Common MHIVIng Calculations

$\mathbf{R P M}=\frac{S F M \times 3.82}{D}$
Revolutions per Minute
$\mathbf{S F M}=R P M \times D \times .262$

IPM $=R P M \times F P T \times Z$
Inches per Minute

IPR $=\frac{I P M}{R P M}$
Inches per Revolution

FPT $=\frac{\mathrm{IPR}}{\mathrm{Z}}$

MRR $=\mathrm{RDOC} \times \mathrm{ADOC} \times \mathrm{IPM}$
Metal Removal Rate (cu. in./min.)

Radial Chip Thinning Adjustment

KEY

D Tool Cutting Diameter
R Tool Radius
Z Number of Flutes
RPM Revolutions per Minute
SFM Surface Feet per Mlnute
IPM Inches per Minute
IPR Inches per Revolution
FPT Feed per Tooth
MRR Metal Removal Rate
RDOC Radial Depth of Cut
ADOC Axial Depth of Cut
$\mathbf{r}_{\mathbf{i}} \quad$ Part Radius (inside arc)
ro Part Radius (outside arc)

Feed Rate Adjustment - Outside Arc

$$
F_{0}=\frac{\mathrm{IPM} \times\left(r_{0}+(R / 2)\right)}{r_{0}}
$$

$$
F_{i}=\frac{I P M \times\left(r_{i}-(R / 2)\right)}{r_{i}}
$$

Ball Nose "Effective Diameter"
$D_{\text {eff }}=2 \times \sqrt{R^{2}-(R-A D O C)^{2}}$

Ball Nose Velocity Adjustment
 $$
V_{\text {adj }}=\frac{S F M \times 3.82}{D_{\text {eff }}}
$$

