

Hibernate, Spring &
Struts Interview

Questions
Review these typical interview questions and think about how you would

answer them. Read the answers listed; you will find best possible answers
along with strategies and suggestions.

This page is intentionally left blank.

Hibernate

This page is intentionally left blank.

Chapter 1

Hibernate Interfaces

1: Explain Database Transaction management using Transaction
Interface.
Answer:
In Hibernate, every transaction is handled by a session object. It
controls the transactions and hides it from the outer world. To
make sure the transaction completes successfully and is
committed upon success and is rolled back upon failure, the entire
transaction happens within a try catch block. Within the try
block, the session begins the transaction and continues with the
processes and finally commits it. If anything goes wrong, the try
block throws an error and under the exception handling part, a
rollback is issued for the transaction. And finally, the session is
closed. This is an efficient way of handling database transactions
using Hibernate.

2: What are the core interfaces available in hibernate?
Answer:
The core interfaces available in hibernate are:

a) Session: used to store and retrieve the objects and they are
not thread-safe

b) SessionFactory: one object being created per application
c) Criteria: used to provide a conditional search over

resultset
d) Query: obtained by invoking createQuery() method of

Session
e) Configuration: used to specify the hibernate mapping

 location
f) Transaction: used to perform several database operations

3: What is SessionFactory? Is it thread-safe object?
Answer:
SessionFactory is an interface creating session instances. Threads
servicing the client requests obtain the session instances from the
SessionFactory. SessionFactory is created only once for each
application. More than one thread can access the SessionFactory
concurrently since it is thread-safe object.

4: How will you create SessionFactory object?
Answer:
SessionFactory object can be created using buildSessionfactory()
method.

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

SessionFactory sf = new
Configuration().configure().buildSessionFactory();

5: What is Session? Is it a thread safe object?
Answer:
Session is obtained from SessionFactory and not thread-safe,
meaning that it cannot be shared between threads. It is a single
unit of work with the database. To avoid creating multiple
sessions, ThreadLocal can be used. Get current session from the
ThreadLocal object using get(). If no sessions are available, get a
new session from SessionFactory object using openSession()
method and set it in ThreadLocal.

6: Explain about Criteria in hibernate.

Answer:
a) Criteria in hibernate are used to create dynamic queries to

execute
b) Criteria instances are obtained from session object using

createQuery() method
c) Criteria mycriteria = session1.createCriteria(Empl.class)

This page is intentionally left blank.

Chapter 2

Hibernate Configuration

7: How do you configure hibernate?
Answer:
Hibernate could be configured in the following methods:

a) Create hibernate configuration file to
provide hibernate configuration properties

b) Create hibernate mapping file say to
provide hibernate mapping details i.e., mapping tables
and java objects

c) Configuration class uses these two files to create
SessionFactory which in turn creates session instances

8: What are the important tags of hibernate configuration file
(hibernate.cfg.xml)?
Answer:
The important tags of hibernate configuration file are:

<! DOCTYPE ... >
<hibernate-configuration>

<session-factory>
<property ... </property>
...

</session-factory>
</hibernate-configuration>

a) DTD: doctype
b) Configuration of JDBC connection: driver class, url,

username, password
c) Dialect: specify the type of sql to be generated
d) Size of Connection Pool
e) Specify hbm2ddl.auto: automatic generation of database

schema
f) Map hbm.xml files: include Hibernate Mapping files

9: Why column attribute is required if the property name is

Answer:
If the column attribute is not given hibernate will map the column
-name as the property name. However if is given as
property name, column should be explicitly given since date is a
keyword.
<property name="date" column="created_date"/>

10: How will you get hibernate statistics?
Answer:

Hibernate statistics could be obtained by:
a) using getStatistics() method of SessionFactory
b) SessionFactory.getStatistics();

11: How will you make generated sql to be displayed in
console?
Answer:
Generated sql could be displayed in console by setting
property to in the hibernate configuration file.
<property name = "show_sql" > true </property>

12: How are the columns of the database mapped with the java
class properties in hibernate?
Answer:

The columns of the database are mapped with the java class
properties in hibernate as follows:

a) Write POJO (getters and setters) class
b) Create hibernate mapping file where

mapping between table columns and the class properties
are specified
<hibernate-mapping>

<class name="empl" table="empl_tabl">
<property name="name" column="empl_name">
<property name="age" column="empl_age"/>
<many-to-one name="dept" cascade="all"
column="dept_Id"/>

</class>
</hibernate-mapping>

13: If you want to insert data for few columns into a large table
with hundreds of columns, hibernate will generate the insert sql
query at run time containing all the table columns which will
create performance issue. How will you make the hibernate to
generate dynamically generated sql queries containing only the
necessary columns? For instance, it should not include the null
columns / property values.
Answer:
We can make the hibernate to generate dynamically generated sql
queries using dynamic- attribute in the class
mapping. Default option is .
<class table="UserDetails" catalog="ks" dynamic-
insert="true" >
...

</class>

14: What is the flow of hibernate communication with database?
Answer:
The flow of hibernate communication with database is as follows:

a) First, load hibernate configuration file and create
configuration object. Using configuration object load all
hibernate mapping files.

b) Create SessionFactory from the Configuration object.
c) Create Session from the SessionFactory object.
d) Create the HQL query.
e) Run the query which retrieves list of java objects.

15: How will you configure Sequence generated primary key?

Answer:
We can configure sequence generated primary key by using
<generator> tag.
<id column="emp_Id" name="empId" type="java.lang.Long">

<generator class="sequence">
<param name="myseq"> emp_id_seq </param>

<generator>
</id>

16: How will you change one relational database to another
database without code changes?
Answer:
We can change a relational database to another using hibernate
SQL dialect. Hibernate will generate sql queries based on the

dialect defined in the configuration file.
<property name="dialect"> org.hibernate.dialect.MySQLDialect
</property>

17: What is dynamic-insert and dynamic-update option in the
class mapping?
Answer:
Dynamic-insert and dynamic-update option in the class-mapping
are:

a) dynamic- Used to decide whether to
include the columns having null properties, in the
dynamically generated sql INSERT statement

b) dynamic- Used to decide whether to
include the null columns, in the dynamically generated sql

UPDATE statement

18: How will you configure Hibernate to access the instance
variables directly without using setter method?
Answer:
We can configure hibernate to access the instance variables
directly without using setter method as follows:

a) Using attribute in the <property> tag
(mapping file)

b) <property name="uname" access="field"/>

19: What is Automatic Dirty checking in hibernate?
Answer:
Automatic Dirty checking in hibernate:

a) means that Hibernate persists the data (or updates the
database) automatically if the state of the object is
modified inside a transaction when the transaction is
committed and the session is opened

b) means no need for explicit update statemen

20: Write down a sample code for Automatic Dirty checking.
Answer:
Automatic Dirty checking Sample Code:
Session session1 = sessionFactory1.openSession();
Transaction tx1 = session1.beginTransaction();

User user = (User)session1.get(User.class, 5L);
user.setUname("Shobhana");

tx1.commit(); //data is synchronized with database

session1.close();

21: How hibernate is database independent and what are the
changes required?
Answer:
Hibernate is database independent as by changing the below
properties, databases can be replaced without much changes.
<property name="hibernate.dialect">

org.hibernate.dialect.Oracle9Dialect
</property>

<property name="hibernate.connection.driver_class">

oracle.jdbc.driver.OracleDriver
</property>

22: How will you include hibernate mapping file in the
hibernate configuration file?
Answer:
We can include hibernate mapping file in the hibernate
configuration file using <mapping> tag and resource attribute.
<mapping />
<mapping />

This page is intentionally left blank.

