.0049-. 0067	. 0022 -. 00037	. $0037-.0051$
	LR	. 0074 -. 0101	. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0074-.0101$. $0062-.0083$. $0034-.0046$. 0047 -. 0063
	Finish	. 0052 - . 0071	. 0045 -. 0061	. 0042 -. 0057	. $0037-.0051$. $0045-.0061$. 0042 -. 0057	. $0037-.0051$. $0052-.0071$.0043-.0059	. $0024-.0032$. $0033-.0045$

		Depth of Cut Guide: REGULAR STYLE			
		Slotting (S)	Heavy Roughing (HR)	Light Roughing (LR)	Finishing (F)
${ }^{2}$	\leq Regular LOC	ADOC = up to 50\% x dia.	$\begin{aligned} & \text { ADOC }=\text { up to } 1.5 \times \text { dia. } \\ & \text { RDOC }=30 \% \text { to } 50 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=L O C \\ & \text { RDOC }=15 \% \text { to } 25 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\mathrm{LOC} \\ & \text { RDOC }=3 \% \text { to } 5 \% \text { of dia. } \end{aligned}$
-	> Regular LOC	We recommend using reduced neck (RN) tooling for long reach	$\begin{aligned} & \text { ADOC }=\text { up to } 1 \times \text { dia. } \\ & \text { RDOC }=20 \% \text { to } 30 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\text { up to } 2 \times \text { dia. } \\ & \text { RDOC }=10 \% \text { to } 15 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\text { up to } 3 x \text { dia. } \\ & \text { RDOC }=3 \% \text { to } 5 \% \text { of dia. } \end{aligned}$

		Depth of Cut Guide: REDUCED NECK STYLE			
		Slotting (S)	Heavy Roughing (HR)	Light Roughing (LR)	Finishing (F)
劅	$\begin{gathered} \text { <Regular } \\ \text { LBS } \end{gathered}$	ADOC $=$ up to 50\% of dia.	$\begin{aligned} & \text { ADOC }=\text { up to } 1 \times \text { dia. } \\ & \text { RDOC }=30 \% \text { to } 50 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=L O C \\ & \text { RDOC }=15 \% \text { to } 25 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\mathrm{LOC} \\ & \mathrm{RDOC}=3 \% \text { to } 5 \% \text { of dia. } \end{aligned}$
[> Regular LBS	ADOC $=$ up to 25% of dia.	$\begin{aligned} & \text { ADOC }=\text { up to } 40 \% \text { of dia. } \\ & \text { RDOC }=15 \% \text { to } 25 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\text { up to } 75 \% \text { of dia. } \\ & \text { RDOC }=10 \% \text { to } 15 \% \text { of dia. } \end{aligned}$	$\left.\begin{array}{\|l\|} \text { ADOC }=u p ~ t o ~ \\ \text { RDOC }=3 \% \\ \text { do } \\ 5 \% \end{array} \right\rvert\,$

Please visit our Technical Section on Pages 98-135 for further assistance.

HEV-S. HEV-RTN-S Speed \&FEed

Feed Rate Guide: REGULAR STYLE \& REDUCED NECK STYLE

		STEEL				HARD STEEL	STAINLESS STEEL			CAST IRON		HI-TEMP ALLOYS	
Material	uide	$\begin{gathered} \hline 10 \mathrm{xx} \\ 11 \mathrm{xx} \\ 12 \mathrm{xx} \\ 12 \mathrm{Lxx} \\ 15 \mathrm{xx} \end{gathered}$	$\begin{aligned} & 13 \mathrm{xx} \\ & 41 \mathrm{xx} \\ & 43 \mathrm{xx} \\ & 86 \mathrm{xx} \\ & 92 \mathrm{xx} \\ & 93 \mathrm{xx} \end{aligned}$ Chromoly	A2 H13 A3 M1 D2 $0-1$ H11 S-7 NAK 55	$\begin{gathered} \text { P20 } \\ \text { P21 } \\ \text { S-136 } \\ \text { PX5 } \\ \text { NAK } 80 \end{gathered}$	Steel Grades $>50 \mathrm{Rc} .$	410 430 F 416 440 C 420	303 320 304 304 L 316 316 L 321 347 Kovar Invar 36	$13-8$ $15-5$ $17-4$ Carpenter Custom 465 Invar	Grey GG-10 GG-15 GG-20/25 GG-30/35 GG-40	Ductile (Nodular) Malleable GGG-40 GGG-50 GGG-60 GGG-70	Inconel 718 Inconel 600 Rene 100 Rene 41 A286 Haynes Waspalloy H-188 Hastalloy Hast-X Mar-M Stellite AirResist Monel	Ti61AL4V (grades 5-38)
						ace Fe	er M	(SFM					
		low - high											
	< 42 Rc	320-480	200-400	200-300	200-300		200-300	160-300	130-250	300-450	200-320	70-110	160-220
	$\geq 42 \mathrm{Rc}$	160-240	120-160	110-150	100-140		110-175	110-160	90-130	170-220	90-180	60-80	100-150
						Feed	Tooth	T)					
	Slot	. $0006-.0008$. $0005-.0007$. $0005-.0006$. $0004-.0006$. 0004 - . 0006	. 0005 -. 0007	. $0005-.0006$. $0004-.0006$. $0006-.0008$. $0005-.0007$. $0003-.0004$. $0004-.0005$
1/8	HR	. $0007-.0010$. $0006-.0009$. $0006-.0008$. $0005-.0007$. 0005 - . 0007	. $0006-.0009$. $0006-.0008$. $0005-.0007$. $0007-.0010$. $0006-.0008$. $0003-.0005$. $0005-.0006$
$1 / 8$	LR	. $00009-.0013$. $0008-.0011$. $0007-.0010$. $00007-.0009$. $0006-.0009$. $0008-.0011$. $00007-.0010$. $00007-.0009$. $00009-.0013$. $0008-.0010$. $0004-.0006$. $0006-.0008$
	Finish	. 00007 -. 0009	. $0006-.0008$. $0005-.0007$. $0005-.0006$. 0004 - . 0006	. $0006-.0008$. $0005-.0007$. $0005-.0006$. $00007-.0009$. $0005-.0007$. $0003-.0004$. $00004-.0006$
	Slot	. $0012-.0016$. $0010-.0014$. $0010-.0013$. $00009-.0012$. 0000 - . 0011	. $0010-.0014$. $0010-.0013$. $00009-.0012$. $00012-.0016$. $0010-.0013$. $0005-.0007$. 0000 - . 0010
	HR	. $0015-.0020$. $0013-.0017$. $0012-.0016$. $0011-.0014$. $0010-.0014$. $0013-.0017$. $0012-.0016$. $0011-.0014$. $0015-.0020$. $0012-.0017$. $0007-.0009$. $00009-.0013$
4	LR	. $0019-.0025$. $0016-.0022$. 0015 - . 0020	. $0013-.0018$. 0013 - . 0017	. 0016 -. 0022	. $0015-.0020$. $0013-.0018$. $0019-.0025$. $0015-.0021$. $0009-.0012$. $00012-.0016$
	Finish	. $0013-.0018$. $0011-.0015$. $0010-.0014$. $0009-.0013$. 0009 - . 0012	. $0011-.0015$. $0010-.0014$. $0009-.0013$. $0013-.0018$. $0011-.0015$. $0006-.0008$. 0008 - . 0011
	Slot	. 0018 - . 0024	. $0015-.0021$. $0014-.0019$. $0013-.0017$. 0012 - . 0017	. $0015-.0021$. $0014-.0019$. $0013-.0017$. 0018 -. 0024	. $0015-.0020$. $0008-.0011$. $0011-.0015$
3/8	HR	. $0022-.0030$. $0019-.0026$. 0018 -. 0024	. $0016-.0022$. 0015 - . 0021	. $0019-.0026$. 0018 - . 0024	. $0016-.0022$. 0022 - . 0030	. $0018-.0025$. $0010-.0014$. $0014-.0019$
$3 / 8$	$L R$. $0028-.0038$. $0024-.0032$. $0022-.0030$. $0020-.0027$. 0019 - . 0026	. $0024-.0032$. 0022 - . 0030	. $0020-.0027$. $0028-.0038$. $0023-.0031$. $0013-.0017$. 0018 - . 0024
	Finish	. $0020-.0027$. $0017-.0023$. $0016-.0021$. $0014-.0019$. 0013 - . 0018	. $0017-.0023$. $0016-.0021$. $0014-.0019$. $0020-.0027$. 0016 - . 0022	. $0009-.0012$. $0012-.0017$
	Slot	. $0024-.0032$. $0020-.0028$. $0019-.0026$. $0017-.0023$. $0016-.0022$. $0020-.0028$. $0019-.0026$. $0017-.0023$. $0024-.0032$. $0020-.0027$. $0011-.0015$. $0015-.0020$
	$H R$. $0030-.0040$. $0026-.0035$. $0024-.0032$. $0021-.0029$. $0020-.0028$. $0026-.0035$. $0024-.0032$. $0021-.0029$. $0030-.0040$. $0025-.0033$. $0014-.0018$. $0019-.0025$
	$L R$. $0037-.0050$. $0032-.0043$. $0030-.0040$. 0027 -. 0036	. 0026 - . 0035	. $0032-.0043$. $0030-.0040$. 0027 -. 0036	. $0037-.0050$. $0031-.0042$. $0017-.0023$. $0023-.0032$
	Finish	. 0026 - . 0035	. $0022-.0030$. $0021-.0028$. $0019-.0025$. 0018 - . 0024	. $0022-.0030$. $0021-.0028$. $0019-.0025$. $0026-.0035$. $0022-.0029$. $0012-.0016$. $0016-.0022$
	Slot	. $0030-.0040$. $0026-.0035$. $0024-.0032$. $0021-.0029$. $0020-.0028$. $0026-.0035$. $0024-.0032$. $0021-.0029$. $0030-.0040$. $0025-.0033$. $0014-.0018$. $0019-.0025$
5/8	HR	. $0037-.0050$. $0032-.0043$. $0030-.0040$. 0027 -. 0036	. $0026-.0035$. $0032-.0043$. $0030-.0040$. 0027 -. 0036	. $0037-.0050$. $0031-.0042$. $0017-.0023$. $0023-.0032$
	$L R$. $0046-.0063$. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0032-.0043$. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0046-.0063$. $0039-.0052$. $0021-.0029$. $0029-.0040$
	Finish	. $0033-.0044$. $0028-.0038$. $0026-.0035$. $0023-.0032$. 0022 - . 0030	. 0028 - . 0038	. 0026 - . 0035	. $0023-.0032$. $0033-.0044$. $0027-.0037$. $0015-.0020$. 0021 -. 0028
	Slot	. $0036-.0048$. $0031-.0041$. $0029-.0039$. $0026-.0035$. 0024 - . 0033	. $0031-.0041$. $0029-.0039$. 0026 - . 0035	. $0036-.0048$. $0030-.0040$. $0016-.0022$. $0022-.0030$
	HR	. $0045-.0060$. $0038-.0052$. $0036-.0048$. $0032-.0043$. $0031-.0041$. $0038-.0052$. $0036-.0048$. $0032-.0043$. $0045-.0060$. $0037-.0050$. $0020-.0028$. 0028 - . 0038
	LR	. $0056-.0075$. $0048-.0065$. $0045-.0060$. $0040-.0054$. 0038 - . 0052	. $0048-.0065$. $0045-.0060$. $0040-.0054$. $0056-.0075$. $0046-.0063$. $0026-.0035$. $0035-.0047$
	Finish	. $0039-.0053$. $0034-.0046$. $0031-.0043$. $0028-.0038$. 0027 - . 0036	. $0034-.0046$. $0031-.0043$. $0028-.0038$. $0039-.0053$. $0033-.0044$. $0018-.0024$. $0025-.0033$
	Slot	. 0048 -. 0064	. $0041-.0055$. $0038-.0052$. $0034-.0046$. $0033-.0044$. $0041-.0055$. 0038 - . 0052	. $0034-.0046$. 0048 - . 0064	. $0039-.0053$. $0022-.0029$. $0030-.0040$
	HR	. $0060-.0081$. $0051-.0069$. 0048 -. 0064	. $0043-.0058$. $0041-.0055$. $0051-.0069$. 0048 -. 0064	. $0043-.0058$. $0060-.0081$. $0049-.0067$. $0027-.0037$. $0037-.0051$
	LR	. $0074-.0101$. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0051-.0069$. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0074-.0101$. $0062-.0083$. $0034-.0046$. $0047-.0063$
	Finish	. $0052-.0071$. $0045-.0061$. $0042-.0057$. $0037-.0051$. $0036-.0049$. $0045-.0061$. 0042 -. 0057	. $0037-.0051$. $0052-.0071$. 0043 -. 0059	. $0024-.0032$. $0033-.0045$
	Slot	. $0055-.0074$. 0047 -. 0063	. $0044-.0059$. $0039-.0053$. $0038-.0051$. $0047-.0063$. $0044-.0059$. $0039-.0053$. $0055-.0074$. $0045-.0061$. $0025-.0034$. $0034-.0047$
	HR	. 0068 - . 0093	. $0059-.0079$. $0055-.0074$. $0049-.0066$. 0047 - . 0063	. $0059-.0079$. $0055-.0074$. $0049-.0066$. $0068-.0093$. $0057-.0077$. $0031-.0042$. $0043-.0058$
	LR	. $0086-.0116$. $0073-.0099$. $0068-.0093$. $0061-.0083$. $0059-.0079$. 0073 -. 0099	. 0068 -. 0093	. $0061-.0083$. $0086-.0116$. $0071-.0096$. $0039-.0053$. $0054-.0073$
	Finish	. $0060-.0081$. $0052-.0070$. $0048-.0065$. $0043-.0058$. 0041 - . 0056	. $0052-.0070$. 0048 - . 0065	. 0043 -. 0058	. $0060-.0081$. $0050-.0068$. 0028 - . 0037	. 0038 - . 0051

Please visit our Technical Section on Pages 98-135 for further assistance.

Feed Rate Guide: REGULAR STYLE

	STEEL				HARD STEEL	STAINLESS STEEL			CAST IRON		HI-TEMP ALLOYS	
Material Guide	$\begin{aligned} & \hline 10 \mathrm{xx} \\ & 11 \mathrm{xx} \\ & 12 \mathrm{xx} \\ & 12 \mathrm{Lxx} \\ & 15 \mathrm{xx} \end{aligned}$	$\begin{gathered} \hline 13 x x \\ 41 \mathrm{xx} \\ 43 \mathrm{xx} \\ 86 \mathrm{xx} \\ 92 x x \\ 93 x x \\ \text { Chromoly } \end{gathered}$	A2 H13 A3 M1 D2 $0-1$ H11 S-7 NAK 55	$\begin{gathered} \text { P20 } \\ \text { P21 } \\ \text { S-136 } \\ \text { PX5 } \\ \text { NAK } 80 \end{gathered}$	Steel Grades $\gg 50 \mathrm{Rc}$.	$\begin{array}{ll}410 & 430 \mathrm{~F} \\ 416 & 440 \mathrm{C} \\ 420\end{array}$	303 320 304 304 L 316 316 L 321 347 Kovar Invar 36	13-8 $15-5$ $17-4$ Carpenter Custom 465 Invar	Grey GG-10 GG-15 GG-20/25 GG-30/35 GG-40	Ductile (Nodular) Malleable GGG-40 GGG-50 GGG-60 GGG-70		Ti61AL4V (grades 5-38)
Surface Feet per Minute (SFM)												
	low - high											
SFM	320-480	200-400	200-300	200-300	90-140	200-300	160-300	130-250	300-450	200-320	70-110	160-220
	160-240	120-160	110-150	100-140		110-175	110-160	90-130	170-220	90-180	60-80	100-150
Feed per Tooth (FPT)												
1/4	. $0019-.0025$. 0016 - . 0022	. $0015-.0020$. $0013-.0018$	0013-. 0017	. 0016 - . 0022	. $0015-.0020$. $0013-.0018$. $0019-.0025$. $0015-.0221$. $0009-. .0012$. $0012-.0016$
	. $0013-.0018$. $0011-.0015$. $0010-.0014$. $00009-.0013$. $0009-.0012$. $0011-.0015$. $0010-.0014$. $0009-.0013$. $0013-.0018$. $0011-.0015$. $0006-.0008$. $0008-.0011$
3/8 Finish	. $0028-.0038$. $0024-.0032$. 0022 -. 0030	. $0020-.0027$. 0019 - . 0026	. $0024-.0032$. $0022-.0030$. $0020-.0027$. $0028-.0038$. 0023 -. 0031	. $0013-.0017$. 0018 -. 0024
	. $0020-.0027$. $0017-.0023$. $0016-.0021$. $0014-.0019$. 0013 - . 0018	. $0017-.0023$. 0016 -. 0021	. 0014 - 00019	. $0020-.0027$. 0016 - . 0022	. $0009-.0012$. $0012-.0017$
1/2 Finish	. $0037-.0050$. $0032-.0043$. $0030-.0040$. 0027 -. 0036	. 0026 - . 0035	. $0032-.0043$. $0030-.0040$. $0027-.0036$. $0037-.0050$. $0031-.0042$. $0017-.0023$. $0023-.0032$
	. 0026 - . 0035	. $0022-.0030$. $0021-.0028$. $0019-.0025$. 0018 - . 0024	. $0022-.0030$. $0021-.0028$. $0019-.0025$. $0026-.0035$. 0022 - . 0229	. $0012-.0016$. $0016-.0022$
5/8 Finish	. $0046-.0063$. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0032-.0043$. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0046-.0063$. $0039-.0052$. $0021-.0029$. $0029-.0040$
	. $0033-.0044$. $0028-.0038$. $0026-.0035$	0023-. 0032	. 0022 - . 0030	. $0028-.0038$. 0026 - 00035	. 0023 -. 0032	. $0033-.0044$. 0027 - . 00337	. $0015-.0020$. $0021-.0028$
3/4 $\begin{array}{r}\text { Finish }\end{array}$. $0056-.0075$. $0048-.0065$. $0045-.0060$. $0040-.0054$. 0038 - . 0052	. $0048-.0065$. $0045-.0060$. $0040-.0054$. $0056-.0075$. $0046-.0063$. $0026-.0035$. $0035-.0047$
	. $0039-.0053$. $0034-.0046$. $0031-.0043$. 0028 - . 0038	. 0027 - . 0036	. $0034-.0046$. $0031-.0043$. 0028 -. 0038	. $0039-.0053$. $0033-.0044$. 0018 - . 0024	. $0025-.0033$
Finish	. $0074-.0101$. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0051-.0069$. $0064-.0086$. 0060 - .0081	. $0053-.0072$. $0074-.0101$. $0062-.0083$. $0034-.0046$. $0047-.0063$
	. $0052-.0071$. $0045-.0061$. $0042-.0057$. $0037-.0051$	0036-0049	. $0045-.0061$. $0042-.0057$. $0037-.0051$. $0052-.0071$. $0043-.0559$. $0024-.0032$. $0033-.0045$
1 $1 / 4$ $\begin{array}{c}L R \\ \text { Finish }\end{array}$. $0086-.0116$. $0073-.0099$. $0068-.0093$. $0061-.0083$	0059-. 0079	. $0073-.0099$. $0068-.0093$. $0061-.0083$. $0086-.0116$. $0071-.0096$. $0039-.0053$. $0054-.0073$
	. $0060-.0081$. $0052-.0070$. 0048 - . 0065	. $0043-.0058$. $0041-.0056$. $0052-.0070$. 0048 -. 0065	. $0043-.0058$. $0060-.0081$. $0050-.0068$	0028-. 0037	. $0038-.0051$

Depth of Cut Guide: REGULAR STYLE

O O 5	$\begin{aligned} & \leq \text { Regular } \\ & \text { LOC } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\text { LOC } \\ & \text { RDOC }=15 \% \text { to } 20 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\mathrm{LOC} \\ & \mathrm{RDOC}=3 \% \text { to } 5 \% \text { of dia. } \end{aligned}$
-	$\begin{aligned} & >\text { Regular } \\ & \text { LOC } \end{aligned}$	$\begin{aligned} & \text { ADOC }=\text { up to } 2 x \text { dia. } \\ & \text { RDOC }=10 \% \text { to } 15 \% \text { of dia. } \end{aligned}$	$\begin{aligned} & \text { ADOC }=u p \text { to } 2 x \text { dia. } \\ & \text { RDOC }=3 \% \text { to } 5 \% \text { of dia. } \end{aligned}$

Key: LOC - Length of Cut	$\begin{array}{l}\text { ADOC - Axial Depth of Cut } \\ \text { RDOC - Radial Depth of Cut }\end{array}$

Please visit our Technical Section on Pages 98-135 for further assistance.

HXY

- Non-variable pitch
- Provides a $2 x$ productivity increase over similar 4-fluted tools
- An excellent choice in light profiling and finishing applications
- Proven with VoluMill tool paths
- Good results in all ferrous materials and Titanium up to 65 Rc

HXF (Aplus Coated)				STEEL	STAINLESS STEEL	CAST IRON	HI-TEMP ALLOYS	YS HARDENED STEEL
$\left(d_{1}\right)$ Cutting Dia.	$\left(d_{2}\right)$ Shank Dia.	$\begin{aligned} & \left(I_{1}\right) \\ & \mathrm{LOC} \end{aligned}$	$\begin{aligned} & \left(\mathrm{I}_{2}\right) \\ & 0 \mathrm{AL} \end{aligned}$	No. of Flutes	Corner Radius .020 .030		. 060	Tool Description
1/4	1/4	$3 / 8$	2	7	36016			HXF-S-070250-R. 020
	1/4	3/4	2-1/2	7	36031			HXF-R-070250-R. 020
3/8	$3 / 8$	1/2	2	7	36046			HXF-S-070375-R.020
	3/8	1	3	7	36061			HXF-R-070375-R. 020
$1 / 2$	1/2	5/8	2-1/2	8		36076		HXF-S-080500-R. 030
	1/2	1	3	8		36091		HXF-SR-080500-R. 030
	1/2	1-1/4	3	8		36106		HXF-R-080500-R. 030
5/8	5/8	3/4	3	10			36121	HXF-S-100625-R. 060
	5/8	1-5/8	3-1/2	10			36136	HXF-R-100625-R. 060
3/4	3/4	1	3	12			36151	HXF-S-120750-R. 060
	3/4	1-5/8	4	12			36166	HXF-R-120750-R. 060
1	1	1-1/4	4	14			36181	HXF-S-141000-R. 060
	1	2	4-1/2	14			36196	HXF-R-141000-R. 060

Speed \% Feed on page 92.

HCNGO, HCMEO. HCCMFO Speed \&FEed

Feed Rate Guide (Ferrous Materials): CHAMFER MILLS - Aplus Coated

Material Guide	STEEL					STAINLESS STEEL			CAST IRON		HI-TEMP ALLOYS	
	$\begin{gathered} \hline 10 \mathrm{xx} \\ 11 \mathrm{xx} \\ 12 \mathrm{xx} \\ 12 \mathrm{Lxx} \\ 15 \mathrm{xx} \end{gathered}$	13xx 41 xx 43 xx 86 xx 92 xx 93 xx Chromoly	A2 H13 A3 M1 D2 $0-1$ H11 S-7 NAK 55	$\begin{gathered} \hline \text { P20 } \\ \text { P21 } \\ \text { S-136 } \\ \text { PX5 } \\ \text { NAK } 80 \end{gathered}$	Steel Grades $>50 R \mathrm{c}$.	410 430 F 416 440 C 420	303 320 304 304 L 316 316 L 321 347 Kovar Invar 36	13-8 $15-5$ $17-4$ Carpenter Custom 465 Invar	Grey GG-10 GG-15 GG-20/25 GG-30/35 GG-40	Ductile (Nodular) Malleable GGG-40 GGG-50 GGG-60 GGG-70	Inconel 718 Inconel 600 Rene 100 Rene 41 A286 Haynes Waspalloy H-188 Hastalloy Hast-X Mar-M Stellite AirResist Monel	Ti61AL4V (grades 5-38)
Surface Feet per Minute (SFM)												
	low - high											
SFM	320-480	200-300	180-260	180-260	90-140	200-300	160-240	130-200	280-420	190-280	120-180	200-300
	160-240	100-150	100-140	100-140		110-170	120-180	90-130	170-260	90-130	60-80	100-150
$\mathrm{D}_{\text {eff }}$	Feed per Tooth (FPT)											
<. 125	. $0009-.0013$. $0008-.0011$. $0007-.0010$. 0007 - . 0009	. 0006 - . 0009	. $0008-.0011$. $0007-.0010$. $0007-.0009$. $0009-.0013$. $0008-.0010$. $0004-.0006$. $0006-.0008$
. $125-.374$. $0019-.0025$. 0016 - . 0022	. $0015-.0020$. $0013-.0018$. 0013 - . 0017	. $0016-.0022$. $0015-.0020$. $0013-.0018$. $0019-.0025$. $0015-.0021$. $0009-.0012$. $0012-.0016$
. 375 - . 499	. 0028 - . 0038	. 0024 - . 0032	. 0022 - . 0030	. $0020-.0027$. 0019 - . 0026	. $0024-.0032$. 0022 - . 0030	. $0020-.0027$. 0028 - . 0038	. $0023-.0031$. $0013-.0017$. 0018 - . 0024
. $500-.624$. 0037 - . 0050	. 0032 - . 0043	. $0030-.0040$. 0027 - . 0036	. 0026 - . 0035	. 0032 - . 0043	. $0030-.0040$. 0027 - . 0036	. 0037 - . 0050	. $0031-.0042$. 0017 - . 0023	. 0023 - . 0032
. 625 - . 749	. 0046 - . 0063	. $0040-.0054$. $0037-.0050$. $0033-.0045$. 0032 - . 0043	. $0040-.0054$. $0037-.0050$. $0033-.0045$. $0046-.0063$. $0039-.0052$. $0021-.0029$. $0029-.0040$
. $750-.999$. $0056-.0075$. 0048 - . 0065	. $0045-.0060$. $0040-.0054$. 0038 - . 0052	. $0048-.0065$. $0045-.0060$. $0040-.0054$. $0056-.0075$. $0046-.0063$. $0026-.0035$. $0035-.0047$
≥ 1.0	. $0074-.0101$. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0051-.0069$. $0064-.0086$. $0060-.0081$. $0053-.0072$. $0074-.0101$. $0062-.0083$. $0034-.0046$. $0047-.0063$

Feed Rate Guide (Non-Ferrous Materials): CHAMFER MILLS - Uncoated

Material Guide			SFM ${ }^{+}$	Feed per Tooth (FPT)							
			$\mathrm{D}_{\text {eff }}$	<. 125	. 125 - . 374	. 375 - . 499	. $500-.624$. $625-.749$. $750-.999$	≥ 1.0 "	
				low - high							
	2024	2219	1600-2400	Rough	. 0015 - . 0020	. $0029-.0040$. 0044 - . 0059	. $0059-.0079$. 0073 - . 0099	. 0088 - . 0119	. 0117 - . 0158
				Finish	. 0009 - . 0012	. $0018-.0024$. 0026 - . 0036	. $0035-.0047$. $0044-.0059$. $0053-.0071$. $0070-.0095$
\#00	A242	A319	720-1080	Rough	. 0011 - . 0014	. $0021-.0029$. 0032 - . 0043	. $0043-.0058$. $0053-.0072$. $0064-.0086$. $0085-.0115$
	$\begin{aligned} & \text { A320 } \\ & \text { A535 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A520 } \\ & \text { A713 } \\ & \hline \end{aligned}$		Finish	. 0007 - . 0010	. $0014-.0019$. 0022 - . 0029	. 0029 - . 0039	. $0036-.0049$. $0043-.0058$. $0057-.0078$

Technical Tip:
When chamfering and using less than the major cutting diameter (D) of the tool, ensure your speed and feed is based upon the effective cutting diameter ($\mathrm{D}_{\text {eff }}$) actually being used.

Finish Requirement:
Many different factors can affect chamfer finish but some common ways to increase part finish is:

- Utilizing 4 flute tools
- Decreasing feed
- Increasing speed

