FULL TEXT LINKS

J Clin Biochem Nutr. 2015 Nov;57(3):178-82. doi: 10.3164/jcbn.15-90. Epub 2015 Oct 21.

Maternal molecular hydrogen administration on lipopolysaccharide-induced mouse fetal brain injury

Tomoko Nakano ¹, Tomomi Kotani ¹, Yukio Mano ¹, Hiroyuki Tsuda ¹, Kenji Imai ¹, Takafumi Ushida ¹, Hua Li ¹, Rika Miki ², Seiji Sumigama ¹, Yoshiaki Sato ³, Akira Iwase ¹, Akihiro Hirakawa ⁴, Masato Asai ⁵, Shinya Toyokuni ⁶, Fumitaka Kikkawa ¹

Affiliations

PMID: 26566302 PMCID: PMC4639595 DOI: 10.3164/jcbn.15-90

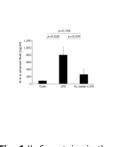
Free PMC article

Erratum in

Erratum.

[No authors listed]

J Clin Biochem Nutr. 2016 Jul;59(1):78. doi: 10.3164/jcbn.15-90_Erratum1. Epub 2016 Jun 10.


PMID: 27499584 Free PMC article.

Abstract

Fetal brain injury is often related to prenatal inflammation; however, there is a lack of effective therapy. Recently, molecular hydrogen (H2), a specific antioxidant to hydroxyl radical and peroxynitrite, has been reported to have anti-inflammatory properties. The aim of this study was to investigate whether maternal H2 administration could protect the fetal brain against inflammation. Pregnant C3H/HeN mice received an intraperitoneal injection of lipopolysaccharide (LPS) on gestational day 15.5 and were provided with H2 water for 24 h prior to LPS injection. Pup brain samples were collected on gestational day 16.5, and the levels of apoptosis and oxidative damage were evaluated using immunohistochemistry. Interleukin-6 (IL-6) levels were examined using real-time PCR. The levels of apoptosis and oxidative damage, as well as the levels of IL-6 mRNA, increased significantly when the mother was injected with LPS than that in the control group. However, these levels were significantly reduced when H2 was administered prior to the LPS-injection. Our results suggest that LPS-induced apoptosis, oxidative damage and inflammation in the fetal brain were ameliorated by maternal H2 administration. Antenatal H2 administration might protect the premature brain against maternal inflammation.

Keywords: anti-inflammation; anti-oxidant; brain injury; molecular hydrogen; premature infant.

Figures

Fig. 1 IL-6 proteins in the amniotic...

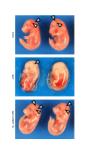
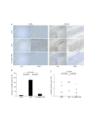
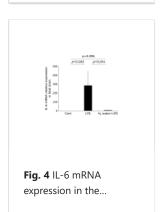




Fig. 2 The effect of H $_{2\dots}$

Fig. 3 (A) Representative data for TUNEL...

LinkOut - more resources

Full Text Sources

Europe PubMed Central J-STAGE, Japan Science and Technology Information Aggregator, Electronic PubMed Central

Other Literature Sources scite Smart Citations