

FULL TEXT LINKS

ELSEVIER FULL-TEXT ARTICLE

Life Sci. 2016 Apr 15;151:199-206. doi: 10.1016/j.lfs.2016.03.015. Epub 2016 Mar 10.

Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats

Chao Meng ¹, Liangjuan Ma ², Li Niu ³, Xiaoguang Cui ¹, Jinfeng Liu ¹, Jiyu Kang ⁴, Rongfang Liu ¹, Jingchun Xing ¹, Changlin Jiang ⁵, Huacheng Zhou ⁶

Affiliations PMID: 26969763 DOI: 10.1016/j.lfs.2016.03.015

Abstract

Aims: Lung ischemia-reperfusion injury (IRI) may be attenuated through carbon monoxide (CO)'s antiinflammatory effect or hydrogen (H2)'s anti-oxidant effect. In this study, the effects of lung inflation with CO, H2, or both during the cold ischemia phase on graft function were observed.

Materials and methods: Rat donor lungs, inflated with 40% oxygen (control group), 500ppm CO (CO group), 3% H2 (H2 group) or 500ppm CO+3% H2 (COH group), were kept at 4°C for 180min. After transplantation, the recipients' artery blood gas and pressure-volume (P-V) curves were analyzed. The inflammatory response, oxidative stress and apoptosis in the recipients were assessed at 180min after reperfusion.

Key findings: Oxygenation in the CO and H2 groups were improved compared with the control group. The CO and H2 groups also exhibited significantly improved P-V curves, reduced lung injury, and decreased inflammatory response, malonaldehyde content, and cell apoptosis in the grafts. Furthermore, the COH group experienced enhanced improvements in oxygenation, P-V curves, inflammatory response, lipid peroxidation, and graft apoptosis compared to the CO and H2 groups.

Significance: Lung inflation with CO or H2 protected against IRI via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in a model of lung transplantation in rats, which was enhanced by combined treatment with CO and H2.

Keywords: Carbon monoxide; Cold ischemia phase; Hydrogen; Ischemia-reperfusion injury; Lung inflation; Lung transplantation.

Copyright $\ensuremath{\mathbb{C}}$ 2016 Elsevier Inc. All rights reserved.

Related information

MedGen PubChem Compound (MeSH Keyword)

LinkOut - more resources

Full Text Sources Elsevier Science Ovid Technologies, Inc.

Other Literature Sources

scite Smart Citations