
Operation Manual GEVCU 7.00 May 2022

 1

Generalized Electric Vehicle Control Unit

GEVCU
Version 7.00

Copyright 2013-2022. EVTV LLC

Operation Manual GEVCU Version 7.00 May 2022

 2

LEGAL DISCLAIMER

This manual describes a hardware device produced by EVTV Motor Werks LLC. The Generalized

Electric Vehicle Control Unit or GEVCU is an experimental educational device designed to allow

students and enthusiasts to explore and learn about electric vehicle control issues in automotive
development – particularly using drive train components used by automotive manufacturers.

The device in and of itself performs no particular or specific function and is not designed for
commercial or automotive use.

It comes preloaded with one of many versions of the GEVCU open source software project available
at http://github/collin80/GEVCU7. This software, created entirely by enthusiasts outside of the
control of EVTV, can be downloaded as source code in its latest versions, modified by anyone
anywhere, including the end user or owner of this hardware device, for any reason or at whim, and
installed on this hardware and essentially embodies the entire functionality of the device.

As such, EVTV Motor Werks has no control over what the device can do, what it is used for, how well
or poorly it does it, or why. EVTV Motor Werks disclaims any liability arising from the purchase and
use of this hardware and makes no claim of fitness for any particular purpose.

The GEVCU hardware is offered solely for the educational use of the purchaser. Purchasers of this
particular offering of the open source GEVCU hardware agree to defend and hold harmless EVTV
Motor Werks from any claims by any party arising from their purchase and use of the GEVCU device.

While the source code and hardware design of the GEVCU is entirely open source, this
documentation is copyright 2022, EVTV LLC and all rights are reserved.

This document is intended to generally represent the GEVCU hardware sold and distributed by EVTV
specifically. It reflects the software installed on the GEVCU hardware at the time of shipment.
Obviously, if other software or modified software is loaded onto the GEVCU hardware, or indeed if
the software is modified by the end user to provide other functions, the printed document and the
device and its software would naturally be in conflict. This conflict could potentially pose certain
safety issues to the end user.

It is both foreseeable and intended that other entities will also produce alternate GEVCU hardware
and other forks or versions of the GEVCU software. Indeed this is already the case. Those entities
should produce their own original documentation illustrating how THEIR version actually works at
the time they shipped it. And they are specifically precluded by statute from distributing THIS
document or any part of it with alternate hardware and/or software designs.

http://github/collin80/GEVCU7

Operation Manual GEVCU Version 7.00 May 2022

 3

Table of Contents

1. Introduction 4

2. Specifications 9

3. Wiring and Connections 12

4. Serial Port Interface 15

5. Module Selection 18

6. Precharge Considerations 20

7. Throttle Calibration and Mapping 25

8. Brake Calibration and Mapping 31

9. Power Values 35

10. Analog Inputs 37

11. Digital Inputs 37

12. Digital and Analog Outputs 39

13. Cooling Control – A Digital Output Example 40

14. Wireless Configuration

15. CAN bus Communications and OBDII 42

16. CAN Control of Input and Outputs 46

17. Updating GEVCU Software 49

Operation Manual GEVCU Version 7.00 May 2022

 4

1. Introduction

For 40 years and more, individual tinkerers and innovators have been modifying existing
automobiles to electric drive and often building electrically powered vehicles from scratch.

The early “controllers” that evolved to replace simple switching and resistive controls to control the
speed of the driver motors were mostly pulse width modulated (PWM) devices to provide an
averaged DC signal to a series DC motor. These simple chopper voltage control devices were
generally referred to as “controllers” and translated driver input from “controls” such as the
accelerator pedal, ignition switch, and brake to this motor driving voltage to control its speed and
direction – and consequently the vehicle.

There are of course many other types of motors such as
separately excited DC motors, brushless DC motors,
permanent magnet motors and AC induction motors. Most
of these polyphase motors require 3 phase “inverters” to
convert the DC power of the battery pack into three-phase
AC drive signals varying the voltage (for torque) and
frequency (for speed) of the power to the motor to
accomplish the same thing.

Most of the DC “controllers” received the inputs directly by
wiring from the sensors or controls in the cars.

In recent years, among automobile manufacturers, the use
of the Bosch Controller Area Network (CAN) protocol has

been adopted for many of the items in the automobile, including the internal combustion engine –
often called an Engine Control Unit or a Vehicle Control Unit which forms the central computer or
“brains” of the car. It is connected to various sensors and controls by wire but communicates to
other subsystems of the vehicle such as the instrumentation, ABS system, transmission,
environmental system using this CAN bus as the common link.

Automakers have eschewed the DC motor in favor of either permanent magnet AC motors or AC
induction motors. And the “inverters” developed to drive these were interfaced to this same CANbus
model for control input.

Because of the varying nature of the cars, the ECU or VCU would be specifically designed for THAT
particular make and model. In this way the inverters and AC motors can be somewhat generic to
work in any car. The intelligence moved OUT of the inverter and into the VCU, which contained all
the vehicle specific information.

The VCU would be specifically designed and software specifically written for that vehicle. And all the
particulars for that make and model would reside in the software for the VCU. This was hard-coded
into flash memory and defined the operation of the vehicle. No end user input or options were
provided. Firmware updates or changes are normally accomplished by revising the code,
recompiling, and having the controller reflashed with the new binaries at the dealership during
normal maintenance.

Operation Manual GEVCU Version 7.00 May 2022

 5

And so thousands of these VCUs could be flashed when built, with the software specific to that
particular vehicle.

The particular VCU/software combination would of course be completely inappropriate and non
functional in any other vehicle make or model.

As many automakers are experimenting with product introductions of plug-in electric vehicles and
hybrid gasoline/electric vehicles, many of the components used in these vehicles are becoming
available when the cars are salvaged and are recycled through salvage yards and such online
services as eBay.

As such, they will become a resource to individual tinkerers and those converting existing cars to
electric drive. Fortunately, most are somewhat generic and almost all of these components were
designed to be controlled by CANbus signals from the Vehicle Control Unit that came with the
original car.

It would be a serious advantage, to have a more generalized vehicle control unit that could produce
these CAN commands to drive existing power switching inverters, chargers, dc-dc converters and
other equipment gleaned from the many parts available in salvage. But to be truly useful, it should
allow some basic configuration by the end user allowing these conversions to modify operation of
the VCU to accommodate THEIR vehicle without the need to entirely rewrite the software and flash
the VCU. Just change a handful of variables specific to the car.

In December 2012, Jack Rickard of Electric Vehicle Television http://evtv.me first proposed a
program to develop such a GENERALIZED Electric Vehicle Control Unit or GEVCU using the then
just introduced Arduino Due platform with an 84 MHz 32-bit ARM CORE3 processor. And he
elected to do this as an open source project anyone could not only use, but modify further with
regards to either hardware or software to meet their own particular needs.

As such, the GEVCU could serve as the central computer or “brains” of any electric car, and flexibly
drive ANY available inverters, motors, battery management systems, throttles, brakes, sensors, etc in
the car. This modular approach would to some degree commoditize many of the major components
of the vehicle, while the specifics were held in a central, open source device that anyone could
change, adapt, and extend as necessary.

A number of EVTV viewers began contributing code and hardware designs and by late summer
2013, EVTV first drove a 1974 VW Thing, with a Siemens 1PV5135 AC induction motor and
DMOC645 inverter from Azure Dynamics, all entirely controlled by the GEVCU. It featured
controlled regenerative braking on both throttle and brake, a controllable precharge procedure for
applying power to the DMOC, and control of the cooling fans on the liquid cooling system.

Along the way, the original Arduino Due hardware morphed into a somewhat more hardened
hardware design capable of surviving the automotive environment, while retaining the full
compatibility with the Arduino software development environment.

A selected subset of Arduino input and output pins was brought out to a single weather resistant
AMPSEAL 35 pin connector for example. Various strategies and components were used to isolate
the inputs and outputs from the multicontroller chip itself to “harden” the device to EMP and EMI

http://evtv.me/

Operation Manual GEVCU Version 7.00 May 2022

 6

and the noise inherent in vehicle 12v systems. But the essential Arduino programming environment
and compatibility were retained.

The result was a powerful multicontroller device with TWO programmable CAN bus channels,
wireless Internet access, a variety of analog and digital inputs and outputs, and beyond the ability to
reprogram the device entirely using the Arduino IDE, the original design allows the end user to
easily configure some of the basic aspects of throttle and brake and so forth without really learning
to program at all.

This document describes the use and configuration of the Generalized Electric Vehicle
Control Unit. The multicontroller hardware allows connection of the basic sensor set necessary to
drive the car such as throttle signals, brake signals, ignition signal, and control the basic common
outputs such as brake lights, fuel level, rpm, power usage, while serving in the central role of
converting these inputs to CAN messages for the inverter to actually drive the AC motor and thus the
car.

The operation of this device can be modified, within fairly narrow constraints, by a simple
configuration “menu” style input that non-programmers can access and make changes to, in order to
interface the VCU to the particular car they want to convert.

Note that the GEVCU program is both open software and open hardware with the schematics and
board layouts published for all. As such, THIS document ONLY applies to the EVTV produced GEVCU
hardware and the software preloaded onto it before shipment.

This document will be updated from time to time to reflect changes in hardware or software that
EVTV adopts in their release of the product. But by necessity, it cannot cover changes in hardware
or software made by other parties or the end user. This should be obvious.

But we think the end user will find SOME documentation of the baseline EVTV shipped version
useful as a starting point.

Because of these variations, this manual is copyright 2013-2021 EVTV Motor Werks and other
developers producing hardware and software variants are specifically precluded from including this
manual, or any excerpted portion thereof. Inevitably, this manual will not properly describe those
variants.

GEVCU VERSION 6.22

While numerous software upgrades to the original GEVCU have been
released under EVTV, and many more by other programmers of the
device, the basic hardware of GEVCU has served remarkably
well for over three years.

In 2016 Collin Kidder and Jack Rickard of EVTV embarked on a
redesign effort for the device. Assembly of the original device
was detailed and costly. While quite resistant to the rigors of the
automative environment and weather, a full IP67 enclosure would be
better. The Israeli wifi board used to produce the configuration web page was
costly, hard to source, had a high failure rate and was difficult to configure. More
importantly, other and improved interface devices had emerged.

Operation Manual GEVCU Version 7.00 May 2022

 7

And so GEVCU version 6.2 was developed. Improvements include:

1. Modice CINCH enclosure for IP67 environmental resistance.

2. Improved Analog to Digital Conversion inputs using 24-bit SPI converters.

3. Addition of isolated high voltage battery pack voltage measurement inputs.

4. A shunt input to allow measurement of high voltage system currents.

5. Blutooth 4.0 BLE data communications for iOS iPhone and iTablet and Android connectivity
using the AdaFruit Bluefruit LE SPI module.

6. Optional GSM cellular data communications module using the Particle Electron.

7. Improved digital output control.

There were of course some casualties as well. The original concept of a built in web server for
configuration was one of the central tenets of the device. No specific configuration program was
required – any browser on any device could be used to configure it.

The USB port was exposed on the back of the unit. This was the main issue making the device
vulnerable to weather and moisture. But it was very handy to plug into with a laptop to update
software. Some users even extended this with a USB cable to offer USB in the dashboard or rear
bumper of their vehicles.

The nature of the Modice CINCH enclosure makes this undoable. You must remove the board from
the enclosure to access the USB port to update software.

GEVCU VERSION 7.00

The GEVCU 6.22 design was produced for a number of years but some shortcomings were to be
found. Additionally, time marched on and hardware improved. The new GEVCU7 is a nearly
complete redesign of the GEVCU6.22 to improve it in many ways.

1. The processor has been upgraded to a 600MHz Cortex M7 processor. This processor has been
tested to be around 24 times faster than the processor in GEVCU6. It is much improved in storage
space, RAM, and capabilities.

2. The processor and an add-on slot both use the MicroMod connector system from SparkFun. This
allows for painlessly replacing the main processor should anything happen to it. It also yields a
potential upgrade path should newer processors be available in the future

3. GEVCU7 now has 3 CAN buses instead of 2. Additionally, it can do CAN-FD on one of the CAN
buses.

4. An ESP32 module is included on the board which allows for both WiFi and Bluetooth connectivity
without needing to source an additional board as was the case with the GEVCU6 designs.

Operation Manual GEVCU Version 7.00 May 2022

 8

5. The inputs have been expanded. Now there are now 12 digital inputs and 8 analog inputs. There
are still 8 digital outputs.

6. A microSD card slot has been installed on the board. This is most useful in order to be able to log
the system performance while using GEVCU. The microSD slot can also be used to apply firmware
updates to both the main processor and the ESP32 wireless connectivity.

2. Specifications

Operation Manual GEVCU Version 7.00 May 2022

 9

Operation Manual GEVCU Version 7.00 May 2022

 10

Operation Manual GEVCU Version 7.00 May 2022

 11

Table 2. Absolute Maximum Rating

Parameter Symbol Value Units

Supply Voltage VIN(+12V) 16 V

Regulated +3.3V output +3.3V 400 mA

Regulated +5V output +5V 700* mA

Digital Outputs DOUT0… DOUT7** 1.7 A

CAN BUS
CAN0 H/L; CAN1 H/L; CAN2

H/L
–27 to 40 V

Analog Inputs AIN0… AIN7 5 V

Digital Inputs
DIN0… DIN7

DIN8… DIN11
20

10 !
V

*Total value for all pins
**Applying any voltage directly to any of these PINs will cause permanent damage to the GEVCU
! These digital inputs are meant to work as low as 5V for proper triggering. As such,
they do not support quite as high of a voltage as the first 6 inputs. They will
operate at 12V inputs but doing so may lead to overheating if input is high for
an extended period of time.

MICROCONTROLLER

Freescale IMXRT Cortex-M7
32-bit core
CPU Clock at 600Mhz.
1024 KB of SRAM.
16 MB of Flash memory for code

256KB EEPROM for persistent data.
Operating Voltage: 3.3v
Input voltage: 6-16v
CAN network channels: 3
Universal Serial Bus Port: 1
Analog Inputs: 8
Isolated Digital Inputs: 12
Digital Outputs: 8

 Programming Environment: TeensyDuino 1.56

Operation Manual GEVCU Version 7.00 May 2022

 12

3. Wiring and Connections

The GEVCU must of course be connected to the car and the inverter/controller by wire. The entire
interface is accomplished through two Modice CINCH connectors.

Here is an example of the DMOC645 connector and which wires would need to be used:

Provided with each GEVCU unit from EVTV is a basic wiring harness. The original genesis of GEVCU
was the Arduino Due which featured a very large number of input and output pins.

The two ModIce CINCH connectors provide but a subset of that but features inputs for 12v vehicle
power, two CAN lines to the DMOC645 AMPSEAL 23-pin connector, eight analog inputs, twelve
digital inputs, up to eight digital outputs and 3.3v and 5v outputs to power sensors.

GEVCU was originally devised for the Azure Dynamics DMOC645 Inverter and the basic wiring to
this inverter is shown in the accompanying diagram. This is typical of the wiring necessary to
connect the GEVCU to an inverter/controller.

Operation Manual GEVCU Version 7.00 May 2022

 13

Two connectors are provided with GEVCU with 18-inch wires already inserted. You may need to
fabricate your own for your installation. Use the following Modice part numbers:

1. 18-pin connector: 538-581-01-18-023

2. 30-pin connector: 538-581-01-30-029

3. 18-gauge terminal pins 538-425-00-00-873

This cable would need to be modified for other controller/inverters such as the UQM Powerphase
100.

While the GEVCU has a limited number of digital and analog inputs and outputs, they are really quite
capable of handling a number of necessary duties in controlling a vehicle. And the unit does feature
TWO CANbus ports, one typically rather dedicated to the motor inverter but the other quite free to
interact with the vehicle. In this way, GEVCU can be extended with other CAN equipped
multicontrollers used for battery monitoring, informational displays, charging issues, etc.

BASIC THROTTLE WIRING

Operation Manual GEVCU Version 7.00 May 2022

 14

As an example, we will describe some basic throttle wiring
for the GEVCU as this is the minimum necessary
application to control a motor.

A basic throttle potentiometer is shown in the diagram .
The potentiometer is a variable resistor that basically
“divides” a voltage based on varying the point along a
linear resistance where the voltage is sampled. This signal
output is tied to our 1st analog input line AIN0 at pin A1 of
the 30-pin CINCH connector. The voltage to be divided is
provided by tying one end of the pot to our +5v output
available on several pins for convenience – on the 18 pin

connector 5v is available on A1/A2 and B1/B2/B3. The other end of the pot is tied to our reference
ground at any row 3 pin of the 30-pin connector.

In this way, as you press on the accelerator, the potentiometer is varied, increasing the voltage from
zero to five volts at maximum pedal. In practice, this is usually something like 0.80v to 4.50 v.

Hall Effect pedals work on a different principle than variable resistors – magnetic inductance. But
from a wiring standpoint are no different. They still need a 5v power source and reference ground.
And they still provide a signal output that we tie to one of
our analog inputs.

Many modern throttles have two pots or hall effect
modules and provide TWO signal outputs.

This is to provide a “sanity check” to make sure the throttle
input is valid. For example, if the signal output and the 5v
lines were shorted, this might be read as a max throttle
input and the vehicle accelerate uncontrollably.

Two wire throttles provide two different outputs and they
usually are NOT identical. For example, one output might
vary from 0.8 to 4.5v while the second varies from 1.5v to
3.4v. The sanity check association in comparing those two signals must be handled in software.
Indeed, one signal might vary from 0.8 at idle and 4.5v at max, while the other is inverted, showing
3.5v at idle and 1.2v at max pedal. Again, this association must be controlled by the software. GEVCU
software currently supports all of these modes. You will have to select 1 wire or 2, and whether the
values are linear or inverted.

USING EXISTING VEHICLE DRIVE BY WIRE THROTTLES

Many modern vehicles already feature an accelerator that is wired for producing these signals. It is
relatively easy to locate the signal lines and tap into them for connection to the GEVCU. Generally it
is good practice to use both signal outputs where available. That the pedal gets 5v from the normal
ECU is not a problem as 5v is more or less 5v regardless of source. But it does have to be referenced
to the same ground. So generally, you want to tap both accelerator outputs AND connect the
associated return from the pedal to one of the GND input pins on the CINCH connector,

Operation Manual GEVCU Version 7.00 May 2022

 15

BRAKES

Most electric cars map both acceleration and regenerative braking to the throttle, using the first part
of pedal travel for regenerative braking and the latter portion of pedal travel for forward
acceleration. You will rather quickly learn to not only drive this way, but usually decelerate to a stop
using the regenerative braking and it becomes kind of a single-footed driving pattern that most
drivers find very controllable and natural.

But many want regenerative braking to assist slowing the car when using the brake and some do
NOT like the use of regenerative braking on the throttle at all and ONLY want it applied during actual
braking.

The only way we have found to controllably
vary the DEGREE of regenerative braking from
the brake pedal is to use a hydraulic pressure
transducer that operates essentially just like a
throttle pot. These transducers again require a
5v supply and ground return, and again provide
a signal output from 0.5 to 4.5v typically,
increasing as the pressure in the brake lines is
increased. The transducer has to be connected
to the existing hydraulic brake lines.

By convention, GEVCU uses AIN0 for 1 wire
throttles, AIN0 and AIN1 for two wire throttles,
and AIN2 for brake inputs.

4. USB SERIAL PORT INTERFACE

The key concept in the GENERALIZED vehicle control unit is that it is generalized. That is, it can be
configured and used in a variety of different vehicles using different drive train and vehicle
components.

The open source nature of the GEVCU software allows anyone with basic C++ coding skills to extend
this ad infinitum. However, for most users, C++ is a bridge too far. You can easily use GEVCU by
changing a few simple variables requiring no programming knowledge whatsoever.

Operation Manual GEVCU Version 7.00 May 2022

 16

The design philosophy is to avoid specialized software programs that are operating system
dependent and require updating. To accommodate future use of GEVCU, we cannot predict what
operating systems will be used and we do not want the overhead of updating a specialized
“configuration program” in any event. For far too much of our EV equipment, we find outdated
buggy software running on obsolete and in some cases hardly available operating systems in order
to change a few simple variables.

But everyone that touches GEVCU wants something more and having it be powerful and extensible is
certainly desirable. We see three basic interfaces for non-programmer users.

1. USB Serial Port terminal program
2. Mobile tablet or phone interface via Bluetooth BLE
3. WiFi

In this way, the USB serial interface can allow us to avoid depending on specific operating systems or
programs beyond a basic serial terminal program running on ANY device. And at the same time
provide for gorgeous graphic interfaces to actually serve as a Tesla style interface for our vehicles.

GEVCU features a printer style USB port on the rear of the circuit board simply because these appear
to be the most physically durable and robust connectors for USB.

On power up, GEVCU will interface via USB serial port using simple ASCII characters and line feeds.
You can interact usefully with GEVCU via any serial terminal program on any laptop or other
computer device. This USB bootstrap operation is a central tenet of the Arduino concept.

Serial communications dates back to the early modems and electronic bulletin boards and has its
own quirks and foibles. It is so dated that neither Microsoft nor Apple actually include a serial
terminal program with their operating system. But because the need for basic serial
communications never quite goes away, terminal programs for both are still readily and in most
cases freely available.

There are some basic terminal settings that must be set on most terminal programs in order to “talk”
to the GEVCU.

Data Rate: 115,200 bps
Data bits: 8
Parity bits: None
Stop bits: 1
Character set: ASCII.

In practice, it is quite likely that your operating system will completely ignore all of the above
settings as GEVCU7 presents itself as a native USB device and will send and receive at essentially full
USB2 speed no matter what data rate you set. However, it will not hurt to use the above settings for
100% assurance that everything is set to reasonable values. And so to configure GEVCU at its most
basic level, you must first configure an ASCII serial data terminal program. Many of these offer many
features allowing you to set screen color, font , text size, color. Etc. They can also allow you to
“capture” text sent over the port.

Operation Manual GEVCU Version 7.00 May 2022

 17

GEVCU was born of the Arduino Due educational platform and many actually develop C++ code via
the Arduino Integrated Design Environment or IDE. This IDE actually includes a terminal program.

If all else fails, Arduino is freely available for download and installation on Windows, Mac OS X, or
Linux fully featured and entirely free of charge. So it may be the easiest way to get and install a
terminal program for many users.

The Arduino IDE can be installed from arduino.cc
You will also need the TeensyDuino extension from PJRC

After installing both you can start the Arduino IDE. At the top of screen you will find menus. Select
TOOLS, and in the submenu BOARD. Then select “Teensyduino” Finally, select “Teensy MicroMod”.

Next, select the PORT submenu and select the hardware USB port you have connected to GEVCU.

For Mac OSX or Linux, the available USB ports will appear as CU or TTY entries.

For Windows, more likely something like COM1 or COM2.

Once the port and board are selected, you can use the SERIAL MONITOR entry on the TOOLS
menu to bring up a separate serial terminal window.

https://www.arduino.cc/en/software
https://www.pjrc.com/teensy/td_download.html

Operation Manual GEVCU Version 7.00 May 2022

 18

This window will feature a data entry field
at the top of the screen and a larger display
area for text received from the GEVCU.

The only thing you will see initially is most
likely a period that appears on screen.
Every few seconds, you will see another one.
This is the GEVCU heartbeat.

If you enter a question mark (or lower case
h) on the data entry field and press enter or
return key you should see a full GEVCU
menu in all its gory and hideous glory.

This screen allows you to configure and use
essentially all the features of the GEVCU by
entering commands in the data field area.

Note that not all menu features will appear
until the associated module is enabled as
described in Section 5.

.

5. MODULE SELECTION AND

INITIALIZATION

With power and flexibility, unfortunately comes complexity. GEVCU is initially designed to drive the
Azure Dynamics Force Drive system with a DMOC645 controller and a single input throttle. The

Operation Manual GEVCU Version 7.00 May 2022

 19

very basics were to take throttle commands and convert them to CANbus signals to drive the Digital
Motor Controller (DMOC645) to drive the motor. Simple enough.

But the immediate vision of GEVCU from the start was to serve as a modular, object-oriented
software program platform that could drive a VARIETY of inverter/controllers and motors. Rather
immediately someone wanted such a device for a BRUSA controller. And someone else wanted to
interface with a THINK vehicle battery management system. And use it to drive a UQM Powerphase
100 inverter. And so on and on.

There are also a variety of already drive by wire throttles in a variety of modern vehicles out there.
Most have TWO inputs that vary similarly, but usually not identically. And some throttles actually
have a CAN output or are converted to CAN signals by the ECU in the original vehicle.

As a result, GEVCU could conceivably grow into dozens of object modules to support various
throttles, brakes, battery management systems, chargers, instrument clusters, and most of all a
variety of inverters/controllers.

Obviously, while everybody needs SOME of these object modules no one will ever need ALL of them
on the same vehicle. Some form of object module management is needed.

The current system is admittedly very awkward. Until we get it fixed, you can turn on a module via
the serial port with an ENABLE command and you can conversely turn it off with a DISABLE
command. This does not actually take effect until you power cycle the GEVCU. That is, completely
remove power from the unit and then bring it back up with 12v power.

This is best done by disconnecting the CINCH connectors entirely and using power over the USB
connector. Simply enable the desired module, then unplug the USB connector. Then plug it back in
bringing up the system. The new module will be mapped to the system EEPROM and this module
will load automatically in the future until it is removed with a DISABLE command.

With a serial terminal program connected to the USB port on the GEVCU.

LOGLEVEL=1 Sets the onscreen reporting level of messages. The lower the level, the more
verbose your output. Level 4 turns off all messages (not recommended). Level 3 adds error
messages, 2 adds warnings, 1 adds informational messages. 0 turns on debugging messages which
ordinarily will be way too much information but may be useful when attempting to determine why
things are not working. Level -1 exists but shouldn’t be used except during software development.

ENABLE=0x1000 Enable the DMOC645 inverter

Successfully enabled device.(%X, %d) Power cycle to activate.
Power reset

ENABLE=0x1031 Enable a normal potentiometer/hall effect style throttle

Successfully enabled device.(%X, %d) Power cycle to activate.
Power reset

ENABLE=0x1032 Enable a normal potentiometer or hall effect brake input
 Successfully enabled device.(%X, %d) Power cycle to activate.

Operation Manual GEVCU Version 7.00 May 2022

 20

Power reset

There are many modules already available for GEVCU7. You are also free to build your own. Further
in this manual we will cover how to go about that. The system is now constructed such that the core
has no hard ties to the modules and you can freely mix and match, adding and subtracting modules
as needed. The system will automatically determine which modules exist and allow them to be used.
As such, we cannot tell you in this manual which modules might exist at the time of your reading.
However, you can get this information by sending the following command:

S Provide a list of all possible device IDs

6. PRECHARGE CONSIDERATIONS

Almost all power switching devices feature a set of input capacitors to buffer the supply voltage to
the power switching electronics. This ensures a stable input voltage for switching purposes, at least
at the frequencies common in those circuits.

The nature of capacitors is that they resist any change in voltage by providing or absorbing current.
And this leads to a bit of a problem that comes up in electric vehicles in a variety of places –
excessive inrush current.

When we first connect a battery pack to any inverter or PWM controller, the voltage of the
capacitors will be zero while the voltage of the pack might be as high as 400v. The capacitor will
absorb current in an attempt to maintain zero volts until it is forced to 400v. And so the capacitor is
said to CHARGE. If the voltage is then removed, the capacitor will PROVIDE current attempting to
maintain the voltage until it is discharged.

The amount of current is a function of the applied voltage and the SIZE in FARADS of the capacitor
with any resistance serving to limit current into the capacitor. Because these tend to be large
capacitors, they can absorb a large amount of initial current for a brief time before their voltage is
equalized to the applied pack voltage.

This can lead to very brief, but often HUGE (over 1000A is not impossible) inrush currents when the
pack voltage is applied. These currents can be SO large that they arc weld the contacts on contactor
relays, and indeed too often result in the destruction and failure of the capacitors themselves –
potentially destroying your inverter.

The solution to this is precharging the capacitors up to the pack voltage through some sort of current
limiting device – typically a resistor. By ohms law, a resistor will allow a certain level of current

Operation Manual GEVCU Version 7.00 May 2022

 21

based on its resistance and the applied voltage. I = E/R where I is the current, E is the voltage, and R
is the resistance.

So for example, if we have a 400v pack, and we precharge through a 100 ohm resistor, we limit the
inrush current to 4 amperes. It might take several seconds to charge the capacitor to 400v at 4 amps
but this is infinitely longer than the mere milliseconds it will take if the voltage is applied directly.

The nasty math:

As a rule of thumb, one should pre-charge the capacitors for 3RC seconds. What is 3RC you might
ask? The R in this equation is the resistance of the precharge resistor you are using. The C is the
capacitance of the capacitors in your inverter (or other devices you need to pre-charge). You simply
multiply them together then multiply by three. It should be noted that RC is the time it takes for the
capacitor to 67% charge from the previous value. So, 1RC gets you to 67% charged. 2RC goes 67% of
the remainder or 89% charged. 3RC gets you to 96% charged. In principle, this is sufficiently close to
100% to call it “good enough.”

For instance, if you have 10,000uF (that’s 0.01 farads) of capacitors and your precharge resistor is
400 ohms then the answer is 3 * 0.01 * 400 = 12 seconds. It should be obvious that we’d rather not
have to pre-charge for so long. If the inverter really does have 10,000uF capacitance then perhaps
we’d want a 100 ohm resistor instead. Now we can precharge in 3 seconds. Ultimately, the choice is
yours. Smaller resistance values yield faster precharge times but require larger wattage resistors to
compensate.

This brings us to the topic of resistor heating. The heating due to a resistance is I2R where I is the
current flow in amps and R is the resistance. So, if we have 4 amps at 100 ohms resistance we have
1600 watts of heating. However, life is not that simple. As the capacitor charges it increases in
voltage. This brings it closer and closer to the pack voltage. As the voltage between the pack and the
capacitor gets lower so does the amperage and thus the heating. At 200V difference you have 22*100
= 400 watts of heating. Much more manageable! In fact, most of the heating happens at the very start
and rapidly tapers off. Even so, we are not discussing a situation where 1 watt resistors are
sufficient. You will need a “surge” rated power resistor and it will be large. Expect the resistor to be
at least the size of a pack of gum in order to have enough mass to absorb the full precharge. You
might find resistors which are rated at 40 watts but 400 watts for a surge. If you get the proper
resistance value this may work. Make sure to look at the specifications for the resistor and choose
one that can handle the heating it will experience. When in doubt, get a bigger resistor. You won’t
hurt anything by overdoing the resistor size but you could start a fire or burn up the resistor by
getting one too small.

Unfortunately, once the caps are charged and the power switching begins, we don’t want ANY
resistance in our source voltage. As the switches often do 300 or 500 or even 1000 amps, it would
give off a lot of heat and ultimately burn up even the largest resistor.

Once the capacitors are charged, we can safely connect them directly.

And so the usual process is to use TWO relays, your main contactor and a separate precharge relay
that connects the power resistor across the main terminals of the contactor bypassing it.

And so the precharge process becomes:

Operation Manual GEVCU Version 7.00 May 2022

 22

1. Close precharge relay applying voltage to input capacitors.
2. Wait until capacitor reaches pack voltage (or gets really close.)
3. Close main contactor connecting input capacitors directly to pack.

In the diagram, note that we use DOUT0 and DOUT1 to activate the precharge and main contactor
relays respectively. ALL GEVCU digital outputs are a switched ground MOSFET. When set to 0 it
presents an open on the associated AMPSEAL pin. When set to 1, it switches the MOSFET ON which
connects the pin to ground.

The other end of both relay coils is connected to the ordinary vehicle 12v. So when the DOUT
MOSFETS are turned on it provides a ground to the coil and closes the relay. These MOSFETS are
capable of 2.7 amperes of continuous current and surge currents of up to 7 amperes – sufficient for
the largest contactor coil.

Precharging is so common in these situations, that there are several variables already programmed
into GEVCU software to accommodate precharging. However, since not everyone will want
precharging, this functionality is not enabled by default. To enable it type:
ENABLE=0x3100 This enables the precharge module
 Power cycle to enable the module

Operation Manual GEVCU Version 7.00 May 2022

 23

To set the precharge configuation, bring up the serial terminal on the GEVCU and enter the following
values:

PRECHARGETIME=1500 This sets the precharge interval in milliseconds
 Setting Precharge Delay to 1500 milliseconds.

PRECHARGERELAY=0 This sets the precharge relay output to DOUT0.
 Setting Precharge Relay to 0.

MAINCONTACTOR=1 This sets the main contactor relay to DOUT1.

 Setting Main Contactor relay to 1

These values will be saved to EEPROM automatically. At any time in the future, when the GEVCU
receives 12v on the input and completes its bootup process, it will immediately set the precharge
relay output DOUT0 on pin 3 to on, engaging the precharge relay and applying the 400v through the
precharge resistor to the inverter.

The program will hold that state for the amount of delay you enter in PRECHARGEDELAY in
milliseconds. 1500 ms for example is 1.5 seconds.

After that time has expired, it will close the MAINCONTACTOR output – in this case DOUT1 on pin 4.

Note that any output can be used for precharge DOUT0 through DOUT7 and any output can be used
for the main contactor.

If no precharge is desired, simply set MAINCONTACTOR and PRECHARGEDELAY to 255. You
can then use those outputs for other purposes. Note also that no precharge is done unless a
PRECHARGETIME greater than 0 is entered.

AN ALTERNATE PRECHARGE TECHNIQUE

Precharge as depicted above requires a second relay and the usual approach is a much smaller relay
to minimize expense – since it is only going to carry 3 or 4 amperes this appears to make sense. And
on low voltage systems, it more or less works. But as we increasingly go to higher voltage AC drive
systems, it more or less doesn’t. The reason is contact arcing. The little 12vdc automotive relays are
simply not designed to switch 350 vdc even at low currents. The high voltage potential itself will
cause the contacts of these relays to arc – causing pitting and wear and potentially even welding
them closed.

Operation Manual GEVCU Version 7.00 May 2022

 24

The simplified two contactor precharge circuit shown here has several advantages for high voltage
systems. First, it provides a redundant safety element as two high voltage contactor relays are used
and both must be engaged to power the system. That means in an emergency shutdown scenario
you have TWO contactors breaking the circuit. If one welds closed, the other one may indeed break
the circuit.

But it also eliminates the use of the inexpensive 12v relay from the circuit. Note that one contactor
is placed on EACH pole of the battery connection and a precharge resistor is permanently wired
across the terminals of the positive contactor.

In order to precharge the inverter, the contactor on the NEGATIVE pole is closed, completing the
circuit through the resistor and applying pack voltage to the inverter through that resistor.

Once the precharge delay has been accomplished, the main contactor on the positive pole is then
engaged – effectively taking the resistor out of the loop by bypassing it directly.

Operation Manual GEVCU Version 7.00 May 2022

 25

In this way, we can avoid the use of small failure prone relays in our precharge circuit. GEVCU will
always leave the precharge output on after the main contactor is closed in order to provide for this
type of precharge configuration.

When the GEVCU is powered down, both contactors open, removing all possibility of charge on the
inverter.

One last thing should be noted. This scheme protects the contactors and the rest of the system from
undue stress upon start up. However, it does nothing to protect things at shut off. If at all possible
you should NEVER turn off the GEVCU while the vehicle is in motion. Sometimes emergencies
happen and you simply cannot help it. If life and liberty are in danger and the only solution is to turn
everything off, by all means do so. However, opening contactors while large currents are flowing is
likely to both damage the contactors and potentially zap your other high voltage items. Allowing
GEVCU to power down and/or opening the contactors under load should only be done as the last
resort.

7. THROTTLE CALIBRATION AND

MAPPING

The concept of a “vehicle control unit” can cover a multitude of sins. But the most central issue,
certainly with electric vehicles, is “controlling” the amount of power applied to the electric motor
and drive train.

Early vehicles used a simple switch to apply power to the motor or not. By switching it in and out,
the driver could kind of/sort of control the forward motion of the vehicle.

Later versions featured large potentiometers that consumed much of the power as heat but provided
variable voltage to the motor.

Various switching schemes were used to switch batteries in various combinations to get different
voltages to the motor.

But the objective is always to give the driver control of the forward motion of the machine.

In modern electric vehicles, we need to use the accelerator or throttle (we avoid calling it the gas
pedal actually) to control the application of power to the electric motor to go forward. In most AC
polyphase systems, this is complicated a bit by the fact that the AC drive motor can be used as a
generator when coasting or slowing down. This is generally referred to as regenerative braking or
simply “regen”.

Regen doesn’t just happen. We can control the AMOUNT or degree of power generation for any
given turn of the wheels by varying the excitation current in the motor stator windings.

Operation Manual GEVCU Version 7.00 May 2022

 26

Most modern vehicles feature both forward acceleration control AND regenerative braking control
using the throttle. Most drivers quickly become accustomed to this and learn to use it to great
advantage with one pedal control right up to a full stop at the stop light. Some drivers do NOT like
this feeling and do not want regen on the throttle at all.

The result is that the CENTRAL function of GEVCU is to translate throttle pedal position into motor
control signals. It is also the most complicated concept to grasp as we need to accommodate as
many combinations of pedal position, acceleration, and regenerative braking as possible to
accommodate a variety of vehicles and driver preferences.

You will find that “tuning” the throttle map is THE most effective way available to tune the “feel” of
your electric car when driving. And that driving “feel” is part of the magic of electric drive.
Depending on the throttle map settings, your vehicle can provide a seamless interface where you
actually feel like part of the car and control it effortlessly and without conscious thought. Done
poorly, it can render a barely controllable vehicle prone to parking lot accidents and uncontrolled
accelerations – a hazard to the driver and everyone on the public right of way.

HOW GEVCU DETECTS THROTTLE POSITION

GEVCU detects throttle position by voltage. Throttles may be potentiometers, hall effect devices, and
of either one signal or two. GEVCU provides these sensors with a 5v supply and a ground reference
return and receives from it a signal or signals indicating pedal position by voltage.

This signal is buffered, filtered, and scaled from the 0 to 5 volt signal from the pedal to a 0-3.3v signal
that can be read by the multiprocessor. This signal is then sampled by the Analog to Digital
Converter and presented as a number between 0 and 4096 digitally.

So a 0v signal would produce a digital output of 0 and a 5v signal from the throttle would produce a
value of 4096.

This is not a precise art. Sampling issues, noise on the wires, electromagnetic interference, and
moon phases all have an effect on such small signals. So the software “averages” this input value
continuously.

Programmatically, it then converts this digital value to a “throttle percentage” between 0 and 100 to
some precision for use by the various program elements.

And so for example, the throttle at rest might put out a voltage of 0.83v and that is scaled and
converted to a digital value of 680 which is then defined in software as 0% throttle.

With the pedal fully depressed, the throttle sensor might put out a voltage of say 4.62 volts. This is
scaled, buffered, filtered, and converted to a digital value of 3785 and we then define that as 100%
throttle.

THROTTLE TYPES

GEVCU rather arbitrarily divides the world of throttles into two types, single input and dual input.
This is defined by the variable TPOT with TPOT=1 indicating a single input throttle and TPOT=2
indicating a dual signal throttle.

Operation Manual GEVCU Version 7.00 May 2022

 27

IF TPOT is set to 2, there is another consideration. Does the 2nd signal vary in voltage in the same
direction to the first signal or is it inverted. TTYPE=1 for a linear relationship and TTYPE=2 for an
inverted one.

THROTTLE CALIBRATION

It’s an imperfect world. Whatever sensor is selected or used, the output read at the analog input to
the GEVCU is going to vary depending on wire lengths, manufacturing variations etc. So it is
important to have a means of calibrating the throttle.

For single input throttles two variables are provided – T1MN and T1MX. You simply enter the
digital values read by GEVCU while the pedal is at rest (T1MN) and fully depressed (T1MX). We
assume it will be more or less linear between those two points.

For two wire throttles, a second input is provided, T2MN and T2MX. If a single input is used, we
want to set these values to zero.

To get the numeric values, we have to use our USB serial port terminal program to view the digital
value “read” by GEVCU for the throttle positions. Enter the letter L and the serial monitor will begin
to provide a text read out that is updated every few seconds.

Motor Controller Status: isRunning: false isFaulted: false

AIN0: 81, AIN1: 81, AIN2: 87, AIN3: 77 AIN4: 81, AIN5: 81, AIN6: 87, AIN7: 77

DIN0: 0, DIN1: 0, DIN2: 0, DIN3: 0, DIN4: 0, DIN5: 0, DIN6: 0, DIN7: 0, DIN8: 0, DIN9: 0,
DIN10: 0, DIN11: 0

DOUT0: 0, DOUTO1: 0, DOUT2: 1, DOUT3: 0,DOUT4: 0, DOUT5: 0, DOUT6: 0, DOUT7: 0

Throttle Status: isFaulted: false level: 0

Throttle rawSignal1: 81, rawSignal2: 80

Brake Output: -200

Brake rawSignal1: 87

This display gives us quite a bit of information. Note the line AIN0: etc. This lists the actual digital
values derived from our eight analog inputs 0-7.

By convention, we usually wire the primary throttle signal to AIN0 and the secondary to AIN1 with
brake inputs on AIN2.

The next line actually indicates the current status of digital inputs 0 through 11 as DIN0: etc.

And the next line will provide information on the current status of the eight digital MOSFET outputs
DOUT0 through DOUT7.

So calibrating the throttle becomes quite easy to do manually:

Operation Manual GEVCU Version 7.00 May 2022

 28

1. Enter L to get the screen logging shown above.
2. Ensure throttle is at rest (idle).
3. Note numeric value appearing in AIN0.
4. Press throttle to full acceleration.
5. Note new numeric value appearing in AIN0.
6. Enter the first value using the command T1MN=xx where xx is the value displayed. Actually

you should enter a value slightly HIGHER than the value displayed to ensure that with no
throttle input, we truly read 0 % throttle

7. Enter the second value noted using the command T1MX=xx where xx is the value displayed.
And actually you would enter a value just a few points LOWER than what you read to ensure
we have a 100% value at full throttle.

For dual signal throttles, this procedure can be repeated for AIN1 using the variables T2MN and
T2MX.

GEVCU also has an automated system that might be easiest. The “z” command will start automatic
throttle calibration. It will ask you to leave the pedal at its rest position and then press it fully. This
should find your throttle and how it maps. If it has worked and you are satisfied that it is correct you
can use the “Z” command to save the new settings.

THROTTLE MAPPING

Throttle calibration simply establishes the “end points” of the throttle map. We establish the actual
digital readings for an idle and max throttle condition. This is then mapped to a normalized 0 to
100% throttle value.

GEVCU actually provides a rich set of variables to map that 0-100% in an almost endless number of
combinations to “tune the curve” or tune your throttle action to vary the feel of the car while driving.
The basic list of variables includes

TCREEP – amount of forward torque applied at idle. This can be useful with automatic
transmissions for instance or to duplicate the feel of an automatic transmission ICE vehicle that
wants to “creep” forward if you release the brake.

TRGNMIN – defines the point on the throttle where the minimum regenerative braking torque is
applied. The minimum regen torque level is defined by an associated variable TMINRN which is the
percentage of full torque.

TRGNMAX is the pedal position where maximum regenerative braking is felt and this maximum is
defined by TMAXRN which is a percentage of full torque.

TFWD is the point on the throttle map where forward drive torque is applied.

TMAP is the point on the throttle map where 50% of available forward torque is applied.

Refer to the throttle map diagram.

Operation Manual GEVCU Version 7.00 May 2022

 29

Operation Manual GEVCU Version 7.00 May 2022

 30

The first thing to understand about the throttle map is that regenerative braking is a function of the
forward motion of the car, fed through the axles and transmission to the motor, is used to generate
electricity.

No matter what we set our variables to, there is no regenerative braking if the wheels are not
turning.

So in the diagram depicted, the first 25% of the pedal does NOT cause us to go in reverse. It is
simply dead pedal.

In starting off, TFWD defines the point in the pedal where forward motion begins. In this example,
perhaps at 27% throttle.

Torque is then mapped from 27% to 100% throttle with one modification. It is scaled nonlinearly by
the variable TMAP which defines the percentage of throttle where 50% torque occurs.

This is a nice feature actually. We can define 27% to 85% percent of throttle for the first 50% of
available torque, with the remaining 50% torque mapped from 85 to 100%.

Why would we want to do this? It dramatically EXPANDS our resolution and control on the lower
half of the available torque curve. In this way, we can markedly improve “feel” at low speeds when
parking and maneuvering.

Typically, in driving the difference between hard acceleration and REALLY hard acceleration doesn’t
really matter very much. You’re kind of foot down or not for max power. But for minimum power, a
finer level of control is an asset.

Regenerative braking comes into play when we are already rolling and we begin to back off on the
throttle. The kinetic energy of the car keeps it moving forward and left to its own devices will roll
quite freely some distance. But this energy can be recaptured by using the motor as a generator and
feeding the current back into the batteries.

Generally, as you back off the throttle you want to gently begin applying a minimum level of
regenerative braking and increase that amount the more you back off on the pedal.

TRGNMIN defines, in tenths of a percent, the position on the throttle map where regenerative just
begins to be felt. The associated variable TMINRN defines the percentage of maximum torque that is
called for at that point.

The maximum regenerative torque is defined by TMAXRN and the point on the throttle at which
this occurs is defined by TRGNMAX. In this example, we get max regenerative braking at about 5%
throttle.

And so the further you reduce the pedal, the stronger the regen effect is felt, slowing the car.

Note a couple of gaps. We have nothing defined at all from 25% our minimum regen point, and 27%
, the beginning of forward acceleration torque. This provides a little “coast” zone where no forward
torque is applied and no regen torque is produced. You can make this zone as wide or as narrow as
you like or not have one at all. I personally quickly find this “notch” in the pedal and often use it to
coast freely down a hill for example.

Operation Manual GEVCU Version 7.00 May 2022

 31

Note too that TRGNMAX comes in at about 5% throttle. From that point to full idle is a second
“coast” zone where no regen is produced and no forward torque either. Again, a matter of personal
preference.

Again, TCREEP allows you to define a level of forward torque produced at 0% throttle.

Note that throttle input more than about 15% below the minimum you calibrated the throttle with
will result in a fault condition and to about the same 15% tolerance any input ABOVE the T1MX will
likewise result in a fault.

These variables are at first confusing and seem unnecessarily complicated. Worse, it will take you a
number of “tuning drives” where you go drive the car, come back and change some variables, go
drive the car, come back and repeat.

But you will quickly see that these variables allow you to achieve a custom level of feel and nuance in
the way the vehicle drives that is really quite the central feature of GEVCU.

8. BRAKE CALIBRATION AND

MAPPING

Brake calibration and mapping is very similar to that for the throttle, but much simpler as there is
usually only one brake input.

Braking issues revolve around the concept of regenerative braking described in the Throttle section
of this manual. With most AC drive systems, the traction motor can be used as a generator during
deceleration converting the kinetic energy held in the forward motion of the car into electrical
current, which is in turn fed back into the batteries to “restore” a bit of energy.

In theory, this sounds like we can recover a significant amount of energy and extend our range. In
almost all of our actual comparison tests, we’ve found the realized energy efficiencies of
regenerative braking in all cases much less than advertised, and really quite meager when
demonstrated. The reasons for this are a bit complex, but involve the fact that WITHOUT
regenerative braking, you drive the car quite differently and quickly learn to take advantage of “free
roll” which is a very different feel from normal ICE vehicle operation. Additionally, a non
inconsequential amount of energy is spend in overcoming air resistance and tire resistance as you
are driving. This energy is never coming back. In an internal combustion engine, when you take your
foot off the throttle, the compression of the engine acts as a kind of a brake. When you remove your

Operation Manual GEVCU Version 7.00 May 2022

 32

foot from the throttle of an electric car, an electric motor HAS no engine compression and so does
not. As a result, you can often roll for a long distance using no electricity at all.

If we measure energy OUT of the battery when accelerating, and energy IN to the battery during
regenerative braking, there APPEARS to be a considerable energy savings. But without regenerative
braking, we find we drive the car quite differently, and the energy OUT to drive the car changes
considerably. As a result, comparing the same actual drive WITH regenerative braking and without
regenerative braking simply does NOT show those kinds of efficiency gain.

So why use regenerative braking at all? It actually puts more load and stress on the motor, the
inverter, the transmission, and indeed the batteries. It’s a good question.

But over time, we’ve learned we just LIKE the feel of regenerative braking and it DOES reproduce the
feeling of engine compression in a more conventional car feel. Even better, we soon learn to use just
the throttle to modulate between forward acceleration and regenerative braking giving us a new
kind of one foot control of the vehicle that many electric car enthusiasts strongly prefer. Also, it does
save on brake pad and rotor costs.

With GEVCU You can easily turn regenerative braking off entirely for either or both the throttle and
brake. But you can also use regen for either or both the throttle or the brake.

Regenerative braking on the brake gives us a sense of power brakes. We usually tune this so that
just a little brake pressure will give us quite a bit of regenerative braking pressure and this increases
with pedal pressure up to a point. But at the point where the mechanical hydraulic brakes actually
come into play, we often cut off the regen entirely. In this way, a light brake pressure gives us some
regen deceleration, heavier foot pressure mostly giving us just mechanical braking.

To use regenerative braking on the brake, you will need some sort of 5v sensor indicating brake
pedal travel. We actually strongly prefer using a hydraulic brake pressure transducer that provides
a 0-5 output based on hydraulic pressure felt in the actual brake lines. This sensor usually has three
connections, 5v, GND, and the output signal. GEVCU provides several 5v and GND outputs to choose
from. From there, it is an easy matter to tie the brake pressure transducer output signal line to one
of our analog inputs. By convention, we use the first two analog inputs, 0 and 1 for the throttle. And
so we normally use input 2 for braking.

Note that regenerative braking on manual brake systems can be quite pleasant to use. Generally
using regenerative braking on power brake systems is of much lower usefulness in tuning a car for
ideal braking feel.

Calibrating the brake becomes quite easy to do manually:

1. With a terminal program, bring up the serial port screen display.
2. Enter L to get the screen logging shown above.
3. Ensure brake pedal is at rest .
4. Note numeric value appearing in AIN2.
5. Press brake pedal to maximum.
6. Note new numeric value appearing in AIN2.
7. Enter a value JUST ABOVE the first value noted with the brake off, using the command

B1MN=xx where xx is the value displayed.

Operation Manual GEVCU Version 7.00 May 2022

 33

8. Enter a value JUST BELOW the second value noted using the command B1MX=xx where xx
is the value displayed.

This sets the minimum and maximum input levels GEVCU will see on AIN2.

BRAKE MAPPING

Brake calibration simply establishes the “end points” of the brake map. We establish the actual
digital readings for an off brake and max brake condition. This is then mapped to a normalized 0 to
100% brake value.

Two additional variables are used to establish the level of regenerative braking to be used. BMINR

represents the minimum level of regenerative braking we want to exhibit while braking while
BMAXR establishes the maximum degree of regenerative braking . The valued entered will indicate
PERCENT of available regenerative braking torque to be applied. Values of 0 will turn off
regenerative braking on the brake pedal.

In applying regenerative braking, GEVCU will map BMINR to B1MN to give minimum regenerative
braking when you just start to press the pedal. It will linearly apply regenerative braking up to
BMAXR occurring at the pedal position you identified as B1MX.

BRAKE LIGHTS

One of the advantages of ac induction motors and polyphase brushless dc motors is that it is very
easy to switch roles from being a drive motor to acting as a generator. Indeed, when you remove
power from the motor but continue to turn its shaft from the forward motion of the vehicle, it
basically reverts to acting as a generator.

We can control this with our inverter determining how much power is produced, and thus how
much of a slowing effect it will have on our car. Indeed we provide variables in the GEVCU to allow
you to tune how much regenerative braking occurs when you put on the foot brake, and indeed how
much occurs when you back off the throttle and specifically where on the throttle that occurs. In
fact, an inordinate amount of the setup of GEVCU is devoted to this one issue – regenerative braking.

This gives rise to an anomaly you may want to consider. When you put your foot on the brake of
most automobiles, an electrical switch closes turning on the brake lights on the rear of the car. This
switch is usually located on the master cylinder and reacts to hydraulic pressure, but on some
vehicles it is actually on the brake pedal itself. In either case, when you start to brake, two big red
lights on the rear of the car, required by the National Highway Traffic Safety Administration, light to
warn drivers behind you that you are slowing down.

This is an important safety feature to prevent large trucks from cohabitating in your trunk with your
spare tire.

The issue is with throttle-based regenerative braking. Most electric vehicle builders and drivers
eventually discover a pleasant level of control of the vehicle that can be obtained using regen on the
throttle. They quickly learn they can slow almost to a stop just using the accelerator and almost
never have to take their foot off the throttle to brake. Indeed, one of the ways you can spot an EV

Operation Manual GEVCU Version 7.00 May 2022

 34

conversion is to look for the rusty brake disks. Some EVs simply do not ever have to have new brake
pads because the braking system is almost never used.

While regen on the throttle can be used to dramatically slow the car, it doesn’t inherently light the
brake lights. And so some EV drivers find they always seem to have people climbing their tailgate.
The reason is the other drivers were not provided sufficient warning of your decreasing speed
during regenerative braking.

GEVCU makes provisions for this with the BRAKE LIGHT output. You can designate any of the 8
digital outputs as a brake light output. The system will monitor the actual torque output reported by
the inverter to the GEVCU via CAN. In any event where this torque is NEGATIVE and exceeds 10
Newton Meters of torque, the brake light output is set to ON.

Via serial terminal, this value is set with the BRAKELIGHT variable.

BRAKELIGHT=5 This sets the brake light output to output 5.

 Brake light output updated to: 5

REQLEVEL=-200 This sets the required regen torque to trigger the brake to be 20Nm
(regen torque is negative and value is passed in 1/10th Nm increments)

 Brake required torque updated to : -200

If you do not need a brake light output, set this value to 255. Also note that the lighting control code
may not be enabled. You can enable this by typing ENABLE=0x3300

This variable is also available on the wireless website configuration page.

Like other digital outputs, this is a switched MOSFET ground. When the torque value goes negative
to more than 10 Newton Meters, the output pin is grounded. Otherwise it is open.

You can easily use this output to provide a ground to the coil of an ordinary automotive 12v relay
and use the relay to bypass the brake light switch on either pedal or master cylinder to switch on the
brake lights just as if the brake pedal had been pressed.

In this way, when slowing through regenerative braking, you WILL light the brake lights on the rear
of the car, warning drivers behind you that you are slowing.

The 10 nm threshold requirement allows modest regen without tail lights but any substantial regen
above this modest threshold will light the tail lights.

Operation Manual GEVCU Version 7.00 May 2022

 35

9. POWER VALUES

There are a couple of variables having to do with maximum power and rpm for the motor overall.
These can be set using the USB serial port and terminal program or the wireless web server.

Torque is a measure of pressure or work of a rotating shaft. It is normally expressed in the United
States as ft-lbs and in the rest of the more metric world in Newton Meters. 1 newton meter =
0.737562149 foot pounds. Conversely 1 foot pound = 1.35581795 newton meter.

There are two ways to operate power switching control of AC motors. You can command them to a
speed, using all available torque at a certain ramp rate, or you can command torque itself and largely
ignore speed. For most automatic operations such as operating pumps and compressors, you would
use speed control. You want to set a certain speed and have the motor run at that speed and it will
take whatever torque is necessary to reach that speed and maintain it.

But for electric vehicles, we normally use torque control. You would, after all, probably find it
unpleasant if your car tried to accelerate to 60MPH fast as physically possible. Instead, your foot
commands a certain amount of torque and the speed is left mostly up to the driver to monitor on the
speedometer. When starting from a stop, you need high torque to accelerate but as you reach your
desired speed, you naturally come off the throttle decreasing the applied torque. You don’t really
care what speed the motor shaft turns out to get there.

The TORQ variable establishes the maximum level of torque that GEVCU will command the
DMOC645. The combination DMOC645 and Siemens Motor may or may not actually achieve this
depending on available battery voltage, gearing, etc. But this is the maximum value, expressed in
tenths of a Newton Meter, that GEVCU will command. The DMOC645 actually reports back the
ACTUAL value of torque at any one instant.

We think of DMOC645 and Siemens motor as capable of up to 300 Newton Meters of torque. So for
maximum torque with this combination, you would enter the following serial command:

TORQ=3000

Note that this is in TENTHS of a Newton Meter and so the value 3000 represents 300 NM.

A second value is established programmatically in a configuration file to set the maximum
regenerative braking torque in watts. No idea why this wasn’t made an accessible variable, but it
will typically be set to 40% of whatever the maximum TORQ value is.

Other variables specific to the brake and throttle actually establish what percentage of THAT value Is
applied at specific brake or throttle levels.

It is usual to set a maximum rpm level for the electric motor. Regardless of WHAT level of torque
you command, the DMOC645 won’t apply it if this maximum revolutions per minute level is
achieved. This is set by the command

Operation Manual GEVCU Version 7.00 May 2022

 36

RPMS=6000

For example this command would set the max rpm at 6000 rpm. Near the max RPM the available
torque will be scaled back to prevent further acceleration.

An odd variable included is the percent of torque available when in REVERSE. The DMOC645 does
not actually know when you have placed the transmission in reverse unless you use one of the
inputs to note that and wrote software to do this. But there are some provisions for using a digital
input to put the motor direction in reverse. And this variable would establish a separate maximum
torque when backing up using the reversed electric motor. This is expressed in tenths of a percent.

REVLIM=500

This command would limit maximum torque WHEN in reverse to 50% of maximum available torque.
This command may be handy as it is rarely wise to accelerate heavily in reverse.

The TORQ command can actually be quite useful. For example, by setting TORQ=750, you might
limit the motor output to 75 NM. You can then map your throttle and brake and test drive them
without much of anything getting away from you because you have strongly limited the power
output of the motor. Once your braking and throttle feel right, even though the vehicle is a little
docile, you can then return TORQ=3000 for 300 NM of torque for full power.

Operation Manual GEVCU Version 7.00 May 2022

 37

10. Analog Inputs

Since the central role of the GEVCU is to allow control of the power applied to the motor as directed
by the throttle input, we have invested a serious amount of design in the analog inputs to the
microprocessor.

GEVCU6 used an isolated 24-bit analog converter but this proved to be overly complicated and
prone to excessive noise. GEVCU7 now uses filtering and buffering which as proven to provide very
good analog performance with minimal parts. Additionally, this has allowed us to provide twice the
number of analog inputs. It is now possible to use 8 analog inputs for various uses. They are,
however, all 0-5V inputs not 12v.

So far, by convention we have used inputs AIN0 and AIN1 for throttle, input AIN2 for brake and
input AIN3 is available.

11. Digital Inputs

The GEVCU provides twelve optically isolated digital inputs. By digital, in this case we are not
referring to TTL level inputs but rather switched 12v inputs that can be read and acted on.

A 1k ohm current limiting resistor allows for an approximately 14ma input to the opto-isolators.
This lights an LED which puts the output into conduction. In this way a 12V signal can trigger the
digital input without having any direct connection to the processor. 8 of the 12 digital inputs have
the 1k ohm resistor. The other 4 use 470 ohm resistors. Why the difference? 470 ohms is small
enough that 5V will reliably trigger the inputs. The inputs with 470 ohm resistors can still be used
with 12V for short durations. But, long term use of 12V signals to these digital inputs will likely burn
up the current limiting resistors. As such, if at all possible it’s best to use DIN0-D7 for anything that
might have 14 or more volts.

The output uses a 10k pullup resistor to the isolated 3.3v supply of the microprocessor to present a
TTL high on the microprocessor input pin which is driven low by the input signal which switches the
transistor into the on state. A 1k current limiting resistor on the output causes about 0.3v on the
microprocessor input which is read as a low. From the perspective then of the GEVCU software,
these inputs are active low – essentially inverting the 12v on 0v off input.

Operation Manual GEVCU Version 7.00 May 2022

 38

FEATURE EXAMPLES

ENABLE SIGNAL

Normally, when 12v power is applied to the GEVCU, it goes through an initialization and precharge
procedure and when this is completed it is up and ready to drive the inverter and motor.

We can revise this operation to allow GEVCU operation on power up, but keep the motor/inverter
disabled until we actually “turn it on” with a 12v enable signal.

This is done via serial port with the ENABLEIN command.

ENABLEIN=2 will set digital input DIN2 as the ENABLE input. When 12v is present on CINCH pin J-
1, the motor inverter will be enabled and when 12v is removed at any time, it will be DISABLED.

This enable function is ONLY active if ENABLEIN has a value of 0-11. If you do not need this
feature, set ENABLEIN=255.

REVERSE INPUT

Operation Manual GEVCU Version 7.00 May 2022

 39

The default mode of the GEVCU is to turn the motor in the forward direction only. But we can use
one of our digital inputs to allow both forward AND reverse operation of the motor by setting a
REVIN input.

REVIN=2 will set digital input DIN2 as the reverse input. When 12v is applied to CINCH pin J-1 then,
the drive signals to the motor will cause the shaft to spin in the REVERSE direction. When the 12v is
removed, it will revert to FORWARD operation.

This reverse function is only active if REVIN is set to 0 - 11. To disable the reverse function, set
REVIN=255.

12. Digital Outputs

GEVCU provides 8 digital outputs any of which can also be used to switch devices on or off.

The basic microprocessor features many digital outputs which can each source up to 50 ma of
current with a maximum of all outputs being further limited. This is inadequate power to drive even
small relays or devices found in the automotive environment.

Instead, the outputs from the microprocessor trigger MOSFETs which do all the heavy lifting. These
MOSFETs can easily handle 2A continuously and much more as a surge. All outputs are protected by
self-resetting fuses.

Operation Manual GEVCU Version 7.00 May 2022

 40

13. COOLING CONTROL – A DIGITAL

OUTPUT EXAMPLE

One of the immediate needs for the DMOC645 and Siemens motor is for liquid cooling. If these
devices exceed certain temperatures, the DMOC645 will limit the output current in an attempt to
hold the temperature within operational limits. This is one of those very quiet “gotchas”. With
inadequate cooling, your EV will operate JUST FINE. But you will be completely unimpressed with
the power and acceleration of the Siemens Motor and DMOC645 controller.

With adequate cooling, this pair will put out nearly 300 nm of torque, which for anything under
3000 lbs with a transmission will feel VERY responsive. And so if you find yourself disappointed in
the performance of this pair, your first examination should be to make sure you have adequate
cooling for the system. In general, people grossly underestimate how much heat these devices give
off and how much cooling is required.

On the VW Thing, we run the inverter and the motor on separate cooling loops using a Piersburg
pump which does about 17 liters per minute through the AN-6 braided nylon hoses. Well and good
enough. But the trick is you have to REMOVE the heat from the system. We use TWO Denali heat
exchangers with quite powerful fans on them to do this.

Of course, the fans not only use quite a bit of 12v energy, but they also are uncomfortably noisy.
This is not so much a factor on the highway, but tooling around town it’s a little loud.

Oddly, tooling around town we do not NEED much cooling. The circulating pump and the heat
exchangers operating without the fans works just fine. But if we DO go out on the highway and
operate the motor and controller for more than 10 or 12 minutes, we will go into current limit. With
the fans, adequate cooling is provided and we do not.

Similarly, July temperatures of 100F ambient don’t help our cause. But January’s 15F temperatures
render cooling needs almost moot.

And so we have built in a cooling control function that gets Inverter temperature from the DMOC645
via CAN message, and compares it to set limits. If the temperature goes higher than the COOLON
temperature we designate, we set DOUT7 to on to activate our fans.

If the temperature should later fall below the value we set as COOLOFF, the digital output is turned
off, and so the fans are taken offline. In this way, we can use the fans on the Derali heat exchangers
only when they are needed. This saves energy, and allows us a very quiet car when maneuvering at
low speeds, while providing maximum cooling on the freeway.

Operation Manual GEVCU Version 7.00 May 2022

 41

The diagram above shows the external connections to the GEVCU. When DOUT7 is set to ON, it
causes the MOSFET driver to send a drive signal to the output MOSFET switching it into conduction.
This is connected to pin F-3 on the CINCH 18-pin connector which is routed to the ground side of the
fan relay. 12vdc from the vehicle is connected to the other end of the coil AND to the common
terminal.

When the MOSFET is turned on, this completes the path for the 12v through the coil, energizing the
relay. This applies 12vdc to the two heat exchanger fans through the relay.

Note the use of diodes D1, across the relay coil, and D2, from the fans to ground. These are coil
suppression diodes. When we turn cooling off, the coil in the relay will seek to continue the current
flow. This can cause spurious voltage spikes that can rise to hundreds of volts and could even
damage the MOSFET output circuit in the GEVCU. Diode D1 provides a path for current flow from
the inductance of the coil and this energy is dispersed harmlessly.

The fans are of course driven by electric motors, but the fan blades themselves have inertia. Not
only do the primary windings of the fans have high levels of inductance, but the kinetic energy in the
fan blades will keep them turning briefly after the relay opens removing power. In this sense, they
act like generators and again voltage spikes are the norm. Diode D2 provides a current path for
those, shunting them harmlessly to ground.

There are three configuration variables in GEVCU that control cooling output, COOLFAN,
COOLON, and COOLOFF. These can be set using the serial terminal.

COOLFAN=7 This sets the specific digital output to use for cooling (0-7).

 Cooling fan output updated to: 7

COOLON=45 This sets the temperature at which the output goes active.

Operation Manual GEVCU Version 7.00 May 2022

 42

 Cooling fan ON temperature updated to:45

COOLOFF=35 This sets the usually lower temp at which the output becomes inactive..

 Cooling fan OFF temperature updated to: 35

You can avoid the fans cycling quickly off and on by setting COOLOFF somewhat lower than
COOLON. In this way, the fans will come on and stay on for a while until the coolant temperature
really comes down. It will then go off and remain off until the temperature again rises to the
COOLON temp.

15. CANBUS COMMUNICATIONS AND

OBDII

A central concept of the Generalized Vehicle Control Unit is that it interfaces with other automotive
devices using the Controller Area Network or CAN protocol. CAN was originally proposed by Bosche
in 1987 specifically for automotive applications.

More specifically, GEVCU is designed to control three-phase AC inverters – power switching
electronics designed to drive AC induction and brushless DC motors – essentially all modern motors
used in OEM electric car design. These “inverters”, including those from Toyota, Nissan, General
Motors, UQM, Rinehart Motion Systems, Tritium, Tesla, and many others all use sensor management
devices to gather driver inputs, and communicate that information to the “inverters” via CAN bus in
the form of torque or speed commands to drive the motor.

The microcontroller used in the GEVCU actually has THREE independent CAN bus controllers built
IN to the chip itself. But these controllers represent HALF of the necessary hardware to perform
CAN communications. They also need CAN TRANSCEIVERS – devices that actually create the
transmitted pulses on the bus.

As a CAN transceiver, the device provides differential transmit capability to the bus and differential
receive capability to the CAN controllers at signaling rates up to 1 megabit per second (Mbps).
Designed for operation in especially harsh environments, the device features cross-wire, overvoltage
and loss of ground protection from –27 V to 40 V and over-temperature shut-down, as well as –12 V
to 12 V common-mode range.

We refer to the three CAN buses as CAN0, CAN1 and CAN2.

Operation Manual GEVCU Version 7.00 May 2022

 43

For GEVCU end users, there is nothing you need to know about CAN. The wiring harness provided
with the GEVCU already connects the GEVCU to the DMOC645 CAN bus, handles all terminating
resistor issues, and has been tested repeatedly to drive the DMOC645 and Siemens motor
combination. There is really nothing to configure here.

But a bit of detail is provided here to illustrate the future growth and possibilities inherent in the
GEVCU device.

The details of the CAN transmission are basically handled first at the transceiver level, and then at
the CAN controller. But to effectively use all the mask and filter capabilities provided by these chips,
and make CAN communications easier to program, a special software library is required to do CAN.

The ability to manage three CAN channels separately provides enormous flexibility. Of course, it
could conceivably operate two separate inverters this way, each driving a different motor for
example.

More commonly, it would be used as a CAN bridge, porting data from one CANbus to another. It is
not uncommon to have CAN buses operating in the same vehicle at different speeds, one at 250 kbps
and one at 500 kbps for example. Using GEVCU, it is relatively trivial to port data from one to the
other.

The basic and immediate design of GEVCU is to command the Azure Dynamics DMOC645 controller
directly via CAN. This is a 250kbps CAN bus that is simply two wires between GEVCU and the
DMOC645.

The second bus would more likely be connected to the vehicles’ Onboard Diagnostics Version II

or OBDII bus. This has been required in virtually all vehicles worldwide since the late 1990s.
Originally using a variety of manufacturer specific protocols, it has evolved in recent years ever
more towards simply a J1939 standard CAN bus.

At the very basic level, the CAN protocol most often uses a 29 bit address and up to eight bytes of
data. ANY device on the bus can transmit these packets and ALL devices on the bus can receive
them. In broadest terms, the 29 bit address identifies WHICH device is sending the data, and often
the specific nature or type of data it is sending. The eight data bytes then contain the data.

Using filters and masks, any specific device on the bus might set up to basically “look for” packets
from another specific device, with specific data in it. It would ignore all other signals on the bus.
And the software in the device would intelligently recognize not only the packet, and the eight
databytes, but specifically the format and significance of every bit of the eight byte data payload.

Collision detection and priority are rather cunningly handled in the address itself.

And so we wind up with a bus, that might have two, but also might have two hundred devices, all
more or less blindly sending packets and receiving packets. But by selectively filtering packets at the
chip level, the receiving devices only get data they are interested in and know how to act on. The air
conditioning controls on the dash have no use for inverter information generally speaking. The gear

Operation Manual GEVCU Version 7.00 May 2022

 44

selector doesn’t need any information at all, it simply transmits lever position periodically. The
variable steering device only looks for RPM from the inverter. And so it goes.

Sending devices are more less simply “announcing” data that might be of interest to others by
forming the data in agreed format, and sending it with the right identifying address – more or less
one assigned to that device. Note the address is NOT who it is sending it to. It’s just a message
identifier showing the source device and nature of the message.

So GEVCU is completely capable of announcing drive commands from the address and in the format
that is expected by the DMOC645. And it can also receive packets from the DMOC645 that contain
data on inverter temperature, motor temperature, motor current, motor voltage, pack voltage, pack
current, and much more.

Normally, GEVCU would get accelerator position from a hall effect pedal as an analog input. But it is
not only completely possible, but has already been done, to connect the second bus to an OBDII bus
and “capture” pedal position from the CAN bus signals transmitted by a CAN capable
accelerator/throttle assembly. That data is then used to form drive commands going out the first
CAN bus to the DMOC645.

This opens up enormous flexibility. For example, there are a number of devices on the market for
trivial amounts of money ($20-40) that plug into the OBDII connector under the steering wheel of a
modern car that transmit data from the CAN bus over either 802.11b/g Wifi or Bluetooth wireless.
And there are already multiple versions of programs for the Apple iPhone, iPad, and Android tablets
as well to capture CAN data from the vehicle and display that data on attractive and highly
customizable gauge displays. In this way, an Apple iPad could rather easily serve as a graphic
display for your electric car, displaying kWh, amperes, battery state of charge, motor rpm and
current, inverter temperature, and much much more.

The implications for CAN are actually hard to get your head around. For example, conventional
thinking would indicate that GEVCU is quite limited with only 8 analog inputs and 12 digital inputs,
and 8 outputs. Those accustomed to Arduino having over 50 inputs and outputs would find this very
limiting.

In automotive applications, an evolution has occurred that is quite fascinating and perfectly logical.
Look at the wiring harness that comes with the GEVCU. It is already sufficiently complex and
enormous that we have individually colored each wire AND inscribed the logical label of the wire
along the wire length – encased it in nylon braid, and it is STILL quite a thing to deal with in a car. It
causes a lot of wiring.

The CAN philosophy is to reduce all that to two wires. If you need more than 8 analog inputs, 12
digital inputs and 8 digital outputs, you basically need ANOTHER CAN device closer to its logical
purpose.

And so you would not incorporate measurement of battery voltage and temperature and current and
state of charge in GEVCU. You would more likely devote an ENTIRELY SEPARATE device, located
right AT the battery, and connect it to GEVCU with precisely TWO wires, the CAN bus wires. And so
basically you have two wires running through the car, connecting dozens of highly specialized
devices whose only wiring is very very short and very very local to just what it is doing.

Operation Manual GEVCU Version 7.00 May 2022

 45

Actually you COULD use two GEVCUs. One with the GEVCU software in it, and the other with battery
monitoring software in it. The CAN bus is how they would communicate.

How far can this be taken? To the extreme. On modern cars, if you look at the 4 window controls on
the drivers door, you will find it is a CAN device all by itself, and it communicates with three others –
the window controls in the other three doors. The Chevy Volt actually has a total of 104

microcontrollers in the vehicle, each with its own built in software and function. But they can all
communicate with each other. The future of automotive technology looks like, sounds like you could
check to see if any of your car windows were down, from your pocket phone, while in a building 112
miles away. Better yet, you could roll them up.

And so the real power of GEVCU, beyond giving us access to existing inverters and motors, is the two
CAN bus channels. And added functionality is not so much a function of hanging more wires on
GEVCU, but on intelligently designing and placing devices in the car to talk over the CAN bus.
Fortunately, beyond perhaps a battery monitoring system, modern cars already have CAN for
throttles, windows, door locks, radios, gas gauges, air conditioning, auxiliary fans, window washers,
temperature sensors, and all of this is increasing at a logarithmic pace. If we can determine the
address and commands, the open source nature of the GEVCU software will allow us to command it.
Bosche actually invented CAN to REDUCE the weight and cost of copper in the wiring in an
automobile. That was the original purpose of CAN. And it works.

Back to earth a bit, the GEVCU was born to drive the Azure Dynamics DMOC645 inverter and paired
Siemens motor. But from the first instant of conception, we envisioned a very modular object
oriented design leveraging the power of the C++ object-oriented language.

As such, a class motorController, is available. An object, inheriting from that class, is the
dmocMotorController. It is actually a very small bit of program that intelligently takes concepts
such as forward torque and regenerative torque, voltage, current, and temperature, and keys that to
the SPECIFIC CAN messages and addresses EXPECTED by the DMOC645 already. And it intelligently
knows how to recognize messages from the DMOC645, by address, and how to decode them to get
actual torque, actual rpm, inverter temperature, battery pack voltage, etc.

To customize GEVCU to work with an inverter from UQM or Rinehart or Nissan Leaf, if you have the
documentation defining the addresses and data formats used for those devices, it is a very doable if
non-trivial programming task to add an object, much like dmocMotorController, to the
motorController class. Ideally it’s a single file. Call it uqmMotorController. The SPECIFICS for
any controller are confined to really a tiny part of the GEVCU software. You don’t need to know very
much about how the rest of the program works, or why, to do this.

In the case of a UQM or Rinehart, these CAN data digests are actually published documents. In the
case of the Nissan Leaf, it might be a little more difficult requiring some reverse engineering –
basically driving a LEAF and sniffing out CAN codes on the CAN bus to the inverter. That’s how we
did it for the Azure Dynamics DMOC645. Actually that’s how we did it for the UQM Powerphase 100
as well.

But in this way, we hope to open the door to cogently reusing the cornucopia of excellent
components deriving from the salvage of many many cars developed by the OEM manufacturers.
Electric motors and controllers can conceivably operate for DECADES of use. But one tree planted in
just the right place 30 years ago can take out a Nissan Leaf in a split second. The Tesla Model S is
such a delight to drive, and will indeed do 0-60 in a little over 4 seconds. In fact it will do 0-45 and

Operation Manual GEVCU Version 7.00 May 2022

 46

45 BACK to zero in LESS than 4 seconds if it hits the right tree. And the Model S owners are out there
desperately trying to prove us right on this theory.

And so we see a future land strewn ocean to ocean with glittering motors and inverters and battery
packs that are virtually brand new, lacking only a car – and a device to talk to them nicely in a
language they understand – GEVCU CAN.

16. CANBUS INPUT/OUTPUT

CONTROL

As described earlier in this manual, GEVCU features 8 analog inputs, 12 digital inputs, and 8 digital
outputs. Version 7 of the software provides for some CAN access to these inputs and outputs.

This can be very useful. Another CAN device on the bus might have access to information or sensor
data not available on GEVCU, but be limited in input and output capability. Via CAN message, it
could manipulate GEVCU inputs and outputs.

For example, we recently came across a very nice switch
panel made by DNA termed the Powerkey Pro 2400. It
features 8 configurable switches with LED backlights. The
switch position is transmitted via CAN and the LED light
state can be controlled by CAN.

Similarly, another device may want to know what the state
of GEVCU digital input 3 is at any particular time. It can
easily retrieve this information from the GEVCU.

CAUTION

This ability does engender some danger of conflict. If you use digital output 4 to close your
contactor, and then use CAN to set output 4 to zero, it is hard to predict whether internal
algorithms or the CAN command will win and for how long. So make sure to coordinate any use
of input and output with your assignments of digital inputs and outputs in the normal GEVCU
configurations.

Operation Manual GEVCU Version 7.00 May 2022

 47

GEVCU is configured to use four CAN bus message IDs to deal with inputs and outputs.

0x606 Received by GEVCU to set digital outputs 0 through 7
0x607 Transmitted by GEVCU to advise state of digital outputs 0 through 7.
0x608 Transmitted by GEVCU to advise state of analog inputs 0 through 7.
0x609 Transmitted by GEVCU to advise state of digital inputs 0 through 11.

GEVCU normally does NOT transmit 0x607 or 0x608. It will ONLY produce these advisories if it
receives a 0x606 message.
You may quite commonly wish to retrieve data on the state of GEVCU I/O without actually
commanding a switch. You can easily do this by transmitting a 0x606 with all eight data bytes set to
zero.

NOTE

The message IDS used by GEVCU for CAN I/O management are arbitrary. It will come with these set
to these addresses. But this information is configurable. The file config.h contains defines for
CAN_SWITCH, CAN_OUTPUTS, and CAN_INPUTS. You can change these values in the source code to
whatever you like. But you must recompile and reupload the software for these changes to take
effect.

GEVCU normally has two CAN busses configured and they maybe configured at different speeds.
Understand that CAN IO commands can be sent and received on EITHER bus at any time. No
configuration of this is required. Advisory responses will appear on the SAME bus the command
came in on.

SETTING GEVCU DIGITAL OUTPUTS

Setting GEVCU digital outputs is limited to simply setting them to 1 (high) or 0 (low). No PWM
capabilities are provided via CAN.

The message should in all cases be 8 bytes long with byte zero corresponding to GEVCU digital
output 0 and byte 7 corresponding to GEVCU digital output 7.

There are three recognized commands for EACH digital output.

0x00 Make no changes. Do not disturb this output
0x88 Set this output to 1 (HIGH) no matter what its current state is.
0xFF Set this output to 0 (LOW) no matter what its current state is.

By way of example, consider the following message:

0x606 00 00 FF 00 00 88 88 00

Operation Manual GEVCU Version 7.00 May 2022

 48

On receipt of this message, GEVCU would set digital output 2 to 0 and digital outputs 5 and 6 to high
(1). Note that it would not disturb outputs 0, 1, 3, 4, and 7 at all.

READING GEVCU DIGITAL OUTPUTS

On receiving a 0x606 command, GEVCU not only sets the digital outputs, but also produces two
messages – 0x607 advising GEVCU digital outputs and 0x608, advising GEVCU inputs.

Message ID 0x607 is basically a modified echo of 0x606 showing the state of each of the eight
outputs.

0x606 88 88 FF FF FF 88 88 FF

In this example, outputs 0, 1, 5 and 6 are all set to zero (low) while outputs 2, 3, 4 and 7 are set to
high.

You can use this to minimize traffic on the CAN bus. For example, you might send the following
message:

0x606 00 00 00 00 00 88 00 00

You can send this message periodically until you receive a message 0x607 showing output 5 as set.

0x607 88 88 FF FF FF 88 88 FF

At this point, we see that output 5 is 88 indicating a set condition. We really don’t need to transmit
anymore. And if we don’t transmit, GEVCU doesn’t reply either.

You could also use byte 5 of this message to turn on the backlight LED behind the switch, or another
LED indicator showing the state of this output.

Anytime you subsequently just want to check the state of the outputs, or inputs for that matter –
simply send a 0x606 with no changes

0x606 00 00 00 00 00 00 00 00

This will cause an automatic transmission of all advisory response messages

READING GEVCU ANALOG INPUTS

Anytime GEVCU receives a 0x606 message, it will also output a CAN message 0x608 containing the
measured values on the four analog inputs to the GEVCU. These are two byte integers with the high
byte first and the low byte second (MSB/LSB). To convert this to a readable number, multiply the
high byte by decimal 256 or hexadecimal FF and add the low byte to the total.

All GEVCU analog inputs are read in 12-bit mode and so will appear as a digital value between 0 and
0x0FAC (4012 decimal).

Operation Manual GEVCU Version 7.00 May 2022

 49

0x608 0F 21 0A F0 10 E9 22 C7

In this example, Analog input 0 appears as the first two bytes 0 and 1 as 0x0F21 or 3873.

Note that you can freely read these instantaneous values at any time, even if they are used for
example for throttle input without interference. But these are raw instantaneous values – not the
highly averaged and smoothed values used for actual throttle control.

READING GEVCU DIGITAL INPUTS

Anytime GEVCU receives a 0x606 message, it will also output a four-byte CAN message 0x609

containing the measured values on the four digital inputs to the GEVCU.

This will use the same FF/88 signaling as our other digital outputs.

0x609 FF FF 88 FF

Here we see that digital inputs 0, 1, and 3 are all zero but digital input 2 is active (high).

17. UPDATING GEVCU SOFTWARE

It is entirely possible for you, the end user, to download the IDE, the extensions, all the libraries, and
update GEVCU yourself. It’s possible! But this may be beyond the ambition of many of the GEVCU
users. And so we’ve developed a kind of shortcut method to update the software that many will find
easier.

The Generalized Electric Vehicle Control Unit is an open source hardware and software device
designed to empower builders and experiments in their efforts to build or convert one-off custom
electric vehicles.

A version of the GEVCU hardware is produced and sold by Electric Vehicle Television.

The software of GEVCU is developed in and is fully compatible with the Arduino Integrated Design
Environment (IDE). It uses a very C++ syntax with full object-oriented architecture.

The development of this software is ongoing and continuous with numerous contributors adding
features, object modules and utility to the original software package.

Operation Manual GEVCU Version 7.00 May 2022

 50

EVTV maintains a github repo with the latest source code for GEVCU that is certified to work with
the GEVCU hardware that EVTV provides. This can be found at http://github.com/collin80/GEVCU7.
The Master branch is stable and should be used by people who are interested in having a known
working system. Other branches may exist, WIP for instance. No guarantees are offered for
suitability, operation, or functionality of these other branches. However, they may be more recent
and have features that you are looking for. As always, sufficient testing should be done before using
such code on a vehicle on the public roads.

Since the software changes on almost a continuous basis, you will from time to time desire to update
the software held in flash memory on your GEVCU device.

For the programming savvy, this easily accomplished by downloading the desired version of GEVCU
source code and compiling and uploading to the GEVCU device using the Arduino IDE.

But for many GEVCU users, C++ is a bridge too far and they want to be able to use the many features
of GEVCU and indeed the latest version, without installing the Arduino IDE or doing any compiling.

For those, we have developed a very easy binary software update procedure that is very quick and
basically involves a single click of the mouse to update a GEVCU connected to a personal computer
via USB cable.

Our binary updater can update your GEVCU7 over USB from either LINUX or Windows. Simply
download the latest GEVCU7-Updater.zip file, extract it, and run flash.bat from Windows to start the
automatic process.

It is also possible to update both the Teensy MicroMod and the ESP32 from the sdCard. We will also
provide binaries that can be extracted onto an sdCard and inserted into the slot on the GEVCU7
board. Simply power up the board thereafter and wait until it is done updating (much easier to see
this from the USB based serial terminal). This method has the advantage of being able to easily
update the ESP32 as well. The ESP32 contains an embedded webserver that hosts a webpage that
can be used to monitor the status of GEVCU7 and configure it.

http://github.com/collin80/GEVCU7

	While the source code and hardware design of the GEVCU is entirely open source, this documentation is copyright 2022, EVTV LLC and all rights are reserved.
	GEVCU VERSION 6.22
	GEVCU VERSION 7.00
	MICROCONTROLLER
	Freescale IMXRT Cortex-M7
	32-bit core
	CPU Clock at 600Mhz.
	1024 KB of SRAM.
	16 MB of Flash memory for code
	Operating Voltage: 3.3v
	Input voltage: 6-16v
	CAN network channels: 3
	Universal Serial Bus Port: 1
	Analog Inputs: 8
	Isolated Digital Inputs: 12
	Digital Outputs: 8
	Programming Environment: TeensyDuino 1.56
	Setting Main Contactor relay to 1
	AN ALTERNATE PRECHARGE TECHNIQUE
	Motor Controller Status: isRunning: false isFaulted: false
	AIN0: 81, AIN1: 81, AIN2: 87, AIN3: 77 AIN4: 81, AIN5: 81, AIN6: 87, AIN7: 77
	DIN0: 0, DIN1: 0, DIN2: 0, DIN3: 0, DIN4: 0, DIN5: 0, DIN6: 0, DIN7: 0, DIN8: 0, DIN9: 0, DIN10: 0, DIN11: 0
	DOUT0: 0, DOUTO1: 0, DOUT2: 1, DOUT3: 0,DOUT4: 0, DOUT5: 0, DOUT6: 0, DOUT7: 0
	Throttle Status: isFaulted: false level: 0
	Throttle rawSignal1: 81, rawSignal2: 80
	Brake Output: -200
	Brake rawSignal1: 87
	Brake light output updated to: 5
	Brake required torque updated to : -200

	TORQ=3000
	RPMS=6000
	REVLIM=500
	ENABLE SIGNAL
	REVERSE INPUT
	Cooling fan output updated to: 7
	Cooling fan OFF temperature updated to: 35

	SETTING GEVCU DIGITAL OUTPUTS
	READING GEVCU DIGITAL OUTPUTS
	READING GEVCU ANALOG INPUTS
	READING GEVCU DIGITAL INPUTS

