
EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 1	

User	Manual	

CANDue Version 2.20

CAN Bus Shield
For

Arduino Due

	 	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 2	

INTRODUCTION	
The	EVTV	CANdue	product	provides	a	package	of	an	Arduino	Due	compatible	
microcontroller	board,	CAN	bus	communications	shield,	and	associated	USB	cable	
intended	to	provide	a	reasonably	complete	solution	to	monitoring	CAN	bus	
networks,	interacting	with	them,	and	providing	a	means	to	record	large	volumes	of	
CAN	message	traffic.		The	product	includes:	
	

1. Two	port	CANDue	2.2	CAN	bus	shield	with	EEPROM	and	microSD	memory	
card	slot.	
	

2. Generic	Arduino	Due	compatible	microcontroller	board.	
	

	
3. USB	cable.	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 3	

	
	

ARDUINO	DUE	
The	Arduino	microcontroller	is	an	open-source	hardware	microprocessor	controller	
designed	to	easily	interface	with	a	variety	of	sensors	(to	register	user	inputs),	and	to	
drive	the	responses	and	behaviors	of	external	components	such	as	LEDs,	motors,	
and	speakers	(to	respond	to	user	inputs).		
	
In	2005,	the	Arduino	team	was	formed	in	Ivrea,	Italy,	consisting	of	Massimo	Banzi,	
David	Cuartielles,	Dave	Mellis,	Gianluca	Marino,	and	Nicholas	Zambetti.	The	Arduino	
incorporated	a	programming	environment	based	on	Processing	language	-	a	
programming	language	conceived	by	Ben	Fry	and	Casey	Reas,	the	ability	to	program	
the	board	via	a	standard	USB	connection,	and	a	low	price	point	(starting	at	about	
$35	USD).		
	

The	Arduino	achieved	rapid	
success	even	within	its	first	two	
years	of	existence,	selling	more	
than	50,000	boards.	By	2009,	it	
had	spawned	over	13	different	
incarnations,	each	specialized	for	
different	applications	—	for	
example,	the	Arduino	Lilypad	(for	
wearable	technologies	projects),	
the	Arduino	Mini	(miniaturized	
for	use	in	small	interactive	
objects),	and	the	Arduino	BT	
(with	built-in	Bluetooth	
capabilities).

 Arduino	started	as	a	project	for	students	at	the	Interaction	Design	Institute	Ivrea	in	
Ivrea,	Italy.	At	that	time	program	students	used	the	Parallax	BASIC	STAMP	
controller	at	a	cost	of	$100,	
considered	expensive	for	students.	
Massimo	Banzi,	one	of	the	founders,	
taught	at	Ivrea.	The	name	"Arduino"	
comes	from	a	bar	in	Ivrea,	where	
some	of	the	founders	of	the	project
used	to	meet.

The	bar	itself	was	named	after	
Arduino,	Margrave	of	Ivrea	and	King	
of	Italy	from	1002	to	1014.

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 4	

The	first	prototype	board,	made	in	2005,	was	a	simple	design,	and	it	wasn’t	called	
Arduino.	Massimo	Banzi	would	coin	the	name	later.		

Banzi	and	his	collaborators	were	strong	believers	in	open-source	software.	Since	the	
purpose	was	to	create	a	quick	and	easily	accessible	platform,	they	felt	they’d	be	
better	off	opening	up	the	project	to	as	many	people	as	possible	rather	than	keeping	
it	closed.	This	was	kind	of	a	remarkable	innovation	–	open	source	hardware.	The	
product	the	team	created	consisted	of	cheap	parts	that	could	easily	be	found	if	users	
wanted	to	build	their	own	boards,	such	as	the	ATmega328	microcontroller.	But	a	
key	decision	was	to	ensure	that	it	would	be,	essentially,	plug-and-play:	something
someone	could	take	out	of	a	box,	plug	into	a	computer,	and	use	immediately.	Boards	
such	as	the	BASIC	Stamp	required	that	DIYers	shell	out	for	half	a	dozen	other	items	
that	added	to	the	total	cost.	But	for	theirs,	a	user	could	just	pull	out	a	USB	cable	from	
the	board	and	connect	it	to	a	computer—Mac	or	PC—to	program	the	device.	

Word	of	Arduino	quickly	spread	online,	with	no	marketing	or	advertising.	Early	on,	
it	attracted	the	attention	of	Tom	Igoe,		professor	of	physical	computing	at	the	
Interactive	Telecommunications	Program	at	New	York	University.	Igoe	too	had	been	
teaching	courses	to	nontechnical	students	using	the	BASIC	Stamp	but	was	
impressed	by	Arduino’s	features	and	price.	
	
The	Arduino	Due	is	Arduino’s	first	ARM-based	Arduino	development	board.	This	
board	is	based	on	a	powerful	32bit	CortexM3	ARM	microcontroller	made	
programmable	through	the	familiar	Arduino	IDE.	It	increases	the	computing	power	
available	to	Arduino	users	by	an	order	of	magnitude.	
	
The	Arduino	Due	has	54	digital	input/output	pins	(of	which	12	can	be	used	as	PWM	
outputs),	12	analog	inputs,	4	UARTs	(hardware	serial	ports),	an	84	MHz	clock,	a	
USB-OTG	capable	connection,	2	DAC	(digital	to	analog),	2	TWI,	a	power	jack,	an	SPI	
header,	a	JTAG	header,	a	reset	button	and	an	erase	button.		
	
To	compile	code	for	the	ARM	processor,	you’ll	need	the	latest	version	of	the	Arduino	
IDE:	v1.5		
	
Note:	Unlike	other	Arduino	boards,	the	Arduino	Due	board	runs	at	3.3V.	The	
maximum	voltage	that	the	I/O	pins	can	tolerate	is	3.3V.	Earlier	Arduino	boards	were	
based	on	a	5v	power	supply.		As	a	result,	shields	and	other	hardware	for	Arduino	are	
generally	NOT	compatible	with	the	Arduino	Due.	Providing	higher	voltages,	like	5V	
to	an	I/O	pin	could	damage	the	board.	
	
	
	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 5	

Features:

• Microcontroller: AT91SAM3X8E
• Operating Voltage: 3.3V
• Recommended Power Input Voltage: 7-12V
• Min-Max Input Voltage: 6-20V
• Digital I/O Pins: 54 (of which 12 provide PWM output)
• Analog Input Pins: 12
• Analog Outputs Pins: 2
• Total DC Output Current on all I/O lines: 130 mA
• DC Current for 3.3V Pin: 800 mA
• DC Current for 5V Pin: 800 mA
• Flash Memory: 512 KB all available for the user applications
• SRAM: 96 KB (two banks: 64KB and 32KB)
Clock Speed: 84 MHz

The	Arduino	Due	provides	a	very	fast,	powerful	microcontroller	that	is	easily	
programmed	in	a	C++	syntax	vie	the	Arduino	Integrated	Design	Environment	(IDE).		
You	can	connect	it	to	a	PC	or	Mac	via	a	USB	cable	to	both	power	the	board	and	
upload	compiled	software.	
	

CAN	BUS	
	
CAN	bus	(controller	area	network)	is	a	vehicle	bus	standard	designed	to	allow	
microcontrollers	and	devices	to	communicate	with	each	other	within	a	vehicle	
without	a	host	computer.	
	
CAN	bus	is	a	message-based	protocol,	designed	specifically	for	automotive	
applications	but	now	also	used	in	other	areas	such	as	aerospace,	maritime,	
industrial	automation	and	medical	equipment.	
	
Development	of	the	CAN	bus	started	originally	in	1983	at	Robert	Bosch	GmbH.[1]	
The	protocol	was	officially	released	in	1986	at	the	Society	of	Automotive	Engineers	
(SAE)	congress	in	Detroit,	Michigan.	The	first	CAN	controller	chips,	produced	by	
Intel	and	Philips,	came	on	the	market	in	1987.	
	
Bosch	published	several	versions	of	the	CAN	specification	and	the	latest	is	CAN	2.0	
published	in	1991.	This	specification	has	two	parts;	part	A	is	for	the	standard	format	
with	an	11-bit	identifier,	and	part	B	is	for	the	extended	format	with	a	29-bit	
identifier.	A	CAN	device	that	uses	11-bit	identifiers	is	commonly	called	CAN	2.0A	
and	a	CAN	device	that	uses	29-bit	identifiers	is	commonly	called	CAN	2.0B.	These	
standards	are	freely	available	from	Bosch	along	with	other	specifications	and	white	
papers.	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 6	

	
In	1993	the	International	Organization	for	Standardization	released	the	CAN	
standard	ISO	11898	which	was	later	restructured	into	two	parts;	ISO	11898-1	which	
covers	the	data	link	layer,	and	ISO	11898-2	which	covers	the	CAN	physical	layer	for	
high-speed	CAN.	ISO	11898-3	was	released	later	and	covers	the	CAN	physical	layer	
for	low-speed,	fault-tolerant	CAN.	The	physical	layer	standards	ISO	11898-2	and	ISO	
11898-3	are	not	part	of	the	Bosch	CAN	2.0	specification.		
	
CAN	bus	is	one	of	five	protocols	used	in	the	on-board	diagnostics	(OBD)-II	vehicle	
diagnostics	standard.	The	OBD-II	standard	has	been	mandatory	for	all	cars	and	light	
trucks	sold	in	the	United	States	since	1996,	and	the	EOBD	standard	has	been	
mandatory	for	all	petrol	vehicles	sold	in	the	European	Union	since	2001	and	all	
diesel	vehicles	since	2004.		
	
But	in	recent	years,	OBDII	has	evolved	more	toward	CAN	and	the	other	protocols	
more	or	less	comprise	legacy	protocols	found	on	older	vehicles.		CAN	won.		

ARDUINO	DUE	AND	CAN	
	
The	heart	of	the	Arduino	Due	is	a	microprocessor	controller	chip	designated	
AT91SAM3X8E.		This	quite	powerful	84	MHz	32-bit	chip	actually	provides	internal	
“controllers”	for	two	CAN	channels.		Unfortunately,	this	is	just	the	control	logic	for	
the	channels.		To	use	CAN,	you	also	need	the	“power”	components	that	actually	
transmit	a	CAN	message	over	the	wires.		These	“transceivers”	were	not	included	in	
the	Arduino	Due	design	and	no	specific	CAN	commands	were	included	in	the	
Arduino	IDE.	
	
And	so,	to	actually	provide	CAN	communications	for	the	Arduino	Due,	we	need	a	
couple	of	things:	
	
1.		Hardware	transceivers	and	a	physical	connector	to	wire	the	system	to	a	CAN	bus.	
	
2.		A	“library”	object	module	to	extend	the	Arduino	language	to	include	CAN	
commands.	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 7	

EVTV	CANDUE	CAN	BUS	SHIELD	
The	EVTV	CANDue		Version	2.2	“Teodora”	CAN	bus	shield	with	EEPROM	and	Micro	
SD	memory	card	reader	was	originally	designed	by	Paulo	Almeida	and	Celso	Menaia	
of	Lisbon	Portugal	and	produced	by	EVTV	Motor	Werks.	
	
This	board	features	two	CAN	2.0	compliant	communications	channels	capable	of	
data	rates	up	to	1	Mbps	and	a	256KB	Electrically	Erasable	Programmable	Memory	
chip	(EEPROM).	
	
The	original	Arduino	featured	a	4KB	EEPROM	in	the	controller	chip	itself.		This	can	
be	very	handy	to	store	configuration	variables	that	you	want	to	be	able	to	change,	
but	would	like	to	be	persistent	from	one	power	cycle	to	the	next.	
	
The	AT91SAM3X8E	microcontroller	used	on	the	Due	version	of	Arduino	does	not	
provide	this	EEPROM.		It	does	feature	a	persistent	“flash”	memory	of	an	impressive	
512KB,	but	this	memory	contains	the	compiled	software	you	upload	to	the	Arduino.		
Any	time	you	upload	a	new	version	of	this	software,	you	would	lose	all	your	
configuration	data.	
	
And	so	we	included	a	quite	large	256KB	EEPROM	to	store	variables	or	log	data.	
The	CAN	bus	transceivers	used	are	a	Texas	Instruments	3.3v	transceiver	designated	
SN65HVD234.	Each	of	two	chips	manages	a	single	CAN	channel	designated	CAN0	and	
CAN1.	
	
The	communications	interface	of	these	chips	is	provided		by	screw	terminals	at	the	
edge	of	the	board.	
	
CAN	TERMINATION.			
	
The	CAN	bus	specification	requires	that	the	two	ends	of	the	two	wire,	twisted	wire	
bus	be	terminated	with	a	resistive	impedance	of	120	ohms.	
	
If	you	are	using	the	CAN	bus	shield	to	communicate	on	an	existing	vehicle	CAN	bus,	
it	is	pretty	much	a	given	that	the	bus	already	has	two	devices	on	it	that	serve	as	
“ends”	and	that	they	provide	proper	impedance	termination.	
	
But	in	some	applications,	for	example	communicating	with	a	single	charger	or	
battery	management	component,	the	Arduino	and	this	shield	ARE	one	of	the	ends	of	
the	bus.			
	
To	provide	for	this,	each	CAN	channel	features	two	60	ohm	resistors,	one	for	each	of	
the	two	CAN	wires,	and	a	capacitor.		The	capacitor	filters	noise	to	ground.		The	two	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 8	

60	ohm	resistors	combine	for	the	requisite	120	ohms	while	providing	a	point	for	the	
cap	filter	to	connect	so	that	the	reactance	is	equalized	across	the	two	wires.	
	
In	an	upgrade	from	the	switched	termination	on	version	2.0.	the	2.2	iteration	simply	
includes	a	couple	of	0	ohm	resistors.		In	our	experience,	in	virtually	EVERY	case	your	
board	must	be	terminated	to	have	any	success	on	the	CAN	bus.		In	the	extreme	and	
unlikely	event	that	you	might	need	an	unterminated	connection,	you	will	have	to	
remove	the	resistors	by	desoldering	them	from	the	board.		We’ve	basically	never	
had	this	requirement.	
.	

	
	
	
The	CAN0	and	CAN1	ports	are	provided	on	a	screw	terminal	strip	on	the	side	of	the	
shield.	This	allows	you	to	easily	connect	CAN1	HI	and	CAN1	LO	to	any	kind	of	cable	
pigtail	or	connector	desired.		Two	of	the	screw	terminals	are	also	connected	to	12	
VIN	and	GND.	
	
CANDue	Version	2.2	also	supports	single	wire	CAN	-		a	33.33kbps	variant	used	on	
the	Ebenspacher	Heater	and	the	TESLA	Charger	for	example.		Data	is	transferred	at	
a	slower	speed	on	a	single	wire	using	frame	ground	as	the	differential.		SWCAN,	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 9	

GND,	and	two	screw	terminals	are	provided	for	a	load	resistor	generally	used	on	SW	
CAN	applications.	
	
Finally,	two	screw	terminals	are	provided	for	a	10k	NTC	(Negative	Temperature	
Coefficient)	Thermistor.		A	voltage	divider	circuit	connects	the	3.3v	reference	
voltage	across	the	NTC	and	this	voltage	divider	to	provide	a	readable	input	to	
Analog	input	0	on	the	Due.		This	input	is	also	guarded	by	a	Zener	diode	to	prevent	
minor	overvoltages.		In	this	way,	you	can	use	the	Due	to	calculate	temperature	using	
most	General	Motors	temperature	sensors.	

DUE_CAN	

due_can	is	an	Arduino	Due	specific	library	written	by	Collin	Kidder	of	Sparta	
Michigan.		It	provides	functions	and	methods	to	easily	deal	with	the	very	powerful	
CAN	bus	transceiver	functions	available	in	the	CANDue	shield.	
	
The	Arduino	IDE	(Integrated	Design	Environment)	provides	a	basic	C++	
programming	language	syntax	with	some	curious	“extensions”	to	deal	with	
hardware	easily	and	directly.		These	extensions	are	essentially	hardware	specific	
and	deal	with	things	like	digital	input	and	output	pins,	analog	to	digital	conversion	
pins,	and	pulse	width	modulated	output	pins.	
	
And	so,	both	the	Arduino	hardware	and	the	Arduino	IDE	“language”	are	curiously	
adapted	to	dealing	with	hardware	and	sensors	and	the	outside	world	–	lights,	
switches,	potentiometers,		temperature	sensors,	etc.	
	
The	hardware	of	the	Arduino	is	endlessly	extensible	by	the	addition	of	“shields”.		
Shields	are	printed	circuit	boards	with	additional	hardware	that	can	basically	“plug	
in”	to	the	headers	on	the	main	Arduino	Due	board	and	so	connect	to	it.	
	
In	theory,	the	manipulation	of	pins	and	data	on	them	will	of	course	operate	any	
hardware	provided	on	shields.	
	
As	Yogi	Berra	says,	in	theory,	theory	and	practice	are	the	same,	but	in	practice,	they	
aren’t.		Much	hardware	has	very	involved	data	schemes	to	either	send	data	to	it	or	
retrieve	data	from	it.			
	
And	so	we	find	the	language	of	Arduino	is	ALSO	extensible.		We	do	this	with	
“libraries”	that	basically	provide	new	C++	CLASS	structures	and	methods	that	act	to	
extend	the	language.		And	these	hide	most	of	the	detail	of	dealing	with	the	hardware	
device,	reducing	it	to	an	OBJECT	you	can	easily	command	with	much	simpler	
instructions.	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 10	

	
To	add	a	library,	you	usually	simply	add	it	to	your	users/Arduino/Libraries	
directory.		But	in	each	program	where	you	use	that	library,	you	must	also	add	an	
“include”	statement.		This	causes	the	library	to	be	included	when	the	program	is	
compiled,	and	calls	to	functions	and	methods	in	that	library	are	then	linked	into	the	
resulting	program.	
	

#include<due_can>; //This is an include statement
	
And	so	you	may	have	MANY	libraries	in	your	users/Arduino/libraries	directory,	but	
only	those	specified	with	include	statements	will	be	used	in	any	particular	program.	

CAN	PORTS	
	
The	CANDue	shield	provides	two	hardware	ports	CAN0	and	CAN1.	
.	
	

INITIALIZATIONS	AND	BEGINNINGS	
	
So	our	first	requirement		is	an	include	statement.	
	

#include<due_can>; //This is an include statement
	
Our	second	is	to	INITIALIZE	the	CAN	port	we	want	to	use	with	a	begin	statement.		
We	can	do	either	or	both.	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 11	

pinMode(50,OUTPUT);

if (Can0.begin(25000,50)) {

 Serial.println("Using Can0 - initialization
completed.\n");

 }

 else Serial.println("Can0 initialization (sync) ERROR\n");

pinMode(48,OUTPUT);

if (Can1.begin(25000,48)) {

 Serial.println("Using Can1 - initialization
completed.\n");

 }

 else Serial.println("Can1 initialization (sync) ERROR\n");

	
The	basic	initialization	is	handled	by		

Can0.begin(25000,50)
	
Note	that	250000	is	the	data	rate	250kbps	and	50 is	the	ENABLE	pin.		This	is	a	
hardware	function	of	this	particular	CANDue	shield.		We	use	digital	pin	50	to	enable	
the	Can0	hardware	transceiver.		We	use	digital	pin	48	to	enable	the	Can1	
transceiver.		Due_can	is	capable	of	supporting	virtually	any	CAN	shield	–	but	you	
need	to	know	the	ENABLE	pins	used	by	the	particular	shield	you	are	using	to	
properly	initialize	this.	
	
If	your	CAN	board	does	not	use	an	ENABLE	pin,	set	these	values	to	255.	
If	no	pin	is	specified,		the	default	values	that	will	then	be	used	are	pin	62	for	Can0	
and	pin	65	for	Can1.	
	
If	Can0	initialization	is	successful,	the	Can0.begin	routine	will	return	a	value	of	1	
which	is	Boolean	TRUE.	
	
As	you	can	see	above,	we	used	this	feature	to	determine	whether	CAN	initialization	
was	successful	and	send	a	message	out	the	Serial	port	to	display	on	screen.	
	
Finally,	we	need	to	establish	some	very	specific	variables	to	handle	CAN	frame	data	
that	we	want	to	send	and	CAN	frame	data	that	we	will	be	receiving.		These	variables	
are	of	type	CAN_FRAME.	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 12	

CAN_FRAME outFrame, inFrame;
	

CAN_FRAME	DATA	TYPE	STRUCTURE	
	
In	this	example,	we	have	set	two	variables,	outFrame	and	inFrame	of	the	
CAN_FRAME	type.	
	
CAN_FRAME	is	actually	a	STRUCTURE	–	a	variable	form	that	contains	a	number	of	
other	variables	within	its	structural	envelope.		To	send	CAN	data,	we	have	to	
populate	one	of	these	frames	with	our	data	we	want	to	send	(outFrame).		And	to	
receive	CAN	data,	we	have	to	have	this	variable	structure	available		to	store	the	
received	data	(inFrame).	
	
The	CAN	protocol	has	a		number	of	options	but	is	basically	pretty	simple.		Some	
housekeeping	data	up	front	including	the	message	ID,	how	long	the	data	payload	is,	
and	some	other	incidentals,	and	then	a	data	payload	of	1	to	8	bytes.	
	
The	easiest	way	to	deal	with	that	is	set	up	a	structure	with	ALL	of	the	elements	
possible	in	a	CAN	message	frame.		You	fill	in	the	ones	you	need	and	once	you	have	
everything	you	want	accounted	for	-	then	send	the	frame	with	one	call.		It’s	kind	of	
like	filling	out	a	message	form	before	handing	it	to	the	telegrapher	to	send.	
	
And	so	we	find	that	outFrame	actually	has	a	number	of	structural	elements.			
	

outFrame.id //uint32_t – a 32bit (4 byte) variable

// containing the CAN message ID.
	

outFrame.fid //uint32_t – a 32 bit (4 byte) variable for

// family ID. Not commonly used.
	

outFrame.rtr //uint8_t – a one byte variable for

 //Remote Transmission Request. Rarely used.
	

outFrame.priority //uint8_t a one byte for Priority,

 //occasionally used for TX frames.
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 13	

outFrame.extended //uint8_t a one byte for Extended

 //Addressing (29-bit) flag 0= 11-bit
	

outFrame.length //uint8_t a one byte for number of data

 //bytes to follow
	

outFrame.data.bytes[0] //uint8_t first data byte

outFrame.data.bytes[1] //uint8_t data byte

outFrame.data.bytes[2] //uint8_t data byte

outFrame.data.bytes[3] //uint8_t data byte

outFrame.data.bytes[4] //uint8_t data byte

outFrame.data.bytes[5] //uint8_t data byte

outFrame.data.bytes[6] //uint8_t data byte

outFrame.data.bytes[7] //uint8_t data byte
	
inFrame	has	exactly	the	same	structure,	but	of	course	in	a	different	location	in	
memory.	
	
For	convenience	there	are	two	OTHER	ways	to	address	the	data	in	the	eight	data	
byte	payload	of	the	CAN	frame	bytes[0]	through	bytes	[7].	
	

outFrame.s0 //uint16_t bytes[0] and bytes[1] as a two

//byte unsigned integer.
	

outFrame.s1 //uint16_t bytes[2] and bytes[3] as a two

//byte unsigned integer.
	

outFrame.s2 //uint16_t bytes[4] and bytes[5] as a two

//byte unsigned integer.
	

outFrame.s3 //uint16_t bytes[6] and bytes[7] as a two

//byte unsigned integer.
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 14	

outFrame.s0	through	outFrame.s3	is	actually	quite	convenient.		CAN	data	is	
often	more	easily	dealt	with	as	a	series	of	four	two-byte	integers	for	presenting	data	
that	can	often	be	larger	than	255.			
	
The	final	way	to	address	data	in	the	eight	data	byte	payload	is	as	low	and	high	–	two	
32-bit	unsigned	integers.	
	

outFrame.low //uint32_t bytes[0] - bytes[3] as a four

//byte unsigned integer.
	

outFrame.high //uint32_t bytes[4] - bytes[7] as a four

//byte unsigned integer.
	
This	allows	us	to	send	and	receive	32-bit	data	via	CAN.	
	
When	we	define	a	variable	as	type	CAN_FRAME,	it	simply	reserves	bytes	in	memory	
under	that	name	(inFrame)to	hold	the	frame	and	allows	access	by	use	of	the	frame	
subunits	(inFrame.id, inFrame.data.bytes[5]).		You	can	define	as	many	
CAN_FRAME	variables	as	you	like.	
	
	

SENDING	CAN	FRAMES	
	
Sending	CAN	frames	is	actually	very	simple.		As	described,	we	load	the	CAN	frame	
we	want	to	send,	and	then	send	it	with	a	single	call.	

CAN_FRAME myFrame;

myFrame.id = 0x25A;

myFrame.length = 1

myFrame.data.bytes[0] = 128;

Can0.sendFrame(myFrame);

Here	we	define	myFrame	as	type CAN_FRAME.			
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 15	

We	then	set	the	id	to	0x25A.		By	convention,	and	you’ll	rarely	see	this	otherwise,	
CAN	message	IDs	are	almost	always	referred	to	in	the	hexadecimal	numbering	
system.		We	note	this	by	prepending	0x	to	the	number.	
	
We	also	set	myFrame.length	to	1	indicating	that	we	will	only	be	transmitting	a	
single	data	byte.	
	
We	define	that	data	byte	as	containing	the	decimal	value	128.	
	
And	finally,	we	send	the	frame	with	the	statement	Can0.sendFrame(myFrame);	
	
We’re	basically	telling	the	CAN0	hardware	port	to	make	up	a	CAN	message	from	the	
data	in	the	myFrame	structure,	and	send	it	out	on	the	bus.	
	
Note	that	there	are	a	number	of	elements	defined	in	the	structure	myFrame	that	we	
didn’t	set	at	all.		The	defaults,	usually	zero,	will	be	fine.		In	the	majority	of	cases,	all	
you	need	is	an	ID,	a	data	length	and	your	data.	
	
In	fact,	in	this	case,	to	send	another	frame	with	new	data,	I	know	that	the	id	and	
length	are	already	set.			

myFrame.data.bytes[0] = 129;

Can0.sendFrame(myFrame);

And	so	we	see	that	we	have	sent	an	entire	new	frame	with	just	the	data	byte	
changing.	
	
sendFrame	is	the	most	common	method	to	send	data	over	CAN.		But	there	is	a	
simplified		alternative	command	you	can	use	to	send	CAN	frames	that	does	not	
involve	using	a	CAN_FRAME	data	structure	that	you	may	find	useful.	
	

Can0.setWriteID(0x620);

Can0.write(SomeValue);
	
You	first	use	the	setWriteID	function	to	establish	the	message	ID	you	want	to	use.		
This	method	takes	a	single	argument	and	will	use	11-bit	or	29-bit	extended	
addressing	automatically	based	on	the	ID	number	you	provide.	
	
The	write	function	simply	stuffs	whatever	data	you	provide	into	the	8	data	bytes	
available	in	sequence.	
	
This	can	be	useful	in	certain	specialized	instances.		For	example,	Arduino	Due	
features	32-bit	LONG	integers	that	are	actually	four	bytes.	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 16	

	

Long myLongInteger=2914145897000;

Can0.setWriteID(0x620);

Can0.write(myLongInteger);
	
These	three	lines	would	write	the	four	data	bytes	containing	the	value	in	
myLongInteger under	message	ID	0x620.		The	last	four	bytes	of	the	block	would	
be	padded	with	zeros.	
	
Note	that	Arduino	Due	uses	a	“little	endian”	data	format	where	the	least	significant	
of	the	four	bytes	is	stored	in	the	first	position	while	the	most	significant	byte	of	the	
long	integer	is	sent	in	the	fourth	byte	position.	
	
At	times,	you	might	wish	to	reverse	this.	
	

Can0.setBigEndian(true);
	
This	statement	sets	Can0.write()	method	to	send	the	integer	in	the	reverse	
order	–	most	significant	byte	in	the	first	data	byte	position	and	the	least	significant	
byte	in	the	fourth	data	byte	position.	

RECEIVING	BUFFERED	CAN	FRAMES	
	
We	can	receive	CAN	frames	in	two	ways.		CANDue	actually	buffers	incoming	frames	
which	we	can	check	for	or	poll	using	the	available	command.			
	
We	can	also	setup	an	interrupt	such	that	any	time	a	frame	is	received,	it	is	routed	to	
a	method	in	our	program	that	is	designed	to	handle	the	incoming	frame.	This	will	be	
described	later.	
	

CAN_FRAME inFrame;
	
	
if (Can0.available())
 {
 Can0.read(inFrame);

 }
	
We	would	place	this	call	somewhere	in	our	LOOP	portion	of	the	Arduino	program.		
Periodically,	it	would	poll	for	Can0.available()	which	would	return	1	if	true	
and	0	otherwise.	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 17	

	
If	there	is	a	frame	available,	the	Can0.read	command	retrieves	it	and	loads	all	the	
data	into	our	already	defined	inFrame	structure.	And	so	Can0.read	actually	
passes	the	address	of	the	inFrame	structure	to	the	object	which	then	uses	that	
address	to	copy	data	out	of	the	buffer	and	into		the	inFrame	structured	variable.	
	
Once	we	have	received	the	data,	we	can	then	go	examine	it	in	the	inFrame	
structure.	
	

CAN	FRAME	FILTERS		
	
CAN	can	support	a	number	of	devices	in	theory.		In	practice,	above	about	30	devices	
and	the	bus	becomes	quite	busy.		But	the	central	tennet	of	CAN	is	that	there	really	is	
no	intelligence	in	the	protocol.		The	messages	aren’t	even	addressed	to	any	specific	
device.		Each	device	simply	broadcasts	their	messages	to	everyone	on	the	bus.		No	
checking	to	see	if	it	was	received.		No	handshakes.		Nothing.	
	
The	intelligence	is	supposed	to	be	in	the	devices	themselves.		The	DMOC645	
controller	for	example,	knows	that	a	torque	command	will	be	received	under	
message	ID	0x232	and	that	the	first	two	bytes	will	contain	the	command	as	a	16-bit	
unsigned	integer	that	is	offset	by	30000.		So	it	receives	the	value,	subtracts	30000,	
and	takes	the	result	as	a	torque	command.	
	
The	Vehicle	Control	Unit	broadcasts	this	torque	command	and	sets	the	message	ID		
to	0x232.		It	doesn’t	know	if	there	are	any	DMOC645’s	on	the	bus,	doesn’t	know	how	
many,	and	doesn’t	know	or	care	what	it	does	with	it.		It	simply	translates	throttle	
inputs	to	a	torque	command,	adds	30000	to	it,	and	puts	it	in	the	first	two	bytes	of	
the	payload.	
	
So	what	does	the	DMOC645	device	do	when	it	receives	a	CAN	message	with	ID	
0x332?		Nothing.		It	has	no	knowledge	of	0x332	messages	so	it	simply	discards	
them.		Actually,	it	is	worse	than	that.		Since	it	has	no	knowledge	of	0x332	messages,	
it	actually	sets	a	filter	in	the	CAN	transceiver	chip	to	not	even	interrupt	it	for	0x332	
messages.		As	a	result,	it	never	receives	them	at	all.		The	internal	CAN	transceiver	
receives	it,	and	simply	ignores	it	–	dramatically	reducing	the	computational	
overhead	for	the	DMOC645	multicontroller.	
	
So	picture	the	DMOC645	as	actually	LOOKING	for	0x232	messages,	and	totally	
ignoring,	in	fact	filtering	out,	all	0x332	messages.	
	
In	this	way,	each	device	on	the	bus	has	a	list	of	messages	it	sends,	and	the	data	it	
wants	to	send	in	them.		And	it	also	has	a	list	of	messages	it	will	receive,	and	how	to	
deal	with	data	in	those.		And	typically	any	specific	device	might	have	3-5	messages	it	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 18	

sends,	and	another	3	or	4	it	responds	to.		ALL	OTHER	TRAFFIC	IS	TOTALLY	
IGNORED.	
	
Some	devices	broadcast	a	single	message	id	with	specific	information	in	it	and	don’t	
listen	for	ANY	messages	incoming.		This	would	be	like	a	temperature	sensor.		It	only	
does	one	thing	–	measure	temperature.		And	it	reports	it	on	the	CAN	bus	for	any	who	
care.		But	it	doesn’t	DO	anything	else,	and	doesn’t	need	information	from	any	other	
device	at	all.	
	
due_can	features	some	powerful	filtering	options.		If	you	want	to	monitor	all	the	
traffic	on	a	CAN	bus,	obviously	you	don’t	want	to	filter	out	anything.		But	for	most	
applications,	you	are	looking	for	a	relative	handful	of	messages,	and	it	is	an	
enormous	reduction	in	processor	overhead	to	set	filters	to	ignore	everything	else.	
	
This	is	done	with	the	setRXFilter	command.	
	

Can0.setRXFilter(msgid, mask, extended);
	
This	command	takes	three	arguments	(with	an	optional	fourth).	The	first	is	the	
message	id	of	the	messages	you	WANT	to	receive.		The	second	element	is	the	MASK	
and	the	third	indicates	whether	this	is	for	standard	11-bit	message	ids	or	extended	
29-bit	message	ids.	

Can0.setRXFilter(0x232, 0x7FF, false);
	
In	this	example,	the	message	ID	included	is 0x232.		The	third	element	is	false	
indicating	standard	11-bit	addresses	are	used.	
	
The	MASK	in	this	case	indicates	that	we	want	to	receive	ONLY	messages	that	exactly	
match	the	0x232	message	ID			
	
Our	mask,	0x7FF	would	be	represented	in	binary	as	 	 	0111 1111 1111	

Note	that	11	of	12	bits	are	set.			Our	standard	message	IDs	are	limited	to	11	bits	and	
so	all	messages	must	be	numbered	in	the	range	000	to	7FF.	Think	of	the	mask	as	
defining	the	specific	bits	that	MUST	MATCH.	And	so	this	mask	indicates	that	all	11	
bits	must	match	for	a	message	to	be	valid.	
	
If	we	set	a	mask	of	0x7F0	 	 	 	 	 	 0111 1111 0000
And	our	base	message	is 0x230 0010 0011 0000

We	logically	AND	those	two	to	get	the	result 0010 0011 0000

If	we	receive	a	message	of 0x23A 0010 0011 1010
And	we	logically	AND	that	with	the	mask	to	get	the	result 0010 0011 0000

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 19	

We	see	that	the	results	of	the	FIRST	AND	and	the	results	of	the	SECOND	AND	are	
equal	and	we	accept	the	message.
	
Our	mask	indicates	that	the	last	four	bits	do	NOT	have	to	match	but	the	first	7	DO.		
This	would	accept	any	number	from	0x230	to	0x23F.	
	
If	we	set	the	mask	to	0x700		 	 	 	 	 0111 0000 0000	
	
Our	mask	indicates	that	only	the	first	three	bits	need	match.		We	can	accept	any	
message	ID	from	0x200 to	0x2FF.	
	
And	of	course	a	mask	of	0x000	would	accept	all	messages.		It	would	be	pointless	to	
set	such	a	filter.	

Can1.setRXFilter(0x18FF50e5, 0x1FFFFFFF, true);
	
In	this	filter	example,	we	use	29-bit	extended	addresses.		The	mask	indicates	that	we	
must	have	an	exact	match	on	all	bits	for	messages	with	ID 0x18FF50e5			
	
Note	that	you	can	set	up	to	8	different	filters	covering	8	different	message	ranges	
and	any	can	be	either	11-bit	or	29-bit.	
	

EASY	CAN	FILTERS	
	
CAN	filters	can	be	somewhat	easier	to	employ	using	the	watchFor	functions.	
	

Can0.watchFor();
	
This	command	allows	ALL	messages	to	be	accepted.	But	better,	it	actually	sets	up	
one	mailbox	for	standard	frames,	and	a	second	mailbox	for	extended	frames.		All	
messages	of	either	standard	or	extended	frame	are	then	accepted.	
	

Can0.watchFor(0x740);
	
This	command	will	cause	CAN0	to	watch	for	a	specific	address,	in	this	case,	0x740.		
Whether	it	is	extended	or	standard	addressing	is	set	automatically	depending	on	the	
address	provided.	
	
	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 20	

Can0.watchFor(0x620, 0x7F0);
	
This	command	specifies	a	message	0x620	and	a	mask	0x7F0.		It	applies	the	mask	
just	as	described	earlier	to	accept	all	messages	from	0x620	through	0x62F.

Can0.watchForRange(0x620, 0x64F);
	
This	command	accepts	messages	by	message	ID	in	the	range	from	the	first	message	
ID	given	to	the	second.	

CAN	INTERRUPTS	
	
An	earlier	description	provided	the	details	of	buffered	CAN	frames	and	how	to	
retrieve	them.	
	
There	is	a	second	way	to	receive	CAN	frames	that	many	find	more	efficient.		This	is	
through	CAN	interrupts.	
	
CAN	interrupts	are	simply	a	method	of	calling	a	processing	method	in	your	program,	
when	and	only	when	a	CAN	frame	is	received.		In	this	way,	your	program	can	attend	
to	other	duties	without	the	overhead	of	checking	to	see	if	a	CAN	frame	has	come	in.			
	
When	a	valid	message	DOES	arrive	and	qualifies	through	the	filters	set,	the	CAN	
object	calls	the	defined	method	in	your	program	and	passes	it	the	CAN	frame.		It	can	
then	process	the	CAN	frame	and	return.	
	
This	is	an	INTERRUPT	and	it	does	interrupt	your	normal	program	operation.		It	
stops	it,	saves	its	state,	processes	the	CAN	frame,	and	then	returns	to	the	exact	point	
in	the	program	where	the	interrupt	occurred.	
	
As	the	normal	Arduino	Due	program	loop	can	cycle	hundreds	of	thousands	of	times	
per	second,	this	vastly	reduces	the	overhead	of	CAN	messages,	which	might	be	
received	30	times	per	second.	
	
Better,	you	can	have	different	CAN	handler	methods	for	different	received	message	
IDs.	
	

Can1.setRXFilter(1, 0x18FF50e5, 0x1FFFFFFF, true);

Can1.attachCANInterrupt(1, convertIncoming)
	
In	the	first	line	above,	we	see	our	familiar	filter	statement.		But	we	have	a	new	
element,	the	first,		set	to	1.		When	you	set	a	filter,	the	library	normally	just	picks	a	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 21	

mailbox	for	you.		There	are	8	“mailboxes”	provisioned	as	a	function	of	the	chip	
design	and	this	is	why	you	can	have	up	to	eight	filters.		
	
	But	you	can	optionally	designate	a	specific	mailbox	to	use	0-7.		We	can	use	this	to	
set	our	filter,	and	then	tie	the	output	to	a	given	routine	in	our	program.	
	
The	second	line	introduces	a	new	function,		attachCANInterrupt.			This	function	
then	lets	us	tie	any	valid	message	filtered	through	mailbox	1	to	be	routed	to	our	
routine	in	our	program	that	handles	this.	
	
In	our	Arduino	program	structure,	you	always	have	a	setup	routine	and	a	loop	
routine.	
	

void setup(){

Some setup statements.…

}

void loop () {

 Some statements we execute over and over without end.

}
	
We	want	to	add	a	method	to	our	program	to	handle	this	CAN	message,	but	we	do	
NOT	want	it	to	be	part	of	the	main	program	loop	or	the	setup.	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 22	

byte fromCharger[15];

void convertIncoming(CAN_FRAME *frame){

 fromCharger[3]=(uint8_t) (frame->id>>24);

 fromCharger[2]=(uint8_t) (frame->id>>16);

 fromCharger[1]=(uint8_t) (frame->id>>8);

 fromCharger[0]=(uint8_t) (frame->id>>0);

 for(int i=4; i<12; i++){

 fromCharger[i]=frame->data.bytes[i-4];

 }

 calculateCharger();

}
	
The	library	passes	the	CAN	message	data	structure	to	the	convertIncoming	
method	as	frame.		In	this	method,	we	are	extracting	information	from	the	frame	
and	arranging	it	in	a	15	byte	array	titled	fromCharger	and	then	calling	ANOTHER	
method,	calculateCharger,		which	has	access	to	fromCharger as	well.	
	
We	can	set	up	to	8	interrupts	and	each	can	be	to	the	same	method,	or	other	entirely	
different	methods	in	our	program,	all	based	on	their	incoming	addresses.	
	
Finally,	we	can	set	a	GENERAL	interrupt	to	handle	all	mailboxes	that	do	not	
otherwise	have	a	callback	associated	with	them.	
	

Can1.attachCANInterrupt(someOtherMethod);
	
Note	that	this	is	the	same	call,	but	does	not	specify	a	mailbox.		It	will	be	applied	to	
any	mailboxes	that	do	not	have	an	interrupt	attached.	
	
This	combination	is	actually	quite	powerful.		For	example,	we	could	set	filters	and	
interrupts	for	two	named	mailboxes,	and	then	set	six	more	filters	that	don’t	specify	a	
mailbox.		Then	we	can	set	one	interrupt	for	the	first	mailbox,	another	interrupt	for	
the	second	mailbox,	and	then	a	general	interrupt	to	handle	the	remaining	six.	
	
In	this	way,	we	can	route	messages	to	specific	methods	based	on	their	message	ID.		
The	methods	are	ONLY	called	when	a	specific	message	is	received.		Once	processed,	
control	is	returned	to	the	overall	general	Arduino	program	loop.	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 23	

CAN	interrupts	can	be	removed	with	the	command		
	
Can0.detachCANInterrupt(0);

This	would	remove	the	interrupt	attached	to	mailbox	0.		If	the	mailbox	is	omitted,			
	
Can0.detachCANInterrupt(); will	remove	ALL	Can0	interrupts.	
	
This	section	provides	descriptions	of	the	basic	functions	of	due_can	and	these	are	
certainly	sufficient	to	write	powerful	CAN	programs.		But	there	are	many	more	
functions	in	the	library.		Refer	to	the	library	source	code	and	example	programs	for	
more	detailed	information.		

PUTTING	IT	ALL	TOGETHER	–	A	CAN	EXAMPLE	
	
Let’s	put	all	this	new	CAN	knowledge	together	in	a	simple	but	tricky	example.		We	
have	two	Arduino	Due’s	that	we	start	up	at	two	different	times.		The	millis()	method	
will	give	us	the	number	of	milliseconds	that	have	occurred	since	we	started	the	
machine.	
	
In	this	case,	we	want	to	display	the	time	in	hours	minutes	and	seconds	on	BOTH	
Arduino	Due’s	Basically	we	want	to	synchronize	our	watches	via	CAN.	
	
On	the	first	Arduino	Due:	
	

#include<due_can>; //includes due_can library

uint8_t correction; //8bit integer holding a correction
	

void setup(){ //Our setup function

Serial.begin(115000);

 pinMode(50,OUTPUT);

If (Can0.begin(500000,50);){

 Serial.println(“Can0 initialized…”);

}

else Serial.println(“Can0 failed…”);
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 24	

Can0.setWriteID(0x05B); //Let’s use message ID 0x500

correction=5; //5 milliseconds for propogation

}
	

void loop(){

Can0.write(millis()+correction);

 int seconds = (int)(millis()/1000)%60;

 int minutes = (int)((millis()/(1000*60))%60);

 int hours = (int)((millis()/(1000*60*60))%24);

 char buffer[9];
	

sprintf(buffer,"%02d:%02d:%02d.%03d",hours,minutes,

 seconds,milliseconds);

 Serial.println(buffer);
	

}
	
This	program	sets	up	CAN0	as	our	output	port	at	a	data	rate	of	500KBPS.	
In	the	main	loop,	it	prints	the	current	time	since	startup	in	hours,	minutes	and	
seconds	since	startup	out	the	serial	port	and	transmits	a	four	byte	value	
representing	current	milliseconds	plus	a	correction	value	of	5	milliseconds	to	
account	for	the	propagation	delay	in	sending	our	time	over	the	bus.		And	it	does	this	
in	the	standard	Arduino	Due	little	endian	format	–	storing	this	value	in	the	first	four	
bytes	using	message	address	0x05B.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 25	

On	the	second	Arduino	Due	device:	

#include<due_can>; //includes due_can library
	

void setup(){ //Our setup function

Serial.begin(115000);

pinMode(48,OUTPUT);

If (Can1.begin(500000,48);){

 Serial.println(“Can1 initialized…”);
	

}
	

else Serial.println(“Can1 failed…”);

Can1.setRXFilter(1, 0x05B, 0x7FF, false);

Can1.attachCANInterrupt(1, getOurTime)

}

void loop(){

}

void getOurTime (CAN_FRAME *timeFrame){

long remillis=timeFrame.low;

int milliseconds = (int(remillis/1)%1000 ;

 int seconds = (int)(remillis/1000)%60;

 int minutes = (int)((remillis/(1000*60))%60);

 int hours = (int)((remillis/(1000*60*60))%24);

 char buffer[9];

sprintf(buffer,"%02d:%02d:%02d.%03d",hours,minutes,

 seconds,milliseconds);

 Serial.println(buffer);

}
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 26	

This	program	is	a	little	bit	different.	First,	we	are	going	to	set	a	filter	on	mailbox	1	
that	ONLY	responds	to	05B	message	IDs.			
	
The	CAN	bus	has	little	intelligence,	but	it	DOES	work	out	bus	contention	on	different	
devices.		We	are	only	going	to	transmit	this	time	mark	once	per	second,	and	we	are	
going	to	correct	it	with	a	calibration	factor	accounting	for	propagation	delay.		But	
we	DO	want	that	message	to	get	through	on	time.		And	so	by	setting	a	LOW	message	
address	ID	number,	we	give	it	a	higher	priority	on	the	bus.		In	this	way,	as	we	add	
devices	on	the	bus	with	higher	addresses,	our		delay	should	not	change	much	even	
though	the	traffic	on	the	bus	grows	enormously.	
	
Second,	we	set	an	interrupt	for	Can1	that	passes	received	frames	to	the	function	
getOurTime.		This	function	receives	the	frame	from	the	library	and	note	that	we	
do	not	really	explicitly	declare	the	timeFrame	variable	elsewhere.	
	
getOurTime sets	a	local	remillis	variable	to	timeFrame.low.		Recall	that	
.low	is	an	alternate	data	structure	representing	the	first	four	bytes	in	a	data	
structure	of	up	to	8	bytes.		Since	millis()	returns	a	long	integer	of	four	bytes,	in	little	
endian	format,	this	is	perfect.		We	can	simply	copy	this	value	to	the	remillis	
variable	on	the	second	machine.	
	
Finally,	our	interrupt	function	prints	the	new	formatted	hours,	minutes	and	seconds	
out	the	serial	port.	
	
If	we	set	up	these	two	Arduinos	connected	to	two	laptops	displaying	the	USB	output	
on	respective	terminal	programs,	the	objective	is	for	the	printed	times		to	match.		If	
they	do	not,	we	can	correct	by	going	back	to	the	first	program	and	changing	the	
correct	variable	value	from	5	to	something	else	and	in	this	way	synchronizing	the	
two	systems.	
	
Note	that	in	this	case,	the	standard	Arduino	loop	function	contains	no	code.		In	fact,	
you	can	place	12000	lines	of	code	in	this	loop	and	have	the	program	do	whatever	
you	like.		It	will	have	no	effect	on	our	time	function	at	all.		This	is	because	that	loop	
program	iteration	will	be	interrupted	on	receipt	of	a	0x05B	time	message	and	the	
time	printed	again.		Once	that	very	brief	operation	has	concluded,	the	program	code	
in	loop	will	continue	from	exactly	where	it	left	off	when	interrupted.	

	
EEPROM	USE	
The	Electrically	Erasable	Programmable	Memory	provided	on	the	Dual	Channel	CAN	
Shield	is	a	2	megabit	memory	chip	accessed	serially	through	I2C	on	the	SCA	and	SCL	
pins	on	the	Arduino	Due	board.		The	2	megabits	of	storage	works	out	to	256	
kilobytes	of	storage	–	262,144	8-bit	byte	locations.	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 27	

	
The	significance	of	EEPROM	storage	is	that	anything	you	write	to	this	memory	is	
retained	even	when	power	is	removed.		Because	of	this,	it	can	be	used	to	store	data	
which	you	desire	to	be	“persistent”	and	retain	its	value	through	any	number	of	
power	cycles.	
	
While	Arduino	Flash	memory	could	be	purposed	for	the	same	thing	with	a	bit	of	
code	magic,	if	you	upload	a	NEW	version	of	your	program,	you	lose	any	persistent	
data	held	in	flash	memory	this	way.		Not	so	with	EEPROM	stored	data.		It	is	always	
retained.	
	
Examples	of	data	where	you	would	want	this	normally	includes	configuration	
variables	where	you	desire	to	set	a	variable	controlling	program	operation,	but	you	
don’t	really	want	to	go	through	this	configuration	every	time	you	power	up.			By	
writing	these	items	to	EEPROM,	you	can	place	code	in	your	program	SETUP	to	
retrieve	this	data	when	you	first	power	up	and	so	we	say	these	items	are	held	in	
“persistent”	storage.		They	are	there	every	time	you	power	up.		
	
Storing	data	8-bits	at	a	time	is	a	bit	of	a	problem.		BYTE,	CHAR,	BOOL,	and	INT_8T	
and	UINT_8T	data	types	can	of	course	be	stored	directly.		But	the	C++	used	in	the	
Arduino	Due	features	a	rich	set	of	data	types,	often	32	bits	in	length.		Storing	and	
retrieving	these	variables	requires	a	bit	of	work	normally.		Fortunately	we	have	
eliminated	most	of	it,	again	through	the	use	of	libraries.	
	
The	libraries	required	for	optimum	use	of	this	EEPROM	storage	includes:	
	
#include <due_wire >		This	library	lets	us	make	the	serial	communications	
channel	to	the	EEPROM	chip	through	Arduino	SCA	and	SCL	pins	LOOK	like	a	
simple	serial	channel.		We	can	initialize	this	as:	
	
#include <Wire_EEPROM.h>		Collin	Kidder		access	the	EEPROM	chip	–	revised	
for	Arduino	Due	and	the	larger	256KB	EEPROM	size	
	
#include <eepromAny.h>		This	library	greatly	simplifies	the	storage	of	
multibyte	variables.	
	

We also have to initialize our EEPROM. We use Arduino Due
Serial3 to communicate with the EEPROM.

EEPROM.setWPPin(19);

Serial3.begin(2400);
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 28	

STORING	VARIABLES	TO	EEPROM	
	
Again,	EEPROM	is	really	a	series	of	8-bit	bytes.		But	the	various	data	types	in	C++	
can	be	much	longer.		eepromAny	makes	this	much	easier	to	deal	with.	
	

EEPROM_write(address, variable);
	
The	address	can	be	any	unsigned	integer	address	from	0	to	266,143.		And	the	
variable	can	be	any	named	variable	of	any	of	the	basic	types.	
	
For	example:	
	

float amperehours=121.32;

uint_8t AHaddress = 1200;

EEPROM_write(AHaddress, amperehours);
	
The	variable	amperehours	is	actually	a	four-byte	floating	point	variable	containing	
the	value	121.32.		We	are	storing	it	at	location	1200.	
	
You	ARE	tasked	with	keeping	aware	of	the	length	of	your	variables	when	assigning	
locations.		The	libraries	will	quite	allow	you	to	do	the	following:	
	

EEPROM_write(AHaddress, amperehours);

EEPROM_write(1202, 1034589);
	
Since	amperehours	requires	4	bytes,	you	have	just	written	the	value	1,034,589	to	
EEPROM,	but	you’ve	overwritten	the	amperehours	variable	stored	there	because	
you	wrote	it	to	location	1202,	which	was	already	being	used	by	the	amperehours	
value	you	wrote	in	the	previous	line.	
	
So	you	see,	some	awareness	of	memory	geometry	is	required.	

RETRIEVING	VARIABLES	FROM	EEPROM	
	
Retrieving	variables	from	EEPROM	is	actually	even	easier.	

EEPROM_read(address, variable);
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 29	

The	syntax	is	essentially	the	same.		The	data	stored	at	address	will	be	copied	into	
the	variable	in	your	program	by	that	name.	

EEPROM_read(AHaddress, amperehours);
	
It	would	be	very	unusual	to	need	266,144	bytes	of	storage	for	what	is	usually	a	
handful	of	configuration	variables.		But	in	recent	years	EEPROM	chips	have	become	
very	inexpensive	–	less	than	$4	for	the	most	part.		And	the	difference	in	price	
between	a	4KB	and	a	256KB	chip	is	basically	nil.		We	provide	256KB	as	you	may	
want	to	have	a	routine	that	“logs”	a	certain	amount	of	data	to	the	chip	and	perhaps	
another	that	prints	that	log	out	the	serial	port	to	your	computer.		You	could	then	
capture	that	as	a	text	file,	and	import	to	Microsoft	Excel.			
	

PAGE	MODE	
	
Writing	to	EEPROM	via	serial	SCL/SCA	involves	a	bit	of	time.		And	it	is	very	
important	to	not	try	to	write	to	it	WHILE	it	is	writing	to	it.		There	are	ways	using	
interrupts	to	do	just	that.			
	
Additionally,	EEPROMs	are	life	limited	to	the	number	of	writes	you	can	perform	on	
the	chip	itself.		This	particular	chip	has	a	rather	long	write	life	of	4,000,000	
operations.		But	if	you	do	this	in	your	LOOP	section,	it	doesn’t	take	long	to	even	
breach	that	limit	at	84	MHz.	
	
The	EEPROM	is	actually	arranged	in	1024	individual	“pages”	of	256	bytes	each.		It	
can	be	an	advantage	to	write	an	entire	page	at	a	time.		This	actually	REDUCES	the	
time	you	spend	writing	to	EEPROM,	which	is	a	bit	counterintuitive.	
	
Fortunately,	Mr.	Kidder	has	provided	us	a	page	mode	operation	in	his	
Wire_EEPROM	library.	
	
The	first	thing	we	want	to	do	is	define	a	CLASS	containing	nothing	but	public	
variables.		These	variables	can	include	any	kind	of	existing	variables	or	even	
structures	within	the	class.		This	class	is	defined	immediately	after	our	include	
statements	and	so	the	class	and	its	variables	behave	essentially	as	GLOBAL	variables	
accessible	from	anywhere	in	the	program.	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 30	

#include <Arduino.h>

#include <due_can.h>

#include <due_wire.h>

#include "variant.h"

#include <Wire_EEPROM.h>

class EEPROMvariables {

 public:

 uint8_t CANdo

 uint16_t voltage;

 uint16_t current;

 uint16_t terminate;

 float AH;

 float kilowatthours;

};

EEPROMvariables myVars;

Immediately	after	the	class,	we	instantiate	an	object	of	that	class.		Here	we	are	
calling	the	class	EEPROMvariables	and	we	have	instantiated	an	object	myVars	in	this	
class.	
	
From	that	point,	anywhere	in	our	progam	we	can	read	and	write	to	any	of	those	
variables	very	quickly	simply	by	using	them	in	the	form	of	myVars.voltage,
myVars.current, myVars.AH, myVars.kilowatthours,	etc.	
	
In	our	setup,	we	want	to	initialize	our	connection	to	EEPROM	and	load	our	last	
saved	page	of	these	variables.	
	

void setup(){

 Wire.begin();

 EEPROM.setWPPin(19);

 EEPROM.read(200, myVars);

}
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 31	

The	EEPROM.read	command	names	the	numeric	page	(some	value	between	0	and	
1023	and	the	object.		It	then	loads	that	specific	page	of	memory	into	the	object	using	
the	structure	of	the	variables	in	the	class.		The	memory	requirements	of	the	class	
can	of	course	be	smaller	than	the	256	byte	page,	but	they	CANNOT	be	longer	than	
256	bytes.		If	you	need	more	EEPROM	variables,	you	will	have	to	define	more	
instances	of	your	object	and	keep	them	on	DIFFERENT	pages.	
	
The	first	time	we	do	SETUP	of	course	the	page	will	be	empty	and	as	a	result	so	will	
all	our	variables.		But	if	somewhere	in	our	program	we	do	a	EEPROM.write(200,
myVars);	then	those	variables,	in	whatever	state	we	had	them	in	and	containing	
whatever	data	we	stored	there,	would	be	written	to	that	page	in	EEPROM.		The	next	
time	we	power	cycle	the	device,	the	stored	data	would	be	loaded	correctly	into	our	
myVars object.	
	
In	this	way,	we	can	use	these	variables	quickly	and	continuously	in	our	program.		
But	we	only	actually	save	them	to	EEPROM	occasionally.		How	occasionally,	it	
depends	on	the	time	nature	of	your	data.	
	
In	the	example	above,	we	are	accumulating	ampere	hours	in	the	variable	
myVars.AH	and	we	are	updating	this	every	20	milliseconds	or	so.		If	we	failed	to	
save	this	for	a	period	of	say,	5	seconds,	we	would	potentially	lose	the	last	5	seconds	
of	accumulation	worst	case.		I	can	live	with	it.		It	isn’t	that	much.	
	
But	how	often	you	actually	write	to	EEPROM	is	a	function	of	how	time	sensitive	your	
data	is.		Often	you	are	simply	storing	configuration	options	for	your	program	and	
they	simply	are	not	time	sensitive	at	all.	
	

void loop(){

 if(millis()-lastime >5000)

 {

 lastime=millis();

 EEPROM.write(200, myVars);

 }

}
	
In	our	loop	above,	we	use	the	built-in	Arduinos	function	millis()	to	determine	
the	passage	of	time.		Millis	will	return	the	number	of	milliseconds	since	the	last	
power	cycle.		If	it	is	greater	than	5000	ms	or	5	seconds,	we	are	going	to	execute	
these	lines.	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 32	

The	first	thing	we	do	is	reset	our	timer	by	setting	lastime	to	millis().		Then	
we	write	myVars to	page	200	of	our	EEPROM.	
On	the	next	LOOP	pass,	and	for	several	hundreds	of	thousands	of	others,	when	we	
compare	millis()	to	lastime,	it	is	going	to	be	less	than	5000	for	a	long	time.	
	
In	this	way,	we	can	have	ready	and	immediate	access	to	a	number	of	variables	of	
entirely	different	types,	but	still	store	them	to	EEPROM	so	they	will	be	available	the	
next	time	we	power	cycle.		This,	while	minimizing	the	writes	to	our	life	limited	
EEPROM.	
	
	
	
	

MICRO	SD	CARD	SLOT	USE	
The	CANDue	board	features	a	microSD	card	slot	capable	of	holding	very	small	SD	
cards.		In	recent	years,	the	data	storage	capacity	of	these	tiny	cards	has	grown	
enormously	–	256GB	or	more.			
	
Files	can	be	created,	removed,	written	to,	and	read	from	using	the	familiar	DOS	FAT	
16	or	32	file	format	using	file	names	in	the	familiar	8.3	format	(up	to	eight	name	
characters	plus	three	character	extension).	FAT	16	is	good	up	to	2	GB.		For	files	
above	2GB	you	must	use	FAT32	as	the	format.	
	
This	feature	provides	enormous	data	logging	capacity	in	a	removable	medium.	
	
The		Arduino	Due	accesses	the	data	card	slot	through	a	dedicated	Serial	Peripheral	
Interface	(SPI)	a	six	pin	connector	in	the	center	of	the	board.	
	
Serial	Peripheral	Interface	(SPI)	is	a	synchronous	serial	data	protocol	used	by	
microcontrollers	for	communicating	with	one	or	more	peripheral	devices	quickly	
over	short	distances.	It	can	also	be	used	for	communication	between	two	
microcontrollers.	
	
With	an	SPI	connection	there	is	always	one	master	device	(usually	a	
microcontroller)	which	controls	the	peripheral	devices.	Typically	there	are	three	
lines	common	to	all	the	devices:	
	
MISO	(Master	In	Slave	Out)	-	The	Slave	line	for	sending	data	to	the	master,	
	
MOSI (Master	Out	Slave	In)	-	The	Master	line	for	sending	data	to	the	peripherals,	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 33	

SCK	(Serial	Clock)	-	The	clock	pulses	which	synchronize	data	transmission	
generated	by	the	masterand	one	line	specific	for	every	device:	
	
SS	(Slave	Select)	-	the	pin	on	each	device	that	the	master	can	use	to	enable	and	
disable	specific	devices.	

When	a	device's	SS	pin	is	low,	it	communicates	with	the	master.	When	it's	high,	it	
ignores	the	master.	This	allows	you	to	have	multiple	SPI	devices	sharing	the	same	
MISO,	MOSI,	and	CLK	lines.		The	microSD	card	reader	uses	digital output pin 10	
as	the	SS.	

By	way	of	trivia	you	probably	do	NOT	need	to	program	this	card,	on	the	Arduino	
Due	version	only:	
	
MISO	uses	digital	pin	75	
	
MOSI	uses	digital	pin	74	
	
SCK	uses	digital	pin	76	
	
Very	little	of	this	is	necessary	to	successfully	use	the	microSD	card	slot.		What	you	
DO	need:	
	

1. Preformated	microSD	card.		This	should	be	formatted	using	your	PC	or	MAC	
ideally	for	DOS	FAT16	but	can	be	FAT32.	

2. SPI.h	library	
3. SD.h	library	

	
It	is	important	that	the	SD	card	be	properly	formatted.	Generally,	you	will	get	much	
better	performance	by	NOT	using	the	utilities	on	your	Macintosh	or	Microsoft	
Windoze	PC.		The	SD	Card	Association	has	a	web	site	at	
https://www.sdcard.org/downloads/formatter_4/.		They	actually	have	some	very	
good	software	for	formatting	these	cards	that	greatly	improves	access	speed	for	the	
Arduino.	
	
The	two	libraries	have	actually	made	it	into	the	Arduino	IDE	so	you	do	not	actually	
have	to	get	them	and	add	them.		
	

#include<SPI.h>

#include<SD.h>
	
You	also	need	to	establish	pin	10	as	your	Slave	Select	pin	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 34	

pinMode(10, OUTPUT);

Note	that	the	library	already	establishes	the	SS	constant	as	pin	10.	

 // see if the card is present and can be initialized:

if (!SD.begin(SS))

{

 Serial.println("Card failed, or not present");

 return;

 }

 else Serial.println("card initialized.");
	
To	use	an	SD	card,	we	are	fortunate	to	have	the	SD	library	written	by	William	
Greiman. The	SD.h	library	gives	us	two	new	“classes”	you	can	use	in	your	programs.	
A	class	provides	additional	commands	specific	to	the	device	that	are	not	normally	
part	of	the	basic	programming	language.	They	“extend”	the	language	to	access	the	
functions	of	the	new	hardware.	
	
The	two	new	classes	are	the	SD	class	and	the	FILE	class.	

SD	CLASS	
	
The	SD	class	provides	functions	for	accessing the	SD	card	and	manipulating	its	files	
and	directories.	
	

• begin()
SD.begin(10) //opens communications to SDcard

• exists()

SD.exists(logger.txt); //Returns TRUE if file
logger.txt exists. 8.3 filenames.

	
• mkdir()

SD.mkdir(root/jack/stuff) //Creates directory
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 35	

• open()
File dataFile=SD.open(example.txt); //Opens
example.txt file for READ beginning at byte one. Note
definition of dataFile as type File. This is your
file handle.

  File dataFile=SD.open(/JACK/example.txt, FILE_WRITE)
//Opens file for both reading AND writing starting at
END of file

	
	
• remove()

SD.remove(/JACK/example.txt) //Removes file
	
	
rmdir()
 SD.rmdir(/JACK/STUFF) //Removes directory

FILE	CLASS	
	
The	File	class	allows	for	reading	from	and	writing	to	individual	files	on	the	SD	card.	

• available()

dataFile.available(); //This would return the number
of bytes in the dataFile instance of the File class
(returned by SD.open())

	
• close()

dataFile.close(); //Closes the file designated by the
dataFile file handle. Writes any data written to the
file to the SD card.

	
	
	
	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 36	

• flush()
dataFile.flush(); // Ensures that any bytes written to
the file are physically saved to the SD card. This is
done automatically when the file is closed.

	
• peek()

dataFile.peek(); //Returns the value at the current
file position but does not increment file pointer.

	
• position()

dataFile.position();//Returns the position of the
current file pointer (long integer)

	
• print()

dataFile.print(data, BASE);// Print data to the file,
which must have been opened for writing. Prints
numbers as a sequence of digits, each an ASCII
character (e.g. the number 123 is sent as the three
characters '1', '2', '3'). Optional BASE of BIN, DEC,
OCT or HEX

	
	
• println()

dataFile.println (data, BASE);// Same as print()
but it terminates string with carriage	return and
newline characters.

• seek()

dataFile.seek(pos); //Set file pointer to pos in file
	
	
• size()
 dataFile.size(); // Return size of file in bytes
	
	
	
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 37	

• read()
dataFile.read(); //Returns next byte in file or -1 if
end

• write()
dataFile.write(data); // the byte, char, or string
(char *) to write

dataFile.write(buf, len); // buf: an array of
characters or bytes len: the number of elements in buf

	
• isDirectory()

dataFile.isDirectory();//Returns true if directory

• openNextFile()
dataFile.openNextFile(); //If dataFile is dir, returns
next file in directory

• rewindDirectory()
dataFile.rewindDirectory(); //Resets to first file in
directory

	
	
	

#include<SD.h>

const int SS = 10; //Set SS as pin 10

File datafile;

if (!SD.begin(SS))

{

 Serial.println("Card failed, or not present");

 return;

 }

 else Serial.println("card initialized.");
	

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 38	

dataFile = SD.open("datalog.txt", FILE_WRITE);

 // if the file is available, write to it:
if (dataFile)

{
 dataFile.println(“Hello World…”);
 dataFile.close();

if (SD.exists("datalog.txt"))
{

 Serial.println(datalog.txt exists.");
SD.remove("example.txt");
}

 FILE myFile = SD.open("datalog.txt");
 if (myFile)

{
 while (myFile.available())

{
 Serial.write(myFile.read());
 }

 myFile.close();

uint32_t volumesize;
Sd2Card card;
SdVolume volume;
SdFile root

 Serial.print("\nVolume type is FAT");
 Serial.println(volume.fatType(), DEC);
 Serial.println();

 volumesize = volume.blocksPerCluster(); //
clusters are collections of blocks
 volumesize *= volume.clusterCount(); //
we'll have a lot of clusters

EVTV	Motor	Werks	 Version	2.20	 Septemeber	2017	

Copyright 2015 – EVTV LLC	 39	

 volumesize *= 512; //
SD card blocks are always 512 bytes
 Serial.print("Volume size (bytes): ");
 Serial.println(volumesize);
 Serial.print("Volume size (Kbytes): ");

 Serial.println("\nFiles found on the card (name,
date and size in bytes): ");
 root.openRoot(volume);

