

ADVANCED JAVA

YOU'LL MOST LIKELY BE ASKED

INTERVIEW QUESTIONS

372
Interview Questions

Job Interview Questions Series 2e

ISBN-10: 1-946383-22-8

© 2021, By Vibrant Publishers, USA. All rights reserved. No part of this publication

may be reproduced or distributed in any form or by any means, or stored in a

database or retrieval system, without the prior permission of the publisher.

To access the complete catalogue of Vibrant Publishers, visit

www.vibrantpublishers.com

This publication is designed to provide accurate and authoritative information in

regard to the subject matter covered. The author has made every effort in the

preparation of this book to ensure the accuracy of the information. However,

information in this book is sold without warranty either expressed or implied. The

Author or the Publisher will not be liable for any damages caused or alleged to be

caused either directly or indirectly by this book.

ISBN-13: 978-1-946383-22-8

Library of Congress Control Number: 2011907325

Vibrant Publishers books are available at special quantity discount for sales

promotions, or for use in corporate training programs. For more information please

write to bulkorders@vibrantpublishers.com

Please email feedback / corrections (technical, grammatical or spelling) to

spellerrors@vibrantpublishers.com

You'll Most Likely Be Asked

Advanced JAVA
Interview Questions

chapter 7 Design Patterns 77

chapter 2 Generics 17

Table of Contents

chapter 1 Object Serialization 7

chapter 3 CORBA 23

chapter 4 Threading 31

chapter 5 Servlet 41

chapter 6 Collections 59

 Index 143

 HR Questions 115

chapter 8 Data Structures 83

facebook.com/vibrantpublishers

Thank you for purchasing Advanced JAVA Interview Questions You'll Most Likely Be

Asked. We are committed to publishing books that are content-rich, concise and

approachable enabling more readers to read and make the fullest use of them. We hope

this book provides the most enriching learning experience as you prepare for your

interview.

Should you have any questions or suggestions, feel free to email us at

reachus@vibrantpublishers.com

Dear Reader,

- Vibrant Publishers Team

Thanks again for your purchase. Good luck with your interview!

www.vibrantpublishers.com

Advanced Java

Interview Questions
Review these typical interview questions and think about how you

would answer them. Read the answers listed; you will find best

possible answers along with strategies and suggestions.

This page is intentionally left blank.

www.vibrantpublishers.com

Chapter 1

Object Serialization

1: What is Object Serialization? How is it done?

Answer:

Object Serialization is writing the object’s properties and

behaviour into a byte stream or a file. All the serializable objects

referred inside it are also written into the file. This makes the

object constant or invariable. This is usually used when an object

has to be sent over a network. An object is Serializable when the

class implements the Externalizable or Serializable interface. The

object can then be passed on to the ObjectOutputStream which in

turn passes it to the file output stream. When your object

implements the Serializable interface which is a marker interface,

you don’t have to implement its methods whereas when the

Externalizable interface is implemented you have to implement

the readExternal() and writeExternal() methods.

6 Advanced Java Interview Questions You’ll Most Likely Asked

2: Differentiate between Externalizable and Serializable

interfaces?

Answer:

Serializable interface is a marker interface so you don’t have to

override the methods in it. But you have to override the

readExternal() and writeExternal() methods of the Externalizable

interface.

When you implement the Serializable interface, the JVM takes care

of file streaming which can be inefficient at times. But since you

are overriding the streaming methods in Externalizable interface,

it is a more efficient way to file streaming.

If you are not sure of how to perform the IO streaming efficiently

for your application it is better to implement the Serializable

interface. If you can efficiently perform IO streaming specific to

your application, Externalizable interface implementation is the

best way.

When all or most of the attributes of an object has to be serialized,

implementing the Serializable interface with use of transient

variable as required will be more efficient. But when you have to

serialize some dynamic attributes of large Java objects with too

many attributes, implementing the Externalizable interface is a

better way as you can specify what all have to be serialised

efficiently in the overridden methods.

3: What is a serialVersionUID? How is it used?

Answer:

A Serial Version UID is a unique identifier for a serializable class

to make sure that the serialised and the deserialised object refers

Object Serialization 7

www.vibrantpublishers.com

to the same version. The Java compiler creates a unique

serialVersionUID if it is not defined in the program. It is best to

define a serialVersionUID for every serializable class as otherwise

the JVM will not able to identify the class when its version

changes. Everytime you change an attribute of the serializable

class, the JVM creates a new serialVersionUID if it is not user-

defined. So the best practice is to define a serialVersionUID for all

serializable classes in Java so that the multiple versions will refer

to the same object.

4: What is the next best option is we do not go for Object

Serialization?

Answer:

Java uses Object Serialization to store the data permanently in the

system’s storage. The same can be done using other methods such

as database, XML and JSON which is a comparatively recent

method that uses Javascript. Using a database to store objects is a

very common method. You can use the ORM or Object Relational

Mapping to store and retrieve objects from and to the database.

XML based data storage and transfer is now being commonly

used by many web services. This is probably the most popular

way to transfer data over the internet. The JSON data transfer is a

relatively new format in use. Implementation of JSON is quite

simple and it is integrated to most of the web browsers as it is

based on Javascript.

5: How can the Java objects exist beyond the lifetime of the

virtual machine?

8 Advanced Java Interview Questions You’ll Most Likely Asked

Answer:

Object serialization allows Java objects to live beyond the lifetime

of JVM.

6: I wish to serialize a collection. Is it a must to have all its

members Serializable?

Answer:

Yes. All members of a collection or an array must be Serializable in

order to Serialize it.

7: How to exclude certain variables from object’s serialized

state?

Answer:

To exclude variables from the process of serialization, they should

be marked as transient.

Example: Transient private String variable;

8: Is it true to say that during object serialization class and

instance variables that are not marked as transient are also

serialized?

Answer:

No. Static variables belonging to the class are not saved as the part

of serialized object. Also the transient class variables will not be

part of serialized object.

9: What will happen if I try to serialize an object of a class that

implements Serializable interface, but also includes a non-

Serializable object?

Object Serialization 9

www.vibrantpublishers.com

Answer:

java.io.NotSerializableException will be thrown at runtime.

10: Once de-serialization is done, what values will transient

variables get?

Answer:

Transient variables get default values after de-serialization.

11: You are making a class Serializable by implementing

Serializable interface. Which methods are to be implemented?

Answer:

None.

12: Consider the following scenario:

public class ClassA extends ClassB implements Serializable{

ClassA extends from ClassB.

ClassA implements Serializable.

ClassA instance is serialized.

ClassA instance is de-serialized.

What values will the variables of ClassB get?

Answer:

ClassB's constructor will run and the variables will get the values

assigned during the construction of the object.

13: What is the purpose of using serialVersionUID?

Answer:

serialVersionUID provides versioning system for every

Serializable class. During de-serialization process,

10 Advanced Java Interview Questions You’ll Most Likely Asked

serialVersionUID provides means of checking whether data read

from the input stream is compatible with the current class

definition.

14: serialVersionUID is a static field declared in a Serializable

class. Is it also serialized?

Answer:

serialVersionUID is a static field that is also serialized along with

the other data. During de-serialization, the de-serialized

serialVersionUID has to match to the serialVersionUID declared in

the class definition.

15: What happens if serialVersionUID of de-serialized object

does not match to the one declared in the class definition?

Answer:

java.io.InvalidClassException is thrown.

16: Consider that you have a Serializable class without

serialVersionUID. How compiler will handle this?

Answer:

Java compiler adds serialVersionUID automatically and its value

is based on the fields declared in the class.

17: What methods are there in Serializable interface?

Answer:

Serializable interface is a marker interface and has no methods. It

simply tells the object serialization tools that the class is

Serializable.

Object Serialization 11

www.vibrantpublishers.com

18: In which scenarios serialization should be used?

Answer:

Objects are serialized when sending over the network.

19: What can be the cause of NotSerializableException during

object serialization?

Answer:

If a class is to be serialized, it has to implement Serializable

interface. It is also important that all the objects included in that

class are also Serializable. NotSerializableException is thrown if

any of the included objects is not Serializable.

20: Which methods can be overridden to change default

serialization behavior in order to control complex object

serialization process?

Answer:

writeObject() and readObject() can be implemented to control

complex object serialization process. By doing so, we can provide

additional information to serialize and de-serialize objects.

21: Which interface is to be implemented if we want to have

complete control over your class's serialization process?

Answer:

java.io.Externalizable interface is to be implemented.

22: Name the methods that are to be overridden when

Externalizable is implemented.

Answer:

12 Advanced Java Interview Questions You’ll Most Likely Asked

readExternal and writeExternal are to be overridden when

Externalizable is implemented.

23: Consider the following scenario:

public class Parent implements Serializable

..

public class Child extends Parent

..

Is Child class Serializable?

Answer:

Child class inherits serialization from its object hierarchy and it is

Serializable.

24: Is it correct to say that when an object is de-serialized, its

constructor is called?

Answer:

De-serialization means restoring the serialized object and not re-

constructing it. The constructor is not called in the de-serialization

process.

25: I have a class called Student that is Serializable. It has an

instance variable of type String called 'name'. Since 'name' is not

of primitive type, should we expect serialization failure?

..

public class Student implements Serializable{

private String name;

..

Answer:

Object Serialization 13

www.vibrantpublishers.com

java.lang.String itself is Serializable, therefore Student class can be

serialized.

26: Are all primitive wrapper classes Serializable?

Answer:

Yes. All primitive wrapper classes implement Serializable

interface.

27: Assume you have a Serializable class where its super class

does not implement Serializable interface. The super class

defines a no- argument constructor and a String argument

constructor. Which constructor of the super class will get called

during de-serialization?

Answer:

No-argument constructor will get called. It should be accessible to

the Serializable subclass class.

28: Consider the following scenario:

You have a Serializable class without serialVersionUID defined.

You serialize it. You add a new instance variable in your

Serializable class and de-serialize its already serialized instance.

What will happen?

Answer:

Since serialVersionUID was not defined in the Serializable class,

JVM will generate that. Once you add or remove instance

variables in the Serializable class, the value of serialVersionUID

will change. In the given scenario, java.io.InvalidClassException

will be thrown.

This page is intentionally left blank.

www.vibrantpublishers.com

Chapter 2

Generics

29: Explain Java Generics.

Answer:

Java Generics allows creating collections that accept only specific

type of data and thus you can eliminate type-casting. Another

advantage of Generics is that you can create generic algorithms or

methods that works for different data types without having to

program separately for each data type.

Example:

List<String> listGen = new ArrayList<String>(); // We are

declaring the ArrayList to store string objects

listGen.add("hello"); // adding a string

String strGen = listGen.get(0); // Since the ArrayList was declared

for string objects, no type-casting is required.

In the above code, if you add the following line, it will throw a

compile time error:

16 Advanced Java Interview Questions You’ll Most Likely Asked

listGen.add(21); // compile time error as 21 is not a string

30: Write a program to explain Generic Methods.

Answer:

public class exampleForGenericMethod{

public static < E > void printArrayElements(E[] elementsVal) {

for (E elementVal : elementsVal){

System.out.println(elementVal);

}

System.out.println();

}

public static void main(String abcs[]) {

Integer[] myIntArray = { 15, 25, 35, 45, 55 };

Character[] myCharArray = { 'H', 'E', 'L', 'L', 'O', 'W', 'O', 'R', 'L', 'D'

};

System.out.println("The Integer Array is:");

printArrayElements (myIntArray);

System.out.println("The Character Array is: ");

printArrayElements (myCharArray);

}

}

This program will print:

The Integer Array is:

15

25

35

45

55

The Character Array is:

Generics 17

www.vibrantpublishers.com

H

E

L

L

O

W

O

R

L

D

We have used the same method and avoided method overloading

also and instead used Java Generics.

31: Differentiate between List<? extends T> and List <? super

T>

Answer:

The symbol ? represents a wildcard meaning any type. So ?

extends T means the list will accept any object which extends T or

which is a sub-class of T. ? super T means List will accept any

object which is a super class of T. So List <? extends Number> will

accept Integer type and Float types meaning List<Integer> and

List<Float> will be fine. List <?> will mean that a list of any type

can be created. List<?> means List<String> and List<Integer> are

fine.

32: Explain the following code:

Case 1:

List listORTExample = new ArrayList(); // Line 1

18 Advanced Java Interview Questions You’ll Most Likely Asked

listORTExample.add("abc"); // Line 2

listORTExample.add(123); // Line 3

String strItem = (String) listORTExample.get(0); // Line 4

strItem = (String) listORTExample.get(1); // Line 5

Case 2:

List<String> listOSExample = new ArrayList(); // Line 6

listOSExample.add("abcd"); // Line 7

listOSExample.add(1234); // Line 8

strItem = listOSExample.get(0); // Line 9

Answer:

Line 3 – Though the compiler will allow this a runtime exception

will be thrown

Line 4 - Explicit cast is required as the List was not declared as

String Type

Line 5 – Will throw ClassCastException because Integer cannot be

cast in String

Line 8 – This line will throw a compiler error which is better than

runtime Exception as against Line 3

Line 9 – Thanks to Line 6 where the Arraylist is declared for String

Objects, no explicit casting is required

This is a classic example of how Java Generics improves the

program.

33: Explain the Type Parameters in Generics.

Answer:

A Type Parameter is a place holder for argument types. Java has 5

type parameters

Generics 19

www.vibrantpublishers.com

T denotes a Type

E denotes an Element

K denotes a Key

N denotes a Number

V denotes a Value

A Type parameter can be used for an argument and return type of

methods, a target type in type-cast and an open type of argument

for parameterized methods. A Type parameter cannot be used to

create an object, array or in exception handling. It cannot be static

and cannot be used with instanceOf operator. It cannot be used as

a supertype or a class literal.

34: How to avoid casting when retrieving elements from a

collection?

Answer:

Casting can be avoided using Generic collections.

Example:

List<String> gList = new ArrayList<String>();

35: Review the following code. Will it compile? Will it run?

public static void main(String[] args) {

List<String> typeSafeList = new ArrayList<String>();

typeSafeList.add(new String("string1"));

addElementsToList(typeSafeList);

String a = typeSafeList.get(1);

}

private static void addElementsToList(List list){

list.add(new Integer(10));

20 Advanced Java Interview Questions You’ll Most Likely Asked

}

Answer:

The code will compile fine but will fail with the following

exception:

java.lang.ClassCastException: java.lang.Integer cannot be cast to

java.lang.String

36: Can you use more than one parameterized type in a

declaration? Give an example.

Answer:

It is possible.

Example:

public class UseTwo<T, X> { }

37: How can you declare a generic method using a type say: T,

which is not defined in the class?

Answer:

public <T> void makeList(T t) { }

The syntax is a bit tricky. This method has void as return type and

declares the type before the return type.

38: Can you instantiate an array of a generic type?

Answer:

Generic arrays can be declared but cannot be instantiated just like

a normal array. It gives a compile-time error since the type of the

array is not known during compilation. Instead, it has to be

instantiated using the new object() and type cast to an array.

Another option is to create a parameterised array without

Generics 21

www.vibrantpublishers.com

mentioning the type. For example, the following code works:

arrType<String> [] abc = new arrType[50];

But this will not work:

arrType2<xyz> [] abc = new arrType<xyz>[50];

This page is intentionally left blank.

Job Interview Questions Series

Advanced JAVA Interview Questions You'll Most Likely Be Asked is a

perfect companion to stand ahead above the rest in today's competitive

job market. Rather than going through comprehensive, textbook-sized

reference guides, this book includes only the information required

immediately for job search to build an IT career. This book puts the

interviewee in the driver's seat and helps them steer their way to impress

the interviewer.

The following is included in this book:

•

•

•

•

297 Advanced JAVA Interview Questions, Answers and proven

strategies for getting hired as an IT professional

Dozens of examples to respond to interview questions

75 HR Questions with Answers and proven strategies to give specific,

impressive, answers that help nail the interviews

2AptitudeTests download available on www.vibrantpublishers.com

ISBN 978-1-946383-22-8

VIBRANT
PUBLISHERS

www.vibrantpublishers.com

