

FULL TEXT LINKS

氢 Wolters Kluwer

Anesth Analg. 2014 Aug;119(2):368-380. doi: 10.1213/ANE.000000000000303.

Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in rats

Ting-Ting Huo¹, Yi Zeng, Xiao-Nan Liu, Li Sun, Huan-Zhi Han, Hong-Guang Chen, Zhi-Hong Lu, Yi Huang, Huang Nie, Hai-Long Dong, Ke-Liang Xie, Li-Ze Xiong

Affiliations PMID: 24937348 DOI: 10.1213/ANE.000000000000303

Abstract

Background: Sudden cardiac arrest is a leading cause of death worldwide. Three-fourths of cardiac arrest patients die before hospital discharge or experience significant neurological damage. Hydrogen-rich saline, a portable, easily administered, and safe means of delivering hydrogen gas, can exert organ-protective effects through regulating oxidative stress, inflammation, and apoptosis. We designed this study to investigate whether hydrogen-rich saline treatment could improve survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation, and the mechanism responsible for this effect.

Methods: Sprague-Dawley rats were subjected to 8 minutes of cardiac arrest by asphyxia. Different doses of hydrogen-rich saline or normal saline were administered IV at 1 minute before cardiopulmonary resuscitation, followed by injections at 6 and 12 hours after restoration of spontaneous circulation, respectively. We assessed survival, neurological outcome, oxidative stress, inflammation biomarkers, and apoptosis.

Results: Hydrogen-rich saline treatment dose dependently improved survival and neurological function after cardiac arrest/resuscitation. Moreover, hydrogen-rich saline treatment dose dependently ameliorated brain injury after cardiac arrest/resuscitation, which was characterized by the increase of survival neurons in hippocampus CA1, reduction of brain edema in cortex and hippocampus, preservation of blood-brain barrier integrity, as well as the decrease of serum S100 β and neuron-specific enolase. Furthermore, we found that the beneficial effects of hydrogen-rich saline treatment were associated with decreased levels of oxidative products (8-iso-prostaglandin F2 α and malondialdehyde) and inflammatory cytokines (tumor necrosis factor- α , interleukin-1 β , and high-mobility group box protein 1), as well as the increased activity of antioxidant enzymes (superoxide dismutase and catalase) in serum and brain tissues. In addition, hydrogen-rich saline treatment reduced caspase-3 activity in cortex and hippocampus after cardiac arrest/resuscitation.

Conclusions: Hydrogen-rich saline treatment improved survival and neurological outcome after cardiac arrest/resuscitation in rats, which was partially mediated by reducing oxidative stress, inflammation, and apoptosis.

Related information

MedGen PubChem Compound (MeSH Keyword)

LinkOut - more resources

Full Text Sources Ovid Technologies, Inc. Wolters Kluwer

Other Literature Sources scite Smart Citations

Medical MedlinePlus Health Information

Research Materials NCI CPTC Antibody Characterization Program

Miscellaneous NCI CPTAC Assay Portal