

277

INTERVIEW QUESTIONS
YOU'LL MOST LIKELY BE ASKED

Job Interview Questions Series

Data tructures nd S A
Algorithms
Interview Questions
You'll Most Likely Be Asked

© 2 , By Vibrant Publishers, USA. All rights reserved. No part of this publication 2
may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior permission of the publisher.

ISBN-10: 1-946383-06-6
ISBN-13: 978-1-946383-06-8

Library of Congress Control Number: 2011921388

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. The author has made every effort in the
preparation of this book to ensure the accuracy of the information. However,
information in this book is sold without warranty either expressed or implied. The
Author or the Publisher will not be liable for any damages caused or alleged to be
caused either directly or indirectly by this book.

Vibrant Publishers books are available at special quantity discount for sales
promotions, or for use in corporate training programs. For more information please
write to bulkorders@vibrantpublishers.com

Please email feedback / corrections (technical, grammatical or spelling) to
spellerrors@vibrantpublishers.com

To access the complete catalogue of Vibrant Publishers, visit
www.vibrantpublishers.com

Table of Contents

Data Structures

chapter 1 General Concepts Of Data Structures 5

chapter 2 Arrays 19

chapter 3 Stacks 25

chapter 4 Queues 31

chapter 5 Lists 35

chapter 6 Hash Data Structures 49

chapter 7 Trees 59

chapter 8 Sets 77

chapter 9 Graphs 83

Algorithms

chapter 10 General Concepts Of Algorithms 101

chapter 11 Sorting Algorithms 123

chapter 12 Search Algorithms 143

chapter 13 Huffman Coding 157

 HR Questions 165

 Index 196

This page is intentionally left blank

Data Structures And

Algorithms
Review these typical interview questions and think about how you

would answer them. Read the answers listed; you will find best

possible answers along with strategies and suggestions.

This page is intentionally left blank.

Data Structures

This page is intentionally left blank.

Chapter 1

General Concepts Of Data

Structures

1: What are Data Structures?

Answer:
Data Structures are a method of structured or organized data

storage which is easier to manage. Data usually has 2 aspects –
the definition and its implementation. Data structures make

sure they keep both the aspects separate. The definition is
made available for different implementations for different

programs or usages. A data structure, as the name suggests,

stores the information in a structured way so that it can be
easily created, viewed and managed. This involves creating

complex data types which are a combination of various basic
data types. One example can be a customer data type which

will have a CustomerId of type Integer, Customer Name of

type String and Address of type String.

2: What are the advantages of using Data Structures?
Answer:

Data structures help store the information in a structured way.

This makes data storage and retrieval much easier than the
conventional sequential storage. Data structures keep the data

away from its implementation. This involves Data abstraction
and encapsulation which are very important for code

efficiency. Not only data, their relation can also be stored in
data structures. One efficient way of implementing data

structures are the databases. Data structures are also used for

indexing data.

3: What is a data object?
Answer:

Data objects are the entities that actually contain the

information. Data objects are the implementation of the data
structures defined by the programmer. Data objects can access

the methods and information stored in the data structure to
store, process and retrieve information. It can be of type a

complex structure or an array or an object in object oriented

programming. A data object exists in the computer’s memory
till it is garbage collected whereas the data structure is accessed

only when the object is being created. In simple terms, data
structure is the data definition while data objects are its

implementations.

4: What are data types?

Answer:
Data types define what kind of information is stored in a

variable or data member. There are primitive data types such

as integer, character and Boolean and there are complex data
types such as arrays data structures. Most of the programming

languages require the variables to be declared before they are
accessed. This helps in memory allocation depending on the

data type of the variable. For example, an integer data type
may require 4 bytes of memory while a float may require 8

bytes, depending on the programming language used.

Complex data types are made of two or more primitive data
types combined.

5: What are the different types of Data Structures?

Answer:

Data Structures can be categorized in many ways, though
broadly, they can be categorized as Non-Linear and Linear data

structures. Linear data structures are those that are sequential,
like lists, arrays, stacks and queues. They are stored and can be

accessed sequentially. Non-Linear data structures are objects or

information that is not stored in an order. Graphs and trees are
best example of non-linear data structures. While sequential

data is easier to manage, non-linear data is not so easy. But
many real-time solutions require non-linear data structures to

be implemented such as hierarchical data, geographical

positioning and games.

6: Explain the Linear Data Structures.
Answer:

When information is stored in a sequential manner, it is easy to

store and manage. Data structures, stored in an order or
sequentially, are called linear data structures. Arrays, Lists,

Queue, Stack, and even files are stored sequentially. While
arrays and other data structures can be accessed directly with

the position marker, files are accessed sequentially. Arrays can
be single dimensional or multi-dimensional. But they are

stored sequentially in the memory. For example, if there is an

array of numbers num[5] = {2, 5, 7, 6, 1} it is stored sequentially
in the memory as

Num

(Position) 0 1 2 3 4

(Value) 2 5 7 6 1

This makes sure that linear data structures can be created and
managed using pointers.

7: Explain the non-linear data structures.

Answer:

Non-linear information implies that the information does not
follow a specific pattern for storage. But they can be related in

other ways. Hierarchical information such as tree pattern or

geographical information that depends on positions can never

be sequential. But they can be relative. Non-linear data
structures are supported by most of the programming

languages for implementing graphics, images, global
positioning, location mapping and inheritance. These concepts

are crucial to represent many real-time entities while

developing applications and programs.

8: What are the basic operations possible in Data Structures?
Answer:

Every data structure allows some basic operations such as
inserting, deleting, updating, traversing, searching, and

sorting. Insert operations can be allowed in the beginning, end

or the middle of the data structure based on the type of data
structure. Similarly, deletion can also be allowed in the

beginning, end or the middle of the data structure. Even
though some data structures such as stacks and queues are

very strict about inserting and deleting information, traversing

and sorting the data structures work more or less similarly for
all. Traversing and sorting are possible only because the data is

stored sequentially.

9: What is a node?

Answer:
A node is the basic form of data structure. It basically consists

of a member variable which holds the value and the address of
the next node. The address part will be null for the last element

of the data structure. A node will allow all the basic operations

of a data structure since the address to the next data node is
stored in each node. With pointers, these dynamically allocated

nodes can be easily accessed and traversed through for
effecting the various operations such as insertion, deletion,

updating, and sorting. An array is built by linking the nodes

with the address element. There can be 2 addresses in a node
where one address points to the previous node and the other

address points to the next node.

10: What are Primitive Data types?
Answer:

Data types provide more information about the data. Most of

the programs allow creating new data types which are
implemented as enumerations and the values become the

constants in the program. This makes the program more
readable and understandable. For example, if you create a new

data type for weekday with allowed values Sunday, Monday,

Tuesday, Wednesday, Thursday, Friday and Saturday, these
values are treated as constants instead of using switches or if-

else constructs to check the value. Standard Primitive data
types allowed in most of the languages are integer, character,

Boolean, real and set. Integer data type allows storing number

values ranging between negative and positive depending on
the programming language. Real type allows storage of a

subset of real numbers. Boolean allows true and false values.
Char typically allows all alphabets, space, and a few special

characters depending on the language used.

11: Explain the record structure.

Answer:
A set of related information can be stored as a record. It can be

considered as a complex data structure stored sequentially.

While the different elements of each entity are stored in
columns, one entity comprises of a record. For example, the

information regarding a student can be considered as the data
structure and each student’s detail can be considered as a

record.
Type Student {

StudName String;

StudId int;
DateOfBirth date;

StudSex char;
StudMaritalStatus char;

}

When you collect the student information, it will be stored in

the following manner
Structure
- Record
No

Stud
Name

Stud
Id

DateOfBirth
DD/MM/YYYY

StudSex
M / F

StudMaritalStatus
S / M / W / D

1 Smith
Allen

1 10/9/1982 M S

2 Mary
Lynda

2 09/02/1982 F M

3 Alex
George

3 20/01/1983 M S

The information regarding each student is stored as a record.

Records make data storage and retrieval much easier to
manage.

12: What is a file? How is it different from a record?

Answer:

Files store data sequentially in the hard disk. Every information
that we want to store permanently or make persistent is stored

as a named file in the hard disk or in a database as records. The
main difference between files and database are that files store

information sequentially while the records are stored as
structured information. A file will have the same data type

information stored. But the record will have multiple data

types as defined in the data structure. The length of a file can
be dynamically allocated, based on the storage memory

available on the disk or allotted to a particular user. For
records, each record will have the maximum size allocated as

per its definition that comprises of different data types.

13: Explain the difference between sequential and structured

data.
Answer:

Sequential data is easier to create but difficult to manage.

Structured data is complex to create and manage but is the best
when it comes to retrieval and processing. Sequential data can

be considered as text files with no structure and structured
data can be considered as data in tabular form or as records as

we get from the database. While text information is easier to

create, retrieving specific information is very difficult with
sequential data. The entire file has to be loaded and specific

search has to be performed to retrieve which will scan through
the entire file. With structured data, it can be considered as

information in tabular form. Specific columns or rows can be

spotted and easily retrieved which makes data retrieval more
efficient. But creating and managing structured data requires

experienced professionals.

14: Explain the different sorting methods commonly used to
sort arrays.

Answer:

Sorting the information available is an important aspect of data
processing. Sorting is nothing but rearranging the information

available in a particular order. When it comes to arrays, sorting
the information can be done in many ways. The commonly

used techniques to sort an array are insertion sort, bubble sort,

selection sort, quick sort, tree sort, merge sort, and shell sort.
Each sorting method has its own logic and algorithm and

involves rearranging the array elements in the ascending or
descending order. While some sorting techniques involve

rearranging every element of the array during the process,

some techniques use methods to find the lowest first and
position it and consider the rest of the array during each pass.

15: Explain Selection sort.

Answer:
In Selection sort, the basic idea is to find the smallest number

and position it in the first array index and then move ahead for
the next one and position it in the second and so on till all the

elements are refilled. This is if you want to sort in ascending

order. If you want to order in descending order, start with the
biggest number first. Find the following example, if you have

an array with 5 elements and want to sort it in ascending order:
Original Array -> 5, 3, 1, 9, 2

1st pass -> 1, 3, 5, 9, 2
2nd Pass -> 1, 2, 5, 9, 3

3rd Pass -> 1, 2, 5, 9, 3

4th Pass -> 1, 2, 3, 9, 5
5th Pass -> 1, 2, 3, 5, 9 – which is the final sorted array.

16: Explain Bubble sort.

Answer:

Bubble sort works with swapping the adjacent array elements.
It takes longer time as the array gets longer since for each pass,

all the adjacent elements have to be checked and swapped if
necessary. For an array with 5 elements and want to bubble

sort it in ascending order:

Original Array -> 5, 3, 1, 9, 2
1st pass ->

5, 3, 1, 9, 2 -> 3, 5, 1, 9, 2 -> 3, 1, 5, 9, 2 -> 3, 1, 5, 9, 2 -> 3, 1, 5, 2, 9

2nd pass ->

3, 1, 5, 2, 9 -> 1, 3, 5, 2, 9 -> 1, 3, 5, 2, 9 -> 1, 3, 2, 5, 9 -> 1, 3, 2, 5, 9
3rd Pass ->

1, 3, 2, 5, 9 -> 1, 3, 2, 5, 9 -> 1, 2, 3, 5, 9 -> 1, 2, 3, 5, 9 -> 1, 2, 3, 5, 9
If selection sort required 5 passes, bubble sort got completed in

3rd pass. In each pass, the largest number became the last

element and the next one, the next largest and so on.

17: What are linked lists?
Answer:

A linked list is a collection of connected nodes. Each node will
have a data element and the address that links to the next node.

The first node will have no data. It will only have the link to

the next node. The last node will have only data and the link to
the next node will be null. The first node is called the head and

the last node is the tail. Linked lists help the programmer to
dynamically create arrays. There are 3 types of linked lists –

singly-linked, doubly-linked and circular-linked list. The

singly-linked list will have only one link in each node that
points to the next node. The doubly-linked list will have the

links or the pointers to the previous node and next node. The
circular-linked list will have the last node pointing to the first

node's address of the linked list. It can be singly or doubly

linked.

18: Explain Binary Search Tree.
Answer:

Binary Search Trees will have a root with 2 nodes attached. The

nodes can be sub-trees or simply nodes. The left side nodes will
have values less than the root and the right side nodes will

have values greater than the root. There can be balanced and
unbalanced binary trees. The balanced trees are when each

node has either no sub-node or has 2 sub-nodes. Unbalanced

binary trees are when a node has only one sub-node either to
its left or right.

19: Explain the different algorithm patterns used with data

structures.
Answer:

Data Structures form the key element of programming for all

programmers. One needs to understand some basic algorithms
commonly used with data structures which will help handling

all types of complex data objects. Since data structures can be
implemented in different ways in different programs,

understanding the basic algorithms will help implement them

better in real-time situations. Graph algorithms help a
programmer handle Graph related data easily. Dynamic

programming algorithms help in dynamic allocation of
memory for arrays and other data objects. Searching and

sorting algorithms are required everywhere. Applying the

various number theories and various mathematical formulas
such as prime factorization, factorials etc. will help creating

applications involving complex mathematical equations.

Geometrical and network algorithms help in establishing

complex networks easily.
20: What are the practical applications of data structures?

Answer:
Data structures are the basic idea behind many complex

software solutions that. The concept of data structures are used

in building operating systems, numerical analysis, database
management system, graphics, artificial intelligence, statistical

analysis applications, compiler design and simulations. For
example, memory allocations use the heap and stack concepts

to store and retrieve information in the computer memory. Any
business application that requires complex matrices and graphs

will require the implementation of data structures. The

database is the basic requirement for most of the business
applications as it stores a large amount of structured data

which is easier to process and retrieve.

This page is intentionally left blank.

