ERRATA SHEET

 Digital SAT ${ }^{\circledR}$ MATH PRACTICE QUESTIONS

 Digital SAT ${ }^{\circledR}$ MATH PRACTICE QUESTIONS
 First Edition

The errata for Digital SAT ${ }^{\oplus}$ Math Practice Questions are shown in this pdf. This book had multiple print runs; this errata is applicable to print runs before May 16, 2023. The consecutive print runs have corrected these errors. In case you do not find the below errors in your book, it is because they have been corrected.

Pag e No.	Questio n No.	Answe r No.	Error in the book	Corrected
98	125		$f(x)=(x-4)(x+2) \text { and } g(x)=4 x-17$ If $x>0$ then for what value of x is the statement $f(x)-g(x)=0$ true?	$f(x)=(x-4)(x+2) \text { and } g(x)=4 x-17$ For what value of x is the statement $f(x)-g(x)=$ 0 true?
108		125	the value of x that makes $f(x)-g(x)=0$, plug each equation of f and g. This yields $(x-4)(x+$ 2) $-(4 x-17)=0$. Using the distributive property	the value of x that makes $f(x)-g(x)=0$, plug each equation of $f(x)$ and $g(x)$. This ylelds $(x-4)$ $(x+2)-(4 x-17)=0$. Using the distributive
114		154	Key Explanation: Substituting the value of $f(x)$ to equation $f(x)=\left(\frac{x^{2}+x-12}{(x+4)}\right)^{2}$ yields $25=\left(\frac{x^{2}+x-12}{(x+4)}\right)^{2}$. Getting the square root of both sides of the equation yields $\sqrt{25}=\sqrt{\left(\frac{x^{2}+x-12}{x+4}\right)^{2}} \text { or } \pm 5=\frac{x^{2}+x-12}{(x+4)}$ Factoring the right side of the equation yields $\pm 5=\frac{(x+4)(x-3)}{x+4}$ or $\pm 5=x-3$. Equating the right side of the equation to both values of the left side yields $5=x-3$ and $-5=x-3$. Solving for x in both equations yields $x=8$ and $x=-2$. Since $x>0$, then $x=8$. Therefore, the value of $-x$ is -8 .	Key Explanation: -8 is the correct answer. Substituting the value of $f(x)$ to equation $f(x)=$ $\left(\frac{x^{2}+x-12}{(x+4)}\right)^{2}$ yields $25=\left(\frac{x^{2}+x-12}{(x+4)}\right)^{2}$. Getting the square root of both sides of the equation yields $\sqrt{25}=\sqrt{\left(\frac{x^{2}+x-12}{x+4}\right)^{2}}$ or $\pm 5=\frac{x^{2}+x-12}{(x+4)}$. Factoring the right side of the equation yields $\pm 5=\frac{(x+4)(x-3)}{x+4}$ or $\pm 5=x-3$. Equating the right side of the equation to both values of the left side yields $5=x-3$ and $-5=$ $x-3$. Solving for x in both equations yields $x=8$ and $x=-2$. Since $x>0$, then $x=8$. Therefore, the value of $-x$ is -8 .
115		155	Key Explanation: The answer is 0 . To find the number of solutions a function has, use the discriminant formula $b^{2}-4 a c$. In this function a $=2, b=-3, c=5$. The discriminant therefore is $(-3)^{2}-4(2)(5)=9-4=-31$. If the discriminant is a negative number, this indicates that the function has no real solutions.	Key Explanation: The answer is 0 . To find the number of solutions a function has, use the discriminant formula $b^{2}-4 a c$. In this function a $=2, b=-3, c=5$. The discriminant therefore is $(-3)^{2}-4(2)(5)=9-40=-31$. If the discriminant is a negative number, this indicates that the function has no real solutions.

Pag e No.	Questio n No.	Answe r No.	Error in the book			Corrected		
116		162	Key Explanation: The y-intercept of a line is given when $x=0$. Substituting 0 for x in the given equation yields $y=-(6)^{\circ}-1$. Simplifying the equation yields -2 .			Key Explanation: - 2 is the correct answer. The y-intercept of a line is given when $x=0$. Substituting 0 for x in the given equation yields y $=-(6)^{\circ}-1$. Simplifying the equation yields -2 .		
123		169	Key Explanation: Choice B is correct. Since there are 36 kids in the camp and two-thirds are girls, there are a total of $\frac{2}{3} \times 36=24$ girls at the Statistics camp. Of the 24 girls, three-fourths are under 5.5 feet. This means that $\frac{3}{4} \times 24=18$ girls are under 5.5 feet.			Key Explanation: 18 is correct. Since there are 36 kids in the camp and two-thirds are girls, there are a total of $\frac{2}{3} \times 36=24$ girls at the Statistics camp. Of the 24 girls, three-fourths are under 5.5 feet. This means that $\frac{3}{4} \times 24=18$ girls are under 5.5 feet.		
124		173	Key Explanation current age is x a Using the ratio of now yields $\frac{3 x+5}{x+5}$ multiplication on Subtracting $7 x$ an equation yields x is 10 years old.	ming t a's cur Now $3 x$ x ages 5 Perfor $9 x+1$ rom bo Therefo	e daughter's ge is $3 x$ Five years from now $3 x+5$ $x+5$ from cross $x+35 .$ es of the inas daughter	Key Explanation current age is x a Using the ratio o now yields $\frac{3 x+5}{x+5}$ multiplication on Subtracting $7 x$ a equation yields $2 x$ sides of the equa Gina's daughter is	ming a’s cur Now $3 x$ x ages 5 Perfor $9 x+$ rom b Divid elds x ars old.	daughter's e is $3 x$ rom cross $x+35$ es of the rom both herefore,
127	183		There was a sale for 60% off the or an additional 40% you buy a matchi of $\$ 450$. Which e amount you need originally $\$ s$ and	as at a price our mchai sion re y if yo ching	ure store sofa, with urchase if fixed price ts the total a sofa that is air?	There was a sale for 60% off the o an additional 40 you buy a match of \$450. Which amount you nee originally $\$ s$ and	as at a price our en nchair ion r y if yo ching	ure store sofa, with urchase if fixed price ts the total a sofa that is air?
131		188	Key Explanation: The price increases by 120%. Hence, the new price will be 220% of the original price. Multiplying 2.2 to the original price yields 2.2×24 or 52.80 . The price of the new dress will be $\$ 52.80$.			Key Explanation: $\$ 52.80$ is the correct answer. The price increases by 120%. Hence, the new price will be 220% of the original price. Multiplying 2.2 to the original price yields 2.2 $\times 24$ or 52.80 . The price of the new dress will be \$52.80.		

Pag e No.	Questio n No.	Answe r No.	Error in the book					Corrected				
137		205	Key Explanation: The correct answer $\frac{2}{3}$. The mean of the data set is given by $\frac{\text { sum of the values }}{}$. The sum of the 12 values is $(13 \times 1)+(14 \times 2)+(15 \times 5)+(17 \times 2)+(18 \times$ 1) $+(20 \times 1)=188$. The mean would therefore be $\frac{188}{12}=15 \frac{2}{3}$ or 15.667 . The median of 12 data is given by the average of the $6^{\text {th }}$ and the $7^{\text {th }}$ data, which would be 15 . The difference between the mean and the median would be $\left(15 \frac{2}{3}-15\right)=$ $\frac{2}{3}$.					Key Explanation: The correct answer $\frac{8}{3}$. The mean of the data set is given by sum of the values . The sum of the 12 values is no. of the values $(13 \times 1)+(14 \times 2)+(15 \times 4)+(17 \times 2)+(18 \times$ 1) $+(20 \times 1)=173$. The mean would therefore be $\frac{173}{11}=15 \frac{8}{3}$ or 15.727 . The median of 11 data is given by the average of the $6^{\text {th }}$ data, which would be 15 . The difference between the mean and the median would be $\left(15 \frac{8}{3}-15\right)=\frac{8}{3}$.				
138		206	Key Explanation: Choice A is correct. A standard deviation is a measure of how dispersed the data is with respect to the mean. The mean in Data Set A is $\frac{13+14+14+15+15+15+15+15+17+17+18+20}{12}$ $=15.67$. The mean in Data Set B is $\frac{14+14+15+15+15+15+15+17+17+17+18}{11}$ $=15.63$. Looking at the charts, the data in Set A is more dispersed from its mean compared to the data in Set B. Therefore, Set A has a greater standard deviation than Set B. Distractor Explanations: Choices A, C, and D are incorrect. The statements are false.					Key Explanation: Choice A is correct. A standard deviation is a measure of how dispersed the data is with respect to the mean. The mean in Data Set A is $\frac{13+14+14+15+15+15+15+15+17+17+18+20}{12}$ $=15.67$. The mean in Data Set B is $\frac{14+14+15+15+15+15+15+15+17+17+18}{11}$ $=15.45$. Looking at the charts, the data in Set A is more dispersed from its mean compared to the data in Set B. Therefore, Set A has a greater standard deviation than Set B. Distractor Explanations: Choices B, C, and D are incorrect. The statements are false.				
143	220											
149	226		$0-5$ hours $6-10$ hours $11-15$ hours Total hours Grade 10 21 16 25 62 Grade 11 15 17 35 67 Total Students 36 33 60 According to the data in the table above, if one was to choose a student at random from grade 10 , what is the probability that the student studied at least 6 hours a night?					$0-5$ hours $6-10$ hours $11-15$ hours Total students Grade 10 21 16 25 62 Grade 11 15 17 35 67 Total Students 36 33 60 According to the data in the table above, if one was to choose a student at random from grade 10 , what is the probability that the student studied at least 6 hours a night?				

Pag e No.	Questio n No.	Answe r No.	Error in the book	Corrected
159	246		1 . Most patients who did not take the medicine were healed quickly. 2. Most patients who did not take the medicine were not healed quickly. 3. Most patients who took the medicine were healed quickly. A) I alone is true B) II alone is true C) I and III are true D) II and III are true	I. Most patients who did not take the medicine were healed quickly. II. Most patients who did not take the medicine were not healed quickly. III. Most patients who took the medicine were healed quickly. A) I alone is true B) II alone is true C) I and III are true D) II and III are true
160	248		1. Most patients who did not take the medicine were cured. 2. Most patients who did not take the medicine were not cured. 3. Most patients who took the medicine were cured A) I alone is true B) II alone is true C) I and III are true D) II and III are true	I. Most patients who did not take the medicine were cured. II. Most patients who did not take the medicine were not cured. III. Most patients who took the medicine were cured A) I alone is true B) II alone is true C) I and III are true D) II and III are true
166	260		If a 440 m track encompasses a circular soccer field, what is the area of half the soccer field? (use π as $\frac{22}{7}$) A) 140 m B) $7,700 \mathrm{~m}$ C) $15,400 \mathrm{~m}$ D) $4,900 \mathrm{~m}$	If a 440 m track encompasses a circular soccer field, what is the area of half the soccer field? (use π as $\frac{22}{7}$) A) $140 \mathrm{~m}^{2}$ B) $7,700 \mathrm{~m}^{2}$ C) $15,400 \mathrm{~m}^{2}$ D) $4,900 \mathrm{~m}^{2}$
170		261	Key Explanation: Choice B is correct. The surface area of a cube is given by the formula $6 a^{2}$, given that a is one side of the cube. Since the surface area of the cube is $54,6 a^{2}=54$. Dividing both sides of the equation by 6 yields $a^{2}=9$. Getting the square of both sides of the equation yields $a=3$. The radius of the sphere will be 3 cm . The volume of a sphere issgiven by the formula $\frac{4}{3} \pi r^{3}$ which results to $\frac{4}{3 \pi}(3)^{3}=36 \pi$.	Key Explanation: Choice B is correct. The surface area of a cube is given by the formula $6 a^{2}$, given that a is one side of the cube. Since the surface area of the cube is $54,6 a^{2}=54$. Dividing both sides of the equation by 6 yields $a^{2}=9$. Getting the square root of both sides of the equation yields $a=3$. The radius of the sphere will be 3 cm . The volume of a sphere is given by the formula $\frac{4}{3} \pi r^{3}$ which results to $\frac{4}{3} \pi(3)^{3}=36 \pi$.

Pag e No.	Questio n No.	Answe r No.	Error in the book	Corrected		
171		264	Key Explanation: Choice \mathbf{A} is correct. First, find the volume of one frisbee by using the formula Volume $=\pi r^{2} h$. The diameter is $2 f t$, therefore, r $=1 \mathrm{ft}$. The height is 3 inches; converting it to feet yields $h=\frac{3 i n}{12} f t$ or $h=\frac{1}{4} f t$. Hence, the volume of one frisbee is $\frac{\pi 1^{2} 1}{4}=\frac{\pi}{4}$. Therefore, the volume of 15 frisbees is $\frac{15 \pi}{4}$.	Key Explanation: Choice \mathbf{A} is correct. First, find the volume of one frisbee by using the formula Volume $=\pi r^{2} h$. The diameter is $2 f t$, therefore, r $=1 \mathrm{ft}$. The height is 3 inches; converting it to feet yields $h=\frac{3 \text { in }}{12} f t$ or $h=\frac{1}{4} f t$. Hence, the volume of one frisbee is $\frac{\pi \mathrm{l}^{2} 1}{4}=\frac{\pi}{4}$. Therefore, the volume of 15 frisbees is $\frac{15 \pi}{4}$.		
177		272	Key Explanation: Given that $A B \\| C D$ and $E F$ is a transversal, then $a+b=180^{\circ}$ since a and b are co-interior angles. Hence, $b=180-a$. Given that $G H$ is a transversal for $A B$ and $C D$, then $d=c$ since c and d are alternate interior angles. Therefore, $b+d=180-a+c$.	Key Explanation: Choice C is the correct answer. Given that $A B \\| C D$ and $E F$ is a transversal, then $a+b=180^{\circ}$ since a and b are co-interior angles. Hence, $b=180-a$. Given that $G H$ is a transversal for $A B$ and $C D$, then $d=c$ since c and d are alternate interior angles. Therefore, $b+d=180-a+c$.		
178		273	Key Explanation: Choice D is correct. Since the figure above shows that triangle $X Y Z$ is inscribed in the circle with center W and diameter $X Z$, then $Y W=Z W$ because they are both radii. Since $Y Z=Y W=Z W$, then triangle $W Y Z$ is equilateral which means all angles are congruent. Since the sum of the inside angles of a triangle is 180°, each angle is 60°. Hence, $\angle Z W Y=60^{\circ}$. Since $\angle X W Y$ is the supplement of $\angle Z W Y$, then $\angle X W Y=180-60=120^{\circ}$.	Key Explanation: 120° is the correct answer. Since the figure above shows that triangle $X Y Z$ is inscribed in the circle with center W and diameter $X Z$, then $Y W=Z W$ because they are both radii. Since $Y Z=Y W=Z W$, then triangle $W Y Z$ is equilateral which means all angles are congruent. Since the sum of the inside angles of a triangle is 180°, each angle is 60°. Hence, $\angle Z W Y=60^{\circ}$. Since $\angle X W Y$ is the supplement of $\angle Z W Y$, then $\angle X W Y=180-60=120^{\circ}$.		
178		275	Key Explanation: To convert radians to degrees, use the formula $\frac{180}{\pi} \times \theta$. Substituting the given angle yields $\frac{180}{\pi} \cdot \frac{7}{18} \pi$ or 70°.	Key Explanation: 70° is the correct answer. To convert radians to degrees, use the formula $\frac{180}{\pi} \times \theta$. Substituting the given angle yields $\frac{180}{\pi} \cdot \frac{7}{18} \pi$ or 70°.		
178		276	Key Explanation: Angles on a straight line add up to 180°. Therefore, $\angle c=180-125=55^{\circ}$. Since $\angle c$ and $\angle z$ are alternate interior angles, they are equal. Therefore, $z=55^{\circ}$.	Key Explanation: 55° is the correct answer. Angles on a straight line add up to 180°. Therefore, $\angle c=180-125=55^{\circ}$. Since $\angle c$ and $\angle z$ are alternate interior angles, they are equal. Therefore, $z=55^{\circ}$.		

Pag e No.	Questio n No.	Answe r No.	Error in the book	Corrected
178		277	Key Explanation: The coordinates of the midpoint of a line segment is calculated by taking the average of the x coordinates and the average of the y coordinates of the two points on the line segment. Thus, the midpoint of segment $A B$ is given by $\left(\frac{6+0}{2}, \frac{4-8}{2}\right)$ or $(3,-2)$. To determine the correct equation the midpoint coordinates lie on, substitute $(3,-2)$ into each of the answer choices for the variables x and y and determine which answer choice makes the equation true. The only answer choice that makes the equation true is Choice C as $-2=3-5$ or $-2=-2$.	Key Explanation: Choice \mathbf{C} is the correct answer. The coordinates of the midpoint of a line segment is calculated by taking the average of the x coordinates and the average of the y coordinates of the two points on the line segment. Thus, the midpoint of segment $A B$ is given by $\left(\frac{6+0}{2}, \frac{4-8}{2}\right)$ or ($3,-2$). To determine the correct equation the midpoint coordinates lie on, substitute $(3,-2)$ into each of the answer choices for the variables x and y and determine which answer choice makes the equation true. The only answer choice that makes the equation true is Choice \mathbf{C} as $-2=3-5$ or $-2=-2$.
184		285	Key Explanation: Tan a is equivalent to $\frac{\sin a}{\cos a}$. Using the identity $\sin a=\cos (90-a), \sin (90-a)$ is $\cos a$. Therefore, $\tan a=\frac{0.6}{0.3}=2$.	Key Explanation: 2 is the correct answer. Tan a is equivalent to $\frac{\sin a}{\cos a}$. Using the identity $\sin a=$ $\cos (90-a), \sin (90-a)$ is $\cos a$. Therefore, tan a $=\frac{0.6}{0.3}=2$.
186	290		If a circle has a center $(1,3)$ and a radius of, which of the following points is an endpoint of the circle?	If a circle has a center $(1,3)$ and a radius of $\sqrt{17}$ which of the following points lies on the clrcle?
189		290	Key Explanation: Choice B is correct. To find an endpoint of a circle, find the equation of a circle from the center and the radius: Choice B is correct because it is the only answer, when inserted into the above equation, to solve the circle equation. Substitute $x=0$ and $y=7$ in the equation, we get, the equation is satisfied	Key Explanation: Choice B is correct. To find an endpoint of a circle, find the equation of a circle from the center and the radius: The equation of a circle in standard form is $(x-h)^{2}+(y-k)^{2}=r^{2}$ where (h, k) is the center of the circle and r is the radus. Substituting the given center and radius yields $(x-1)^{2}+(y-3)^{2}=(17)^{2}$. Simplifying the right side of the equation ylelds $(x-1)^{2}+(y-3)^{2}=17$. To Identify which points lies on the circle, substitute the values to the equation of the circle. Substituting (0,7) from chotce B to $\begin{aligned} & (x-1)^{2}+(y-3)^{2}=17 \text { ylelds } \\ & (0-1)^{2}+(7-3)^{2}=17 . \end{aligned}$ Simplifying the equation ylelds $17=17$. Since the statement is correct, then Cholce B is the correct answer.

Pag e No.	Questio n No.	Answe r No.	Error in the book	Corrected
191		300	Key Explanation: The standard equation of a circle is given by the equation $(x-h)^{2}+(y-k)^{2}$ $=r^{2}$, where r is the radius of the circle. Since $r^{2}=$ 64, then $r=8$. The diameter of a circle is twice its radius. Therefore, the diameter of the above circle will be 16 .	Key Explanation: 16 is the correct answer. The standard equation of a circle is given by the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$, where r is the radius of the circle. Since $r^{2}=64$, then $r=8$. The diameter of a circle is twice its radius. Therefore, the diameter of the above circle will be 16 .
205	8\#		$\begin{gathered} 3 y>2 x+5 \\ y \geq x+3 \end{gathered}$ Which of the following is a solution to the inequality below?	$\begin{gathered} 3 y>2 x+5 \\ y \leq x+3 \end{gathered}$ Which of the following is a solution to the inequality below?
211		3*	Key Explanation: The trigonometric identity, $\sin (x)=\cos (90-x)$, indicates that the angles are complementary. This means that the sum of $4 x+$ 6 and $x+4$ is equal to 90 . Therefore, $4 x+6+x+$ $4=90$. Combining like terms yields $5 x+10=90$. Subtracting 10 from both sides of the equation yields $5 x=80$. Dividing both sides of the equation by 5 yields x $=16$.	Key Explanation: 16 is the correct answer. The trigonometric identity, $\sin (x)=\cos (90-x)$, indicates that the angles are complementary. This means that the sum of $4 x+6$ and $x+4$ is equal to 90 . Therefore, $4 x+6+x+4=90$. Combining like terms yields $5 x+10=90$. Subtracting 10 from both sides of the equation yields $5 x=80$. Dividing both sides of the equation by 5 yields x $=16$.
213		10*	Key Explanation: To move the function $f(x)$ to the left by 4 units and 2 units up, add 4 to x and add 2 to the constant which yields $f(x)=3(x+$ 4) $-4+2$. Using distributive property yields $f(x)=3 x+12$ -2 . Simplifying the equation yield $f(x)=3 x-10$. The y-intercept is, therefore, 10 .	Key Explanation: To move the function $f(x)$ to the left by 4 units and 2 units up, add 4 to x and add 2 to the constant which yields $f(x)=3(x+$ 4) $-4+2$. Using distributive property yields $f(x)=3 x+12$ -2 . Simplifying the equation yields $f(x)=3 x-10$. The y-intercept is, therefore, -10 .
218		7 \#	Key Explanation: The area of a rectangular field is given by length $(l) \times$ width (w). If the width can be given by w, then the length would then be w +7 . Therefore, the area would be $w(w+7)=120$ which would result to $w^{2}+7 w=120$. Subtracting 120 from both sides of the equation yields $w^{2}+7 w-120=0$. Solve the quadratic equation to find the value of w.	Key Explanation: 15 is the correct answer. The area of a rectangular field is given by length $(l) \times$ width (w). If the width can be given by w, then the length would then be $w+7$. Therefore, the area would be $w(w+7)=120$ which would result to $w^{2}+7 w=120$. Subtracting 120 from both sides of the equation yields $w^{2}+7 w-120=0$. Solve the quadratic equation to find the value of w.
219		$10^{\#}$	Key Explanation: To solve for this, convert the percentage into a fraction that yields $\frac{32}{100}$. Then multiply the fraction by the given amount which yields $\frac{32}{100} \times 500=160$.	Key Explanation: 160 is the correct answer. To solve for this, convert the percentage into a fraction that yields $\frac{32}{100}$. Then multiply the fraction by the given amount which yields $\frac{32}{100} \times 500=160$

Pag e No.	Questio n No.	Answe r No.	Error in the book	Corrected
221		$16^{\#}$	Key Explanation: To solve for this absolute value, create two equations by multiplying the contents of the absolute value with +1 and -1 . The first equation will become ${ }^{+}\|3 x-5\|=+7$. Simplifyigg it yields $3 x-5=7$. Adding -5 to both sides of the equation yields $3 x$ $=12$. Dividing both sides of the equation by 3 yields $x=4$. Finding the second solution yields $-\|3 x-5\|=+7$. Simplifying the equation yields $-3 x+5=7$. Subtracting 5 from both sides of the equation yields $-3 x=2$. Dividing both sides of the equation by -3 yields $x=\frac{-2}{3}$. Therefore, 4 is the positive solution to the absolute value.	Key Explanation: 4 is the correct answer. To solve for this absolute value, create two equations by multiplying the contents of the absolute value with +1 and -1 . The first equation will become ${ }^{+}\|3 x-5\|={ }^{+} 7$. Simplifying it yields $3 x-5=7$. Adding 5 to both sides of the equation yields $3 x$ $=12$. Dividing both sides of the equation by 3 yields $x=4$. Finding the second solution yields $\|3 x-5\|={ }^{+} 7$. Simplifying the equation yields $-3 x+5=7$. Subtracting 5 from both sides of the equation yields $-3 x=2$. Dividing both sides of the equation by -3 yields $x=\frac{-2}{3} .$ Therefore, 4 is the positive solution to the absolute value.

*M1 - Module 1
\#M2 - Module 2

SAT ${ }^{\circledR}$ is a trademark registered by the College Board, which is not affiliated with, and does not endorse, this product.

This book had multiple print runs; this errata is applicable to print runs before May 8, 2023. The consecutive print runs have corrected these errors. In case you do not find the below errors in your book, it is because they have been corrected.

Page No.	Question No.	Answer No.	Error in the book	Corrected
94		110	Key Explanation: Choice C is correct. The most efficient way to solve this problem is to just substitute the answer choices and see which one makes the equation true. Plugging ing -6 into the equation results in $-6+4=\sqrt{-4}$ or $-2=2$, which is not correct. This eliminates Choices A and \mathbf{B}. Testing Choice \mathbf{C} results in $-1+4=\sqrt{9}$, or $3=3$. Thus Choice C is correct. The less efficient way to do this problem is to solve for m. Start by squaring both sides of the equation to remove the square root: The left side of the equation becomes: $(m+4)^{2}=$ $m^{2}+8 m+16$. The right side of the equation becomes: $m+10$. Setting the two equations equal results in $m^{2}+8 m+16=m+10$ Subtracting m and 10 from both sides of the equation yields $m^{2}+7 m+6=0$ Factoring the quadratic equation results in $(m+6)(m+1)=0$ Setting each $m+6$ and $m-1$ equal f gero results in the solutions $m=-1$ and $m=6$. Therefore, $m=-1,-6$, When sides of an equation are squared, there can be extraneous solutions created, Thus, both -6 and -1 need to be checked into the original equationto see if there are any extraneous solutions. When -6 is substituted for m in the original equation, there igga negative number under the square root. This is not a valid answer so - 6 is not a solution. Therefore, $m=-1$ is the only solution, or Choice C.	Key Explanation: Choice \mathbf{C} is correct. The most efficient way to solve this problem is to just substitute the answer choices and see which one makes the equation true. Plugging in -6 into the equation results in $-6+4=\sqrt{4}$ or $-2=2$, which is not correct. This eliminates Choices A and B. Testing Choice \mathbf{C} results in $-1+4=\sqrt{9}$, or $3=$ 3. Thus Choice \mathbf{C} is correct. The less efficient way to do this problem is to solve for m. Start by squaring both sides of the equation to remove the square root: The left side of the equation becomes: $(m+4)^{2}=$ $m^{2}+8 m+16$. The right side of the equation becomes: $m+10$. Setting the two equations equal results in $m^{2}+8 m+16=m+10$ Subtracting m and 10 from both sides of the equation yields $m^{2}+7 m+6=0$ Factoring the quadratic equation results in $(m+6)(m+1)=0$ Setting each $m+6$ and $m+1$ equal to zero results in the solutions $m=-1$ and $m=-6$. Therefore, $m=-1,-6$, When sides of an equation are squared, there can be extraneous solutions created, Thus, both -6 and -1 need to be checked into the original equation to see if there are any extraneous solutions. Hence -6 is not a solution. Therefore, $m=-1$ is the only solution, or Choice C.
96		117	Key Explanation: Since $a+b=p+r q$, solve for r by isolating it. Subtracting p from both sides of the equation yields $a+b-p=r q$. Dividing both sides of the equation by q yields $\frac{a+b-p}{q}=r$	Key Explanation: Choice \mathbf{D} is correct. Since $a+$ $b=p+r q$, solve for r by isolating it. Subtracting p from both sides of the equation yields $a+b-p=r q$. Dividing both sides of the equation by q yields $\frac{a+b-p}{q}=r .$

Page No.	Question No.	Answer No.	Error in the book	Corrected
97		121	Key Explanation: The product of the roots of a quadratic equation can be solved using the formula $\frac{c}{a}$ where a is the coefficient of x^{2} and c is the constant. Since $a=3$ and $c=-6$ the product of the roots is $\frac{-6}{3}=-2$. If one of the roots is $-\frac{1}{3}$, then, $\left(-\frac{1}{3}\right) s=-2$, where s is the second root of the equation. Multiplying both sides of the equation by -3 yields $s=6$.	Key Explanation: 6 is the correct answer. The product of the roots of a quadratic equation can be solved using the formula $\frac{c}{a}$ where a is the coefficient of x^{2} and c is the constant. Since $a=3$ and $c=-6$ the product of the roots is $\frac{-6}{3}=-2$. If one of the roots is $-\frac{1}{3}$, then, $\left(-\frac{1}{3}\right) s=-2$, where s is the second root of the equation. Multiplying both sides of the equation by -3 yields $s=6$.
97		122	Key Explanation: First, determine the factors of the equation to find the solutions. The equation $b^{2}-\frac{1}{4}=0$ features difference of two squares, which indicates that the equation can be factored into conjugates. Factoring the left side of the equation yields $\left(b+\frac{1}{2}\right)\left(b-\frac{1}{2}\right)=0$. Equating each factor to 0 yields $b=\frac{1}{2}$ and $b=-\frac{1}{2}$. Adding the two factors yields $\frac{1}{2}+\left(-\frac{1}{2}\right)$ or 0 .	Key Explanation: 0 is the correct answer. First, determine the factors of the equation to find the solutions. The equation $b^{2}-\frac{1}{4}=0$ features difference of two squares, which indicates that the equation can be factored into conjugates. Factoring the left side of the equation yields $\left(b+\frac{1}{2}\right)\left(b-\frac{1}{2}\right)=0$. Equating each factor to 0 yields $b=\frac{1}{2}$ and $b=-\frac{1}{2}$. Adding the two factors yields $\frac{1}{2}+\left(-\frac{1}{2}\right)$ or 0 .
97		123	Distractor Explanations: Choice A is incorrect. For an equation to have no solution, simplifying the equation would result in a false statement. Choice C is incorrect. Linear systems cannot have two solutions. Choice D is incorrect. For a system to have infinite solutions, simplifying the equation would result in a true statement.	Distractor Explanations: Choice A is incorrect. For an equation to have no solution, simplifying the equation would result in a false statement. Choice \mathbf{C} is incorrect. Linear systems cannot have two solutions. Choice D is incorrect. For a system to have infinite solutions, simplifying the equation would result in a false statement.
108		127	Key Explanation: To evaluate the given expression, make the base the same. Converting 27^{a} yields $\left(3^{3}\right)^{a}$ or $3^{3 a}$. Simplify the expression $\frac{3^{3 a}}{3^{a}}$ by subtracting the exponents which yield $3^{3 a-a}$ or $3^{2 a}$. Substituting the value of a yields $3^{2(3)}$ or 3^{1}. Therefore, the expression is equal to 3 .	Key Explanation: 3 is the correct answer. To evaluate the given expression, make the base the same. Converting 27^{a} yields $\left(3^{3}\right)^{a}$ or $3^{3 a}$. Simplify the expression $\frac{3^{3 a}}{3^{a}}$ by subtracting the exponents which yield $3^{3 a-a}$ or $3^{2 a}$. Substituting the value of a yields $3^{2(3)}$ or 3^{1}. Therefore, the expression is equal to 3 .
109		128	Choice \mathbf{C} issincorrect because it features a graph of a cubic function. Choige, D is incorrect because it features a graph of a quadratic function.	Choice C is incorrect because it features a graph of a quadratic function. Choice \mathbf{D} is incorrect because it features a graph of a cubic function.

Page No.	Question No.	Answer No.	Error in the book	Corrected
110		136	Key Explanation: The first step in solving the equation $a+3=\frac{1}{a+3}$ is through cross multiplication. This yields $(a+3)^{2}=1$. Taking the square root of both sides of the equation results in $(a+3)= \pm 1$ Only -1 is in the answer choices. Thus, the correct answer is Choice A.	Key Explanation: The first step in solving the equation $a+3=\frac{1}{a+3}$ is through cross multiplication. This yields $(a+3)^{2}=1$. Taking the square root of both sides of the equation results in $(a+3)= \pm 1$ Only 1 is in the answer choices. Thus, the correct answer is Choice A.
112		141	Key Explanation: Choice A is correct. When graphed, the vertex of the parabola is clearly the minimum $f(x)$ value. To determine the vertex, rewrite the equation in vertex form $f(x)=(x-$ $h)^{2}+k$ where (h, k) is the vertex. Completing the squares and grouping the perfect square trinomial yields $f(x)=\left(x^{2}+4 x+4\right)-16$. Simplifying the equation yields $f(x)=(x+2)^{2}-$ 16. Hence, the vertex is $(-2,-16)$. Therefore, $x=$ -2 when $f(x)$ is at its minimum.	Key Explanation: -2 is the correct answer. When graphed, the vertex of the parabola is clearly the minimum $f(x)$ value. To determine the vertex, rewrite the equation in vertex form $f(x)=(x-h)^{2}+k$ where (h, k) is the vertex. Completing the squares and grouping the perfect square trinomial yields $f(x)=\left(x^{2}+4 x+4\right)-16$. Simplifying the equation yields $f(x)=(x+2)^{2}-$ 16. Hence, the vertex is $(-2,-16)$. Therefore, $x=$ -2 when $f(x)$ is at its minimum.

SAT ${ }^{\circledR}$ is a trademark registered by the College Board, which is not affiliated with, and does not endorse, this product.

This book had multiple print runs; this errata is applicable to print runs before April 29, 2023. The consecutive print runs have corrected these errors. In case you do not find the below errors in your book, it is because they have been corrected.

$\begin{array}{\|l} \text { Page } \\ \text { No. } \end{array}$		
11	Error in the book	Distractor Explanations: Choice B is incorrect. This option is wronghecause C is the total amount paid by Mindy and not the rate per hour for the dog to run around the park. Choices \mathbf{C} and \mathbf{D} are incorrect. Mindy spent less than $\$ 40$. Hence, the correct symbol to use is < not > or $=$.
	Corrected	Distractor Explanations: Choice B is incorrect. This option is wrong because C is the total amount paid by Mindy and not the rate per hour for the dog to run around the park. Choice \mathbf{C} is incorrect. Mindy spends less than $\$ 40$, and hence, it should be < instead of $=$. Choice \mathbf{D} is incorrect. Mindy spends less than $\$ 40$, and hence, it should be < instead of >.
18	Error in the book	A linear function forms a straight line on the graph. For the function of $x, f(x)=3 x-2$ If $x=4$ Then, $f(x)=14-2$ Therefore, $f(x)=12$.
	Corrected	A linear function forms a straight line on the graph. For the function of $x, f(x)=3 x-2$ If $x=4$ Then, $f(x)=3 \times 4=12$. Therefore, $12-2=10$. Therefore, $f(x)=10$.
21	Error in the book	This is an example of a linear inequality equation with one variable, $x: a x+b<c$ where a, b, and c are real numbers. $\begin{aligned} & \text { Hence, if } a=1, b=4 \text {, and } c=10, x<10-\frac{4}{1} \\ & x<6 \end{aligned}$ However, for a linear inequality equation in two variables, $a x+b y<c$, where a, b, and c are real numbers, and b is not equal to 0 . $\begin{aligned} & \text { Hence, if } a=2, b=3 \text {, and } c=20, y=1, x \text { will be } x=20-\frac{3}{2} \\ & x=8.5 \end{aligned}$
	Corrected	This is an example of a linear inequality equation with one variable, $x: a x+b<c$ where a, b, and c are real numbers. $\begin{aligned} & \text { Hence, if } a=1, b=4 \text {, and } c=10, x<10-\frac{4}{1} \\ & x<6 \end{aligned}$ However, for a linear inequality equation in two variables, $a x+b y<c$, where a, b, and c are real numbers, and b is not equal to 0 . Hence, if $a=2, b=3$, and $c=20, y=1, x$ will be $x=20-\frac{3}{2}$ $x=18.5$

$\begin{array}{\|l} \hline \text { Page } \\ \text { No. } \end{array}$		
23	Error in the book	NOTE: When solving for equivalent expressions use the following ideas: - Discover the coefficient in the expressions (in $a(b x+c)=a b x+a c, a, b$, and c are the coefficients) - Combine the variables, which could be x or y - Solve for the unknown variable, this could be x or y - Rearrange the final formula
	Corrected	NOTE: When solving for equivalent expressions, use the following ideas: - Discover the coefficient in the expressions $a(b x+c)=a b x+a c, a, b$, and c are the coefficients) - Combine the variables, which could be x or y - Solve for the unknown variable, this could be x or y - Rearrange the final formula
24	Error in the book	
	Corrected	
27	Error in the book	Key Explanation: Choice C is correct. Percentage discount is found by $\frac{\substack{\rho \text { Discounht } \\ \text { original price }}}{5100 \text {. The discount is }}$ $\$ 45-\$ 40=\$ 5$. The original price is $\$ 45 . \frac{5}{45} \times 100=11.11 \%$.
	Corrected	Key Explanation: Choice C is correct. Percentage discount is found by $\frac{\text { discount }}{\text { original price }} \times 100$. The discount is $\$ 45-\$ 40=\$ 5$. The original price is $\$ 45 . \frac{5}{45} \times 100=11.11 \%$.
31	Error in the book	A) Peppermint tea doesn't improve the quality of sleep. B) 39% of those who drank either chamomile, hibiscus, or peppermint tea reported having slept better. C) Tea is essential to improve your quality of sleep. D) Hibiscus tea is best to improve the quality of sleep

Page No.		
	Corrected	A) Peppermint tea doesn't improve the quality of sleep. B) 43.3% of those who drank either chamomile, hibiscus, or peppermint tea reported having slept better. C) Tea is essential to improve your quality of sleep.
32	Error in the book	D) Hibiscus tea is best to improve the quality of sleep better sleep is 13 out of the 30 students surveyed. This proportion can be represented as 39\% making option B true.
	Corrected	Key Explanations: Choice B is correct. The total number of students from the study who reported having better sleep is 13 out of the 30 students surveyed. This proportion can be represented as 43.3% making option B true.

Page No.	Question No.	Answer No.	Error in the book	Corrected
40		4	Key Explanation: The correct answer is 114. An equation can be set up and solved with the first sentence which yields $3 m+12=33$. Subtracting 12 from both sides of the equation by 12 yields $3 m=21$. Dividing both sides of the equation by 3 yields m $=7$. The second sentence can be converted into the expression $15 m+9$. Substituting the value of m to the expression yields $15(7)+9=114$.	Key Explanation: The correct answer is 114. An equation can be set up and solved with the first sentence which yields $3 m+12=33$. Subtracting both sides of the equation by 12 yields $3 m=21$. Dividing both sides of the equation by 3 yields m $=7$. The second sentence can be converted into the expression $15 m+9$. Substituting the value of m to the expression yields $15(7)+9=114$.
40		5	Key Explanation: The correct answer is 112. Let the variables A, B and C be the distance traveled by Car $A, \operatorname{Car} B$, and Car C, respectively. Since they traveled a total of 336 miles, then $A+B+C$ $=336$. Since Car A traveled 3 times as far as Car B, then $A=3 B$. Since Car C traveled twice as far as $\operatorname{Car} B$, then $C=2 B$. Substituting the values of A and C in terms of B to the first equation yields $3 B+B+2 B=336$. Combining like terms yields $6 B=336$. Dividing both sides of the equation by 6 yields $B=56$. Since $C=2 B$, then $C=2(56)=$ 112. Therefore, Car C traveled 112 miles.	Key Explanation: The correct answer is 112 miles. Let the variables A, B and C be the distance traveled by Car $A, \operatorname{Car} B$, and Car C, respectively. Since they traveled a total of 336 miles, then $A+B+C=336$. Since Car A traveled 3 times as far as Car B, then $A=3 B$. Since Car C traveled twice as far as Car B, then $C=2 B$. Substituting the values of A and C in terms of B to the first equation yields $3 B+B+2 B=336$. Combining like terms yields $6 B=336$. Dividing both sides of the equation by 6 yields $B=56$. Since $C=2 B$, then $C=2(56)=112$. Therefore, Car C traveled 112 miles.
41		7	Key Explanation: To solve for the value of x, subtract 18 from both sides. This yields $3 x+18-18=27-18$ or $3 x=9$. Divide both sides of the equation by 3 . The result would be $x=3$.	Key Explanation: 3 is correct. To solve for the value of x, subtract 18 from both sides. This yields $3 x+18-18=27-18$ or $3 x=9$. Divide both sides of the equation by 3 . The result would be $x=3$.

Page No.	Question No.	Answer No.	Error in the book	Corrected
56		31	Key Explanation: Choice D is correct. In the equation, the variables x and z represent the number of hours worked by an employee. Since the tgtal pay (y) is determined by multiplying x and y by 20 and 25 respectively, it can be deduced that 20 and 25 are the rates of pay. And since 25 is being multiplied by z, it is the rate of pay per overtime hour of work.	Key Explanation: Choice D is correct. In the equation, the variables x and z represent the number of hours worked by an employee. Since the total pay (y) is determined by multiplying x and z by 20 and 25 respectively, it can be deduced that 20 and 25 are the rates of pay. And since 25 is being multiplied by z, it is the rate of pay per overtime hour of work.
65		44	Distractor Explanations: Choice A is incorrect and may result from interchanging the values of x and y. Choice C宜 incorrect and may result from interchanging the signs of x and y. Choice D is incorrect and may result from a conceptual or calculation error.	Distractor Explanations: Choice A is incorrect and may result from interchanging the values of x and y. Choice \mathbf{C} is incorrect and may result from interchanging the values and signs of x and y. Choice D is incorrect and may result from a conceptual or calculation error.
65		45	Key Explanation: Choice C is correct. In order to create equations that represent the data from the market, the variables s and f must be matched胞d multiplied with their correct totals and constants. If the total number of spots sold is 14 , then the first equation will be $s+f=14$. If the total rented area is 64 , then the second equation will be $6 s+4 f=64$.	Key Explanation: Choice C is correct. In order to create equations that represent the data from the market, the variables s and f must be matched and multiplied with their correct totals and constants. 6 square feet is denoted by s and hence total 6 square feet rented area is 6 square feet $\times \mathrm{s}$ $=6 s .4$ square feet is denoted by f and hence total 4 square feet rented area is 4 square feet $\times f=4 f$. If the total number of spots sold is 14 , then the first equation will be $s+f=14$. If the total rented area is 64 , then the second equation will be $6 s+$ $4 f=64$.
66		48	Key Explanation: Start by solving the system of equations using the elimination method. Multiplying the first equation by 5 yields $-5 x$ $+10 y=40.5$. Adding the first and the second equation yields $-5 x+10 y+5 x-3 y=40.5-\frac{122}{5}$. Combining like terms yields $7 y=16$.1. Dividing 7 from both sides of the equation yields $y=2.3$. Then, substitute this value into the original first equation and solve for x. This yields $-x+2(2.3)=$ 8.1 or $x=-3.5$. Therefore, $2 x-y=2(-3.5)+2.3=-9.3$.	Key Explanation: Choice \mathbf{A} is correct. Start by solving the system of equations using the elimination method. Multiplying the first equation by 5 yields $-5 x+10 y=40.5$. Adding the first and the second equation yields $-5 x+10 y$ $+5 x-3 y=40.5-\frac{122}{5}$. Combining like terms yields $7 y=16.1$. Dividing 7 from both sides of the equation yields $y=2.3$. Then, substitute this value into the original first equation and solve for x. This yields $-x+2(2.3)=$ 8.1 or $x=-3.5$. Therefore, $2 x-y=2(-3.5)+2.3=-9.3$.

Page No.	Question No.	Answer No.	Error in the book	Corrected
70		61	Key Explanation: Choice B is correct. In order for a system of equations to be true for all real numbers, the equations must be the same line. The coefficients for both variables, as well as the constants, must be proportional to one another. Start by reorganizing the equations into the same form which yields $\begin{aligned} & d x+7 y=4 \text { and } \\ & 4 x+14 y=e . \end{aligned}$ The coefficients of y reveal that the equations are proportional and have a ratio of 7:14 or 1:2. Therefore, the coefficients of x must also have the same ratio. Applying the ratio yields $\frac{d}{4}=\frac{1}{2}$. Multiplying 4 to both sides of the equation yields $d=2$.	Key Explanation: 2 is correct. In order for a system of equations to be true for all real numbers, the equations must be the same line. The coefficients for both variables, as well as the constants, must be proportional to one another. Start by reorganizing the equations into the same form which yields $\begin{aligned} & d x+7 y=4 \text { and } \\ & 4 x+14 y=e . \end{aligned}$ The coefficients of y reveal that the equations are proportional and have a ratio of 7:14 or 1:2. Therefore, the coefficients of x must also have the same ratio. Applying the ratio yields $\frac{d}{4}=\frac{1}{2}$. Multiplying 4 to both sides of the equation yields $d=2$.
71		67	Adding 18ta to both sides of the equation yields $3 x=17$. Dividing both sides of the equation by yields $x=\frac{17}{3}$. Now, find y by substituting the value for x into either of the two equations. Substituting it to the first equation yields $y=2\left(\frac{17}{3}\right)-6=\frac{34}{3}-6=\frac{16}{3}=5.33$.	Adding 12 to both sides of the equation yields $3 x=17$. Dividing both sides of the equation by 3 yields $x=\frac{17}{3}$. Now, find y by substituting the value for x into either of the two equations. Substituting it to the first equation yields $y=2\left(\frac{17}{3}\right)-6=\frac{34}{3}-6=\frac{16}{3}=5.33$.
71		68	Key Explanation: Linear systems with no solution are parallel and have the same gradient. Using distributive property to simplify both equations yields $y=3 \mathrm{x}-15+10-2 x$ and $y=2 p$ $-p x+6 x$. Combining like terms yields $y=x-5$ and $y=(6$ $-p) x+2 p$. Equating the slopes of the equations yields $1=6-p$. Adding p and subtracting 1 from both sides of the equation yields $p=5$.	Key Explanation: 5 is the correct answer. Linear systems with no solution are parallel and have the same gradient. Using distributive property to simplify both equations yields $y=3 \mathrm{x}-15+10-2 x$ and $y=2 p$ $-p x+6 x$. Combining like terms yields $y=x-5$ and $y=(6$ $-p) x+2 p$. Equating the slopes of the equations yields $1=6-p$. Adding p and subtracting 1 from both sides of the equation yields $p=5$.

Page No.	Question No.	Answer No.	Error in the book	Corrected
76		71	Key Explanation: Using the given equation $8 y-$ $4 x=5$, find the value of y in terms of x. Adding $4 x$ to both sides of the equation yields $8 y$ $=4 x+5$. Dividing both sides of the equation by 8 yields $y=\frac{4 x+5}{8} .$ Substituting the equation to the inequality $y>$ 800 yields. Multiplying 8 to both sides of the inequality yields $4 x+5>6400$. Subtracting 5_{-1}^{-1} from both sides of the inequality yields $4 x>6395$. Dividing 4 from both sides of the equation yields $x>\frac{6395}{\text { 雪 }}$ or $x>1598.75$. Since x must be greater than 1598.75 , then the least integer value of x is 1599.	Key Explanation: 1,599 is the correct answer. Using the given equation $8 y-4 x=5$, find the value of y in terms of x. Adding $4 x$ to both sides of the equation yields $8 y$ $=4 x+5$. Dividing both sides of the equation by 8 yields $y=\frac{4 x+5}{8} .$ Substituting the equation to the inequality $y>$ 800 yields. Multiplying 8 to both sides of the inequality yields $4 x+5>6,400$. Subtracting 5 from both sides of the inequality yields $4 x>6,395$. Dividing 4 from both sides of the equation yields $x>\frac{6,395}{4}$ or $x>1,598.75$. Since x must be greater than $1,598.75$, then the least integer value of x is 1,599 .
77		74	Key Explanation: The greatest possible value of the expression $x-y$ can be obtained using the maximum value of x and the minimum value of y. From the given inequalities, the maximum possible value of x is 90 and the minimum possible value of y is -30 . Substituting the values to the expression $x-y$ yields $90-(-30)$ or 120 .	Key Explanation: The greatest possible value of the expression $x-y$ can be obtained using the maximum value of x and the minimum value of y. From the given inequalities, the maximum possible value of x is 90 and the minimum possible value of y is -30 . Substituting the values to the expression $x-y$ yields $90-(-30)$ or 120 .
85	105		If the expression $a^{\frac{3}{2}} \cdot b^{\frac{1}{3}}$ is equivalent to $\sqrt[p]{(a)^{11}}$, what is the value p if $b=a$?	If the expression $a^{\frac{3}{2}} \cdot b^{\frac{1}{3}}$ is equivalent to $\sqrt[8]{(a)^{11}}$, what is the value of p if $b=a$?
89		105	Key Explanation: If $b=a$, then $a^{\frac{3}{2}} \cdot b^{\frac{1}{3}}=a^{\frac{3}{2}} \cdot b^{\frac{1}{3}}$. Since the bases are the same, the exponents should therefore be added. Adding the exponents yields $\frac{3}{2}+\frac{1}{3}=\frac{9+2}{6}=\frac{11}{6}$. Equating the two expressions yields $a^{\frac{11}{6}}=\sqrt[p]{a^{11}}$. Rewriting the right side of the equation in exponential form yields $a^{\frac{11}{6}}=a^{\frac{11}{p}}$. Matching the exponents yields $p=6$.	Key Explanation: 6 is the correct answer. If $b=a$, then $a^{\frac{3}{2}} \cdot b^{\frac{1}{3}}=a^{\frac{3}{2}} \cdot b^{\frac{1}{3}}$. Since the bases are the same, the exponents should therefore be added. Adding the exponents yields $\frac{3}{2}+\frac{1}{3}=\frac{9+2}{6}=\frac{11}{6}$. Equating the two expressions yields $a^{\frac{11}{6}}=\sqrt[p]{a^{11}}$. Rewriting the right side of the equation in exponential form yields $a^{\frac{11}{6}}=a^{\frac{11}{p}}$. Matching the exponents yields $p=6$.

Page No.	Question No.	Answer No.	Error in the book	Corrected
90		106	Key Explanation: To determine the values of a, b, c, simplify the right side of the equation by using distributive property which yields $2 x^{2}-10 x$ $+x-5-13$. Combining like terms yields $2 x^{2}-$ $9 x-18$. Comparing the coefficients and constant on the equation $a x^{2}+b x+c=2 x^{2}-9 x-18$ yields $a=2, b=-9$ and $c=-18$. Substituting the value to the expression $a+b+c$ yields $2-9-18$. Therefore, the value of the expression is -25 .	Key Explanation: - 25 is the correct answer. To determine the values of a, b, c, simplify the right side of the equation by using distributive property which yields $2 x^{2}-10 x+x-5-13$. Combining like terms yields $2 x^{2}-9 x-18$. Comparing the coefficients and constant on the equation $a x^{2}+b x+c=2 x^{2}-9 x-18$ yields $a=2$, $b=-9$ and $c=-18$. Substituting the value to the expression $a+b+c$ yields $2-9-18$. Therefore, the value of the expression is -25 .
91	113		$2^{x} \times 2^{y}=1,028$ In the equation above, what is the value of $x+y$?	$2^{x} \times 2^{y}=1,024 .$ In the equation above, what is the value of $x+y$?

SAT ${ }^{*}$ is a trademark registered by the College Board, which is not affiliated with, and does not endorse, this product.

This book had multiple print runs; this errata is applicable to print runs before April 17, 2023. The consecutive print runs have corrected these errors. In case you do not find the below errors in your book, it is because they have been corrected.

Page No.	Question No.	Answer No.	Error in the book	Corrected
41		8	Key Explanation: Choice D is correct. Begin by creating an equation to represent the total number of hours Tyrone needs to study in terms of x hours per 5 weekdays, if he studies 10 hours per day over the two weekend days: $\begin{aligned} & 50=20+5 x \\ & 30=5 x \\ & x=6 \text { hours per day } \end{aligned}$ Distractor Explanations: Choices A, B, and C are incorrect.	Key Explanation: Choice D is correct. Begin by creating an equation to represent the total number of hours Tyrone needs to study in terms of x hours per 5 weekdays, if he studies 10 hours per day over the two weekend days: $\begin{aligned} & 50=20+5 x \\ & 30=5 x \\ & x=6 \text { hours per day } \end{aligned}$ Distractor Explanations: Choices A, B, and C are incorrect and reflect errors in interpreting the value of variables in the word problem.
50		22	Key Explanation: Choice C is correct. Modify the equation in order to express an increase in Celsius by two degrees. Therefore, the new temperature in degrees Fahrenheit is $F_{\text {new }}=\frac{9}{5}(C+2)+32$. Getting the difference between the new and original equation yields $F_{\text {new }}=\left[\frac{9}{5}(C+2)+32\right]-\left(\frac{9}{5} C+32\right)$. Using the distributive property and combining like terms to simplify the equation yields $F_{n e w}-F=\frac{9}{5}(C+2)-\frac{9}{5} C$. Factoring out $\frac{9}{5}$ yields $\frac{9}{5}(C+2-C)$ or $\frac{9}{5}(2)$. Therefore, the equivalent increase in degrees Fahrenheit is $\frac{18}{5}$ or 3.6.	Key Explanation: Choice \mathbf{C} is correct. Modify the equation in order to express an increase in Celsius by two degrees. Therefore, the new temperature in degrees Fahrenheit is $F_{n e w}=\frac{9}{5}(C+2)+32$. Getting the difference between the new and original equation yields $F_{n c w}-F=\left[\frac{9}{5}(C+2)+32\right]-\left(\frac{9}{5} C+32\right)$. Using the distributive property and combining like terms to simplify the equation yields $F_{\text {new }}-F=\frac{9}{5}(C+2)-\frac{9}{5} C$. Factoring out $\frac{9}{5}$ yields $\frac{9}{5}(C+2-C)$ or $\frac{9}{5}(2)$. Therefore, the equivalent increase in degrees Fahrenheit is $\frac{18}{5}$ or 3.6.
64	64		$\begin{aligned} & 9 x+y=-19 \\ & \frac{7}{4} x-5 y=\frac{3}{2} \end{aligned}$ For the system of equations above, in which quadrant does the solution lie? A) I B) II C) III D) IV	Is $(25,11)$ the solution to the following system of equations? $\begin{gathered} y+x=36 \\ 2 y+8 x=140 \end{gathered}$ A) Yes, $(25,11)$ is the solution because it satisfies both equations. B) $\mathrm{No}(25,11)$ is not the solution because it does not satisfy the first equation. C) No, $(25,11)$ is not the solution because it does not satisfy the second equation. D) More information is needed in order to answer the question.

Page No.	Question No.	Answer No.	Error in the book	Corrected		
69		58	Key Explanation: The correct answer is 2. A system of equations with no solution on a coordinate plane is two parallel lines or lines with the same slope. To solve for the slope, convert each equation to slope-intercept form. Subtracting $24 x$ to both sides of the first equation yields $-6 y=-24 x+33$. Dividing -6 from both sides of the first equation yields $y=\frac{-24}{-6} x+\frac{33}{-6}$ or $y=4 x-\frac{33}{6}$. Therefore, the slope of the first equation is 4 . Subtracting $8 x$ to both sides of the second equation yields $-s y=-8 x-12$. Dividing $-s$ from both sides of the second equation yields $y=\frac{-8}{-s} x-\frac{12}{-s}$ or $y=\frac{8}{s} x+\frac{12}{-s}$ Therefore, the slope of the second equation is $\frac{8}{s}$. Since the two equations have equal slope, then $4=\frac{8}{\mathrm{~s}}$. Multiplying s and dividing 4 from both sides of the equation yields $s=\frac{8}{4}$. Therefore, $s=2$.	Key Explanation: The correct answer is 2. A system of equations with no solution on a coordinate plane is two parallel lines or lines with the same slope. To solve for the slope, convert each equation to slope-intercept form. Subtracting $24 x$ to both sides of the first equation yields $-6 y=-24 x+33$. Dividing -6 from both sides of the first equation yields $y=\frac{-24}{-6} x+\frac{33}{-6}$ or $y=4 x-\frac{33}{6}$. Therefore, the slope of the first equation is 4 . Subtracting $8 x$ to both sides of the second equation yields $-s y=-8 x-12$. Dividing $-s$ from both sides of the second equation yields $y=\frac{-8}{-s} x-\frac{12}{-s}$ or $y=\frac{8}{s} x+\frac{12}{s}$. Therefore, the slope of the second equation is $\frac{8}{s}$. Since the two equations have equal slope, then $4=\frac{8}{s}$. Multiplying s and dividing 4 from both sides of the equation yields $s=\frac{8}{4}$. Therefore, $s=2$.		
70		64	Level: Easy \| Skill/Knowledge: Systems of two linear equations in two variables	Testing Point: Solving a system of two linear equations and determining quadrant of solution Key Explanation: Choice \mathbf{C} is correct. Use the elimination method to solve the system of equations. Multiplying 5 to the first equation yields $45 x+5 y=-95$. Adding the first and the second equation yields $45 x+5 y+\frac{7}{4} x$ $-5 y=-95+\frac{3}{2}$. Combining like terms yields $\frac{187}{4} x=-\frac{187}{2}$. Multiplying 4 and dividing 187 from both sides of the equation yields $x=-2$. Substituting the value of x to the original first equation yields $9(-2)+y=-19$ or $-18+y=-19$. Adding 18 to both sides of the equation yields $y=-1$. Therefore, the solution to the system of equations is $(-2,-1)$ which lies on Quadrant III. Distractor Explanations: Choices A, B, and D are incorrect and most likely result from an error in calculating the values of x and y or from an error in plotting the solution in the wrong quadrant.	Level: Easy \| Skill/Knowledge: Systems of two linear equations in two variables	Testing Point: Solving System of Linear Equations Key Explanation: Choice \mathbf{C} is correct. Plugging (25,11) into the first equation, yields $11+25=$ 36 or $36=36$, which is true. Plugging $(25,11)$ into the second equation yields $2(11)+8(25)=$ 140. Simplifying the equation yields $222=140$, which is false. Therefore, Choice C is the correct answer. Distractor Explanations: Choices A and B are incorrect. These statements are false. Choice D is incorrect. There is enough information to answer the question.

Page No.	Question No.	Answer No.	Error in the book	Corrected
78		80	Key Explanation: Choice B is correct. If the frame can hold up to 12 pounds, the variable (s) must be greater than or equal to the sum of the other variables. Since the totell weight of the painting and the frame is $x+y$, then the inequality is $s \geq x+y$ or $s \geq y+x$. Therefore, Choice B is correct.	Key Explanation: Choice B is correct. If the frame can hold up to 12 pounds, the variable (s) must be greater than or equal to the sum of the other variables. Since the total weight of the painting and the frame is $x+y$, then the inequality is $s \geq x+y$ or $s \geq y+x$. Therefore, Choice B is correct.
79		81	Key Explanation: Choice \mathbf{C} is correct. To find the possible values of t, make two inequalities using the content of the absolute value and the positive and negative values of the constant. This yields $2 t-2<1$ and $2 t-2>-1$. Solving the values of t yields $t<\frac{3}{2}$ and $t<\frac{1}{2}$. Combining the two inequalities yields $\frac{1}{2}<t<\frac{3}{2}$ or $0.5<t<$ 1.5. Since t is an integer, then t can only be equal to 1 .	Key Explanation: Choice C is correct. To find the possible values of t, make two inequalities using the content of the absolute value and the positive and negative values of the constant. This yields $2 t-2<1$ and $2 t-2>-1$. Solving the values of t yields $t<\frac{3}{2}$ and $t>\frac{1}{2}$. Combining the two inequalities yields $\frac{1}{2}<t<\frac{3}{2}$ or $0.5<t<$ 1.5. Since t is an integer, then t can only be equal to 1.
82	91		Simplify the following expression $\frac{2 x-1}{x-3}-\frac{x-1}{x+2}$ A) $\left(\frac{x^{2}+7 x-5}{x^{2}-x-6}\right)$ B) $\left(\frac{x^{2}+7 x-5}{x^{2}+x-6}\right)$ C) $\left(\frac{x^{2}+x-1}{2 x-1}\right)$ D) $\left(\frac{x^{2}+x-1}{(x+2)(x-3)}\right)$	Simplify the following expression $\frac{2 x-1}{x-3}-\frac{x-1}{x+2}$ A) $\left(\frac{x^{2}+7 x-5}{x^{2}-x-6}\right)$ B) $\left(\frac{x^{2}+7 x-5}{x^{2}+x-6}\right)$ C) $\left(\frac{x^{2}-x-1}{2 x-1}\right)$ D) $\left(\frac{x^{2}+x-1}{(x+2)(x-3)}\right)$
87		92	$\begin{aligned} & -7 x^{2}+4 x-12-\left(3 x^{2}+16 x+4\right) \\ & =-7 x^{2}+4 x-12+\left(-3 x^{2}\right)+(-16 x)+(-4) \\ & =-10 x^{2}-12 x-16 \end{aligned}$ The standard form of a quadratic equationis $y=$ $a x^{2}+b x+c$. Therefore, $a=-10, b=-12,=-16$. The product of a and c is $-10 \times-16=160$.	$\begin{aligned} & -7 x^{2}+4 x-12-\left(3 x^{2}+16 x+4\right) \\ & =-7 x^{2}+4 x-12+\left(-3 x^{2}\right)+(-16 x)+(-4) \\ & =-10 x^{2}-12 x-16 \end{aligned}$ The standard form of a quadratic equation is $y=$ $a x^{2}+b x+c$. Therefore, $a=-10, b=-12, c=-16$. The product of a and c is $-10 \times-16=160$.
104	151		If $f(x)=\frac{3}{2}+2$ and $f(x)=3$, what is the value of $(x)^{-1}$? A) $\frac{3}{2}$ B) $\frac{2}{3}$ C) 3 D) 2	If $f(x)=\frac{3}{2} x+2$ and $f(x)=3$, what is the value of $(x)^{-1}$? A) $\frac{3}{2}$ B) $\frac{2}{3}$ C) 3 D) 2

Page No.	Question No.	Answer No.	Error in the book	Corrected		
116		159	Key Explanation: Choice \mathbf{A} is correct. The vertex of $f(x)$ is $(-2,12)$. The equation of $g(x)=$ $-2 x^{2}+4 x+14$ in vertex form would be $-2(x-$ $1) 2+16$. Hence, the vertex would be $(1,16)$. The x coordinate translation from -2 to 1 is 3 units to the right.	Key Explanation: Choice A is correct. The vertex of $f(x)$ is $(-2,12)$. The equation of $g(x)=$ $-2 x^{2}+4 x+14$ in vertex form would be $-2(x-1)^{2}+16$. Hence, the vertex would be $(1,16)$. The x coordinate translation from -2 to 1 is 3 units to the right.		
125		179	yields $\frac{\text { Plant life }}{1,680,000}=\frac{2}{5}$. Substituting $1,680,000$ to the equation yields $\frac{\text { Plant life }}{1,680,000}=\frac{2}{5}$. Multiplying both sides of the equation by $1,680,000$ yields ${ }_{\text {Plant }}^{\text {Pl }}$ life $=\frac{2 \times 1,680,000}{5}=672,000$.	yields $\frac{\text { Plant life }}{\text { Animal life }}=\frac{2}{5}$. Substituting $1,680,000$ to the equation yields $\frac{\text { Plant life }}{1,680,000}=\frac{2}{5}$. Multiplying both sides of the equation by $1,680,000$ yields Plant life $=\frac{2 \times 1,680,000}{5}=672,000$.		
131		189	Level: Medium \| Skill/Knowledge: Percentages Testing Point: Working with percentage deincrease and discount	Level: Medium \| Skill/Knowledge: Percentages Testing Point: Working with percentage decrease and discount		
135	209		The data above represents how Class Buck and Class Mow performed in their midterm results. Which of the following cannot be true about the two classes represented in the table above? A) The median of Class Buck and Class Mow is 73.5%. B) The mean of Class Mow is greater than the mean of Class Buck. C) The standard deviation of Class Mow is higher than the standard deviation of Class Buck. D) The median of Class Buck is 57.6%.	 $100-80$ $80-60$ $60-40$ $40-20$ The data ab Class Mow Which of t two classes A) The m 73.5%. B) The m mean C) The st higher Buck. D) The m	CLASS BUCK 1 8 6 1 represents how formed in their ollowing canno resented in the n of Class Buck of Class Mow is lass Buck. ard deviation of n the standard n of Class Buck	CLASS MOW 4 9 2 1 lass Buck and idterm results. true about the le above? d Class Mow is eater than the ass Mow is riation of Class 57.6\%.
136		200	Key Explanation: Choice A is correct. Begin by calculating the total time traveled by the geese in hours: Converting days to hours yields $3.75 \text { days } \times \frac{24 \text { hours }}{1 \text { day }}=90 \text { hours } .$ Divide the total distance in miles by the total time in hours to calculate the average speed which yields Average speed $=$ $\frac{2,365 \text { Miles }}{90 \text { hours }}=26,2777 \mathrm{mph}$. Rounding off to the nearest tenth, yields 26.3 mph .	Key Explanation: Choice \mathbf{A} is correct. Begin by calculating the total time traveled by the geese in hours: Converting days to hours yields $3.75 \text { days } \times \frac{24 \text { hours }}{1 \text { day }}=90 \text { hours } .$ Divide the total distance in miles by the total time in hours to calculate the average speed which yields Average speed $=$ $\frac{2,365 \text { Miles }}{90 \text { hours }}=26.2777 \mathrm{mph}$. Rounding off to the nearest tenth, yields 26.3 mph .		

Page No.	Question No.	Answer No.	Error in the book	Corrected
138		208	Distractor Explanations: Choice A is incorrect. The range of the data set would remain the same because all the data points are increased by the same amount. This would not change the difference between the maximum and minimum data. Choice \mathbf{C} is incorrect. The mean and range will increase and thus not all options are false. Choice D is incorrect. The range and standard deviation remain the same and therefore not all options can be correct.	Distractor Explanations: Choice \mathbf{A} is incorrect. The range of the data set would remain the same because all the data points are increased by the same amount. This would not change the difference between the maximum and minimum data. Choice C is incorrect. The mean and range will increase and thus not all options are false. Choice D is incorrect. The range and standard deviation remain the same and therefore not all options can be correct.
157		236	Key Explanation: Choice C is correct. Here p is the proportion. The standard error of p is given by $\sqrt{ }(p(1-p) / n)$, where n is the number of employees intervieysed. Standard Error $=\sqrt{ }(0.9(1-0.9) / 1000)=$ $\sqrt{ }((0.9 \times 0.1) / 1000)=0.0094 \approx 0.009$.	Key Explanation: Choice \mathbf{C} is correct. Here p is the proportion. The standard error of p is given by $\sqrt{\left(\frac{p(1-p)}{n}\right)}$, where n is the number of employees interviewed. Standard Error $=$ $\sqrt{\left(\frac{0.9(1-0.9)}{1000}\right)}=\sqrt{\left(\frac{(0.9 \times 0.1)}{1000}\right)}=0.0094 \approx 0.009$
162		248	Key Explanation: Choice D is correct. II is true as only $\frac{56}{700}$ or 8% of the patients who did not take the medicine got cured, rest 92% not cured. III is true as $\frac{810}{900}$ or 90% of the patients have cured. Distractor Explanations: I is not true since only $\frac{72}{800}$ ofr 9\% got cured.	Key Explanation: Choice D is correct. II is true as only $\frac{56}{700}$ or 8% of the patients who did not take the medicine got cured, rest 92% not cured. III is true as $\frac{810}{900}$ or 90% of the patients who took the medicine got cured. Distractor Explanations: I is not true since only $\frac{72}{800}$ or 9% who did not take the medicine got cured.
168		251	Level: Easy \| Skill/Knowledge: Area andyyolume Testing Point: Finding the volume of a spher	Level: Easy \| Skill/Knowledge: Area and volume Testing Point: Finding the volume of a sphere
173	268		According to the triangle above, what is the value of side Z ?	According to the triangle above, what is the value of side Z ?

Page No.	Question No.	Answer No.	Error in the book	Corrected
180	280		In a right triangle, if $\angle x+\angle y=90^{\circ}$ and $\cos x=$ $x=\frac{5}{12}$, what is the value of $\sin y$?	In a right triangle, if $\angle x+\angle y=90^{\circ}$ and $\cos x=\frac{5}{12}$, what is the value of $\sin y$?
196	M1*-1		If $f(1)=4$ and $f(5)=12$, what is the value of the y-intercept of the function $f(\mathrm{x})$? A) 4 B) -8 C) 2 D) 8	If $f(1)=-4$ and $f(5)=12$, what is the value of the y-intercept of the function $f(x)$? A) 4 B) -8 C) 2 D) 8
196	M1-6		If $\frac{-3+}{-4}$ is a solution to the equation $-2 x^{2}+3 x+$ $6=0$, what is the value of n ?	If $\frac{-3+\sqrt{n}}{-4}$ is a solution to the equation $-2 x^{2}+3 x$ $+6=0$, what is the value of n ?
197	M1-7		What is the value of 83 radians in degrees? A) 960° B) 480° C) 240° D) 120°	What is the value of $\frac{8}{3} \pi$ radians in degrees? A) 960° B) 480° C) 240° D) 120°
198	M1-13		A cylinder with an open top has a radius of 14 cm and a height of 10 cm . What is the value of the surface area of the cylinder? A) 1960 B) 476 C) 672 D) 1400	A cylinder with an open top has a radius of 14 cm and a height of 10 cm . What is the value of the surface area of the cylinder? A) 1960π B) 476π C) 672π D) 1400π
204	$\mathrm{M} 2^{\#}-1$		$p(x)=60,040(1.012)^{x}$ The function $p(x)$ models the population of city Y from the year 2004 to the year 2016. Wfich of the following statements best represents (1.012) A) The population of city Y increases by 12% every year from 2004 to 2016. B) The population of city Y increases y 1.2% every year from 2004 to 2016. C) The population of city Y decreases by 12% every year from 2004 to 2016. D) The population of city Y decreases by 1.2% every year from 2004 to 2016.	$p(x)=60,040(1.012)^{x}$ The function $p(x)$ models the population of city Y from the year 2004 to the year 2016. Which of the following statements best represents (1.012) ${ }^{x}$? A) The population of city Y increases by 12% every year from 2004 to 2016. B) The population of city Y increases y 1.2% every year from 2004 to 2016. C) The population of city Y decreases by 12% every year from 2004 to 2016. D) The population of city Y decreases by 1.2% every year from 2004 to 2016.

Page No.	Question No.	Answer No.	Error in the book	Corrected
204	M2-4		Triangle $A B C$ is shown below. If $\frac{1}{2} B=36 \mathrm{~cm}$ and $A C=27 \mathrm{~cm}$, what is the value of $D C$? A) 28.80 B) 21.60 C) 19.29 D) 25.71	Triangle $A B C$ is shown below. If $A B=36 \mathrm{~cm}$ and $A C=27 \mathrm{~cm}$, what is the value of $B D$? A) 28.80 B) 21.60 C) 19.29 D) 25.71
212		M1-6	Key Explanation: To solve for this quadratic equation, use the quadratic formula $x=\frac{+b \pm \sqrt{b^{2}-4 a c}}{2 a}, \text { where } a=-2, b=3 \text { and } c=$ 6. Substituting the values yields $\frac{-3 \pm \sqrt{3^{2}-4(-2)(6)}}{2(-2)}=\frac{3 \pm \sqrt{57}}{4}$. Therefore the value of $n=57$.	Key Explanation: To solve for this quadratic equation, use the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, where $a=-2, b=3$ and $c=6$. Substituting the values yields $\frac{-3 \pm \sqrt{3^{2}-4(-2)(6)}}{2(-2)}=\frac{3 \pm \sqrt{57}}{4}$. Therefore the value of $n=57$.
212		M1-7	Key Explanation: Choice B is correct. π radian is equal to 180°. Therefore, to convert radians to degrees, substitute π with with 180° which yields $\frac{8}{3} \times 180^{\circ}=480^{\circ}$.	Key Explanation: Choice B is correct. π radian is equal to 180°. Therefore, to convert radians to degrees, substitute π with 180° which yields $\frac{8}{3} \times 180^{\circ}=480^{\circ}$.
212		M1-8	Key Explanation: Choice B is correct. To solve for this inequality, the content of the absolute value must be multiplied by 1 and -1 which yields:	Key Explanation: Choice B is correct. To solve for this inequality, the content of the absolute value must be multiplied by 1 and -1 which yields:
213		M1-11	Key Explanation: Choice C is correct. In a quadratic equation, the sum of the solutions/ roots is given by $-\frac{b}{a}$ where a and b are the coefficients of x^{2} and x, respectively. Referring to the given equation, the values of a and b are $a=$ 3 and $b=6$. Therefore, the sum of the solutions will be $-\frac{6}{3}=-2$.	Key Explanation: Choice C is correct. In a quadratic equation, the sum of the solutions/ roots is given by $\frac{-b}{a}$ where a and b are the coefficients of x^{2} and x, respectively. Referring to the given equation, the values of a and b are $a=3$ and $b=6$. Therefore, the sum of the solutions will be $\frac{-6}{3}=-2$.

Page No.	Question No.	Answer No.	Error in the book	Corrected
215		M1-18	Key Explanation: Choice B is correct. For a system of equation to have no solution, the two lines must be parallel Using the points (0,94) and (10,0), the slope of the given line is $\frac{75}{180} \pi=\frac{5}{12} \pi$. Line m would also, therefore, have a slope of -0.4 . Only $10 y+4 x=6$ has a slope of -0.4 and would therefore be the correct answer.	Key Explanation: Choice B is correct. For a system of equation to have no solution, the two lines must be parallel Using the points $(0,4)$ and $(10,0)$, the slope of the given line is $\frac{4-0}{0-10}=\frac{4}{-10}=-0.4$. Line m would also, therefore, have a slope of -0.4 . Only $10 y+4 x=$ 6 has a slope of -0.4 and would therefore be the correct answer.
217		M2-2	Key Explanation: Choice A is correct. The proportion/percentage of people who own houses in city L is represented by $\frac{2}{5}$ or 40% of the population. Since people 详 city K are twice as likely to own a house, the proportion/percentage of people who own a house in city K is $\frac{4}{5}$ or 80% of its population. This would imply that only $\frac{1}{5}$ of the population in city K rent houses. This would approximately be $\frac{1}{5} \times 623,000=124,600$ people in city K.	Key Explanation: Choice A is correct. The $\frac{\text { proportion }}{\text { percentage }}$ of people who own houses in city L is represented by $\frac{2}{5}$ or 40% of the population. Since people in city K are twice as likely to own a house, the $\frac{\text { proportion }}{\text { percentage }}$ of people who own a house in city K is $\frac{4}{5}$ or 80% of its population. This would imply that only $\frac{1}{5}$ of the population in city K rent houses. This would approximately be $\frac{1}{5} \times 623,000=124,600$ people in city K.
218		M2-5	Key Explanation: Choice D is correct. To solve for the system, use substitution method which yields $2-\mathrm{k}=3 x^{2}-6 x+1$. Subtracting 2 and adding k to both sides of the equation would result in a quadratic equation: $0=3 x^{2}-6 x+k$ -1 . For quadratic equations with two solutions, the discriminant is greater than $0\left(b^{2}-4 a c>0\right)$. In the quadratic equation, $a=3, b=-6$ and $c=$ $k-1$. Therefore, $(-6) 2-4(3)(k-1)>0$ which would translate to $36-12 k+12>0$. Combining the constants yields $48-12 k>0$. Subtracting 48 from both sides of the inequality yields $-12 k$ >-48. Dividing both sides of the inequality by -12 yields $k<4$. Only option D is not less than 4. Therefore, it is the correct answer.	Key Explanation: Choice D is correct. To solve for the system, use substitution method which yields $2-k=3 x^{2}-6 x+1$. Subtracting 2 and adding k to both sides of the equation would result in a quadratic equation: $0=3 x^{2}-6 x+k$ -1 . For quadratic equations with two solutions, the discriminant is greater than $0\left(b^{2}-4 a c>0\right)$. In the quadratic equation, $a=3, b=-6$ and $c=$ $k-1$. Therefore, $(-6)^{2}-4(3)(k-1)>0$ which would translate to $36-12 k+12>0$. Combining the constants yields $48-12 k>0$. Subtracting 48 from both sides of the inequality yields $-12 k>-48$. Dividing both sides of the inequality by -12 yields $k<4$. Only option D is not less than 4. Therefore, it is the correct answer.
220		M2-13	Key Explanation: Using distributive property yields $x^{2}+8 x+16=x^{2}+3 x+k x+3 / \frac{6}{6}$ Grouping like terms together and subtracting x 2 from both sides of the equation yields $8 x+16=3 x+k x+$ $3 k$. Subtracting $3 x$ from both sides of the equation yields $5 x+16=k x+3 k$. For a system of equations to have no solution, the gradient on the left side of the equation and	Key Explanation: Using distributive property yields $x^{2}+8 x+16=x^{2}+3 x+k x+3 k$. Grouping like terms together and subtracting x^{2} from both sides of the equation yields $8 x+16=3 x+k x+$ $3 k$. Subtracting $3 x$ from both sides of the equation yields $5 x+16=k x+3 k$. For a system of equations to have no solution, the gradient on the left side of the equation and

Page No.	Question No.	Answer No.	Error in the book	Corrected
220		M2-15	Key Explanation: Choice B is correct. To solve this expression, rationalize the expressions by multiplying the numerator and denominator by $2+i$. This yields $\frac{3+4 i}{2-i} \cdot \frac{2+i}{2+i}=\frac{6+8 i+3 i+4 i^{2}}{2^{2}-i^{2}}$	Key Explanation: Choice B is correct. To solve this expression, rationalize the expressions by multiplying the numerator and denominator by
$=\frac{6+11 i-4}{4--1}=\frac{2+1 l i}{5}$. This yields $\frac{3+4 i}{2-i} \cdot \frac{2+i}{2+i}=\frac{6+8 i+3 i+4 i^{2}}{2^{2}-i^{2}}$				

[^0]SAT ${ }^{\circledR}$ is a trademark registered by the College Board, which is not affiliated with, and does not endorse, this product.

[^0]: *M1 - Module 1
 \#M2 - Module 2

