	2004-2005 7TH GRADE CONTEST	Answers
29.	The first 12 contestants won an average of \$80. The next 20won an average of \$70. The 32 contestants won an average ofA) \$73.75B) \$74.75C) \$75.00D) \$75.75	29.
30.	$4^3 \times 4^3 =$ A) 16 ⁹ B) 16 ⁶ C) 4 ⁹ D) 4 ⁶	30.
31.	At most $\underline{?}$ circles of radius 1 with non-overlapping interiors can fit inside a square with side-length 4. A) 1 B) 4 C) 5 D) 16 $\underline{-0}$	31.
32.	0.1% = 1% - ? A) 0.009% B) 0.09% C) 0.9% D) 10%	32.
33.	Today is my birthday. My age today, in months, is 72 times my age 5 years ago, in years. My age today, in years, is A) 6 B) 7 C) 8 D) 12	33.
34.	$\sqrt{\sqrt{81 \times 81 \times 81 \times 81}} =$ A) 3 B) 9 C) 27 D) 81	34.
35.	Of 2005 integers whose product is even, at most ? can be odd.A) 2005B) 2004C) 1D) 0	35.
36.	The number $?$ equals one-fourth of its own reciprocal.A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) 2D) 4	36.
37.	How many of the numbers 11, 21, 31, 41, 51, 61, 71, 81, 91 are prime? A) 4 B) 5 C) 6 D) 7	37.
38.	(301+302+303++325)-(1+2+3++25) = A) 25 B) 2500 C) 5000 D) 7500	38.
39.	Of the following, which is the first time after 4:30 that the minute and hour hands of my circular alarm clock <i>no longer</i> form an acute angle? A) 4:36 B) 4:37 C) 4:38 D) 4:39	39.
40.	Consecutive letters of the alphabet, starting with <i>A</i> , are given increasing consecutive integer values. If $H+K+L+N = 2005$, then the average of all 26 of the consecutive integers is A) 491 B) 498 C) 503.5 D) 505.5	40.

The end of the contest $\not \subset \mathbf{7}$

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors A SEVENTH GRADE MATHEMATICS CONTEST Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample 7th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005

Instructions

- **Time** Do *not* open this booklet until you are told by your teacher to begin. You will have only 30 *minutes* working time for this contest. You might be *unable* to finish all 40 questions in the time allowed.
- Scores Please remember that *this is a contest, not a test*—and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, *should be commended*!
- Format, Point Value, & Eligibility This is a multiple-choice contest. Every answer is an A, B, C, or D. You must write each answer in the Answers column to the right of each question. We suggest (but do not require) that you use a pencil. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you're in grade 7 or below and only if you don't also take this year's Annual 8th Grade or Annual 6th Grade Contest.

Please Print (To the student: You must complete all items below)

Last Name	First Name
School Teacher	Grade Level
Time at Start of Contest	Today's Date
Do Not Write In <i>To the Teacher:</i> Please enter the score at the right before return this paper to the student. <i>Papers</i> <i>scores of 30 or higher must be held until J</i>	The Space Below e you s with
Fifteen books of past contests, Grades 4, 5,	, & 6 (Vols. 1, 2, 3, 4, 5), Grades 7 & 8 (Vols.

1, 2, 3, 4, 5), and *High School (Vols. 1, 2, 3, 4, 5),* are available, for \$12.95 per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

	2004-2005 7TH GRADE CONTEST	Answer			
1.	If 84 players split themselves into teams, how many more teams can they form by splitting into teams of 4 instead of teams of 6?				
	A) 5 B) 6 C) 7 D) 14				
2.	$0 \times 1 + 1 \times 10 + 0 \times 0 + 1 =$	2.			
	A) 0 B) 1 C) 3 D) 11				
3.	The three angles of a triangle can measure 20°, 40°, and	3.			
	A) 60° B) 80° C) 90° D) 120°				
4.	To the nearest tenth, $3456 \times 0.001 =$	4.			
5.	A) 0.3 B) 3.4 C) 3.5 D) 34.6 If my bad hair day began 720 minutes before 7:20 P.M., then my bad hair day began at A) 1:20 A.M. B) 7:20 A.M. C) 12:00 P.M. D) 7:08 P.M.	5.			
6.	$500+500+500+500+500 = 10 \times \underline{?}$ A) 25 B) 50 C) 250 D) 2000	6.			
7.	Of the whole numbers 10, 11,, 98, 99, how many are greater than the sum of their digits?A) 88B) 89C) 90D) 99	7.			
	, , , , , ,				
8.	$1^{3}+2^{4} =$ A) $1^{4}+3^{2}$ B) $1^{3}+4^{2}$ C) $1^{2}+4^{3}$ D) $1^{1}+3^{4}$	8.			
_	, , , , , ,	8. 9.			
9.	$1^{3}+2^{4} =$ A) $1^{4}+3^{2}$ B) $1^{3}+4^{2}$ C) $1^{2}+4^{3}$ D) $1^{1}+3^{4}$ 7 is prime, so May 7th is a <i>prime</i> day. In all, May has <u>?</u> prime days.				
9. D.	$1^{3}+2^{4} = A) 1^{4}+3^{2} B) 1^{3}+4^{2} C) 1^{2}+4^{3} D)1^{1}+3^{4}$ 7 is prime, so May 7th is a <i>prime</i> day. In all, May has ? prime days. A) 10 B) 11 C) 12 D) 13	9.			
9. 0. 1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9. 10.			
9.). 1. 2.	$1^3 + 2^4 =$ A) $1^4 + 3^2$ B) $1^3 + 4^2$ C) $1^2 + 4^3$ D) $1^1 + 3^4$ 7 is prime, so May 7th is a prime day. In all, May has ? prime days. A) 10 B) 11 C) 12 D) 13 $\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{7}{6} \times \frac{5}{4} \times \frac{3}{2} =$ A) 1 B) 3 C) 6 D) 12 500 nickels = ? quarters A) 100 B) 250 C) 500 D) 2500 If a square's side-lengths are integers, its perimeter could be	9. 10. 11.			
9. 0. 1. 2.	$1^3+2^4 =$ A) 1^4+3^2 B) 1^3+4^2 C) 1^2+4^3 D) 1^1+3^4 7 is prime, so May 7th is a prime day. In all, May has ? prime days.A) 10B) 11C) 12D) 13 $\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{7}{6} \times \frac{5}{4} \times \frac{3}{2} =$ A) 1B) 3C) 6D) 12500 nickels = ? quartersA) 100B) 250C) 500D) 2500If a square's side-lengths are integers, its perimeter could beA) 33B) 44C) 55D) 66If 3 of every 150 astronauts walk on the moon, then ?% of all astronauts walk on the moon.	9. 10. 11. 12.			

2004-2005 7TH GRADE CONTEST	Answer
6. <u>?</u> can be made from 2 squares that share a common side.A) An octagon B) A hexagon C) A rectangle D) A triangle	16.
 7. By how much does the sum 19+28+37+46+55+64+73+82+91 exceed the sum 18+27+36+45+54+63+72+81+90? A) 9 B) 10 C) 90 D) 100 	17.
 B. Uncle Bookworm eats two books a week; Aunt Bookworm eats one book every two months. In a year, Uncle eats ? more books than Aunt. A) 20 B) 40 C) 80 D) 98) 18.
P. What is the largest odd factor of 81?A) 3B) 9C) 27D) 81	19.
0. $\left(\frac{2}{3}\right)^3 =$ A) 2 B) $\frac{6}{9}$ C) $\frac{8}{3}$ D) $\frac{8}{27}$	20.
1. At most how many students can sit in a row of 25 chairs, if seated students must be separated by at least one empty chair?A) 11B) 12C) 13D) 24	21.
2. The smallest multiple of 10 that's greater than 9×9 is A) $9 \times 9 + 10$ B) 9.1×9.1 C) 9×10 D) 10×10	22.
3. The difference between $\frac{5}{6}$ and its reciprocal is A) $\frac{1}{5}$ B) $\frac{1}{6}$ C) $\frac{1}{30}$ D) $\frac{11}{30}$	23.
4. On my scooter, the rear wheel's diam- eter is 6 cm more than the front wheel's. The rear wheel's circumference is $\frac{?}{2}$ cm more than the front wheel's. A) 3π B) 6π C) 9π D) 36π	24.
 A regular polygon is always A) square B) equilateral C) scalene D) isosceles 	25.
 If I divide my age by 5, the remainder is 3. Your age is twice mine. If I divide your age by 5, the remainder will be A) 1 B) 2 C) 3 D) 4 	26.
 In a rectangle with perimeter 30 cm and area 56 cm², the longer side's length is <u>?</u> cm more than that of the shorter side. A) 1 B) 5 C) 20 D) 26 	27.
If the sum of two whole numbers is 24 more than their differ- ence, then one of the numbers <i>must</i> be	28.
A) 0 B) 6 C) 12 D) 48	

	2004-2005 7TH GRADE CONTEST SOLUTIONS	Answers
29.	The 1st 12 won $12 \times \$80 = \960 . The next 20 won $20 \times \$70 = \1400 . The 32 contestants won an average of $\$2360 \div 32 = \73.75 . A) $\$73.75$ B) $\$74.75$ C) $\$75.00$ D) $\$75.75$	29. A
30.	$4^3 \times 4^3 = 4^{3+3} = 4^6$. A) 16^9 B) 16^6 C) 4^9 D) 4^6	30. D
31.	4 such circles fit inside a square of side-length 4. A) 1 B) 4 C) 5 D) 16	31. B
32.	Just as 1 - 0.9 = 0.1, 0.1% = 1.0% - 0.9%. A) 0.009% B) 0.09% C) 0.9% D) 10%	32. C
33.	Change each answer choice to months. Since 6 years = 72 months, and 5 years ago I was 1 year old, choice A is correct. A) 6 B) 7 C) 8 D) 12	33. A
34.	$\sqrt{81 \times 81 \times 81 \times 81} = \sqrt{81^4} = 81^2$, so $\sqrt{\sqrt{81 \times 81 \times 81 \times 81}} = \sqrt{81^2} = 81$. A) 3 B) 9 C) 27 D) 81	34. D
35.	If a product is even, at least 1 factor must be even.A) 2005B) 2004C) 1D) 0	35. B
36.	$1/2$ is one-fourth of 2, its reciprocal, so choice A is correct.A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) 2D) 4	36. A
37.	21 = 3×7 ; 51 = 3×17 ; 81 = 3×27 ; 91 = 7×13 . Other 5 are prime. A) 4 B) 5 C) 6 D) 7	37. B
38.	$(301-1) + (302-2) + \ldots + (325-25) = (300) \times 25 = 7500.$ A) 25 B) 2500 C) 5000 D) 7500	38. D
39.	Angle at 4:30 is 45°. Each min., the min. hand moves 6°, hr. hand moves 0.5°, so the angle increases 5.5°. The 8-min. increase is 44°, so the angle at 4:38 is only 89°. A) 4:36 B) 4:37 C) 4:38 D) 4:39	39. D
40.	If $H+K+L+N = 2005$, then <i>H</i> is less than $2005 \div 4 = 501.25$. If $H = 498$, $H+K+L+N =$ 498+501+502+504 = 2005. Since <i>M</i> and <i>N</i> are the middle of the alphabet, the average of all 26 letters is $(503+504) \div 2 = 503.5$. A) 491 B) 498 C) 503.5 D) 505.5	40. C

The end of the contest $\not \subset$ 7

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

Information & Solutions

2004-2005 Annual 7th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005 Directions for Grading

- Security and Solutions *Do not look at these solutions until after the contest.* Detailed solutions appear in each question box, and letter answers are in the *Answers* columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Urgent questions?** Call 1-201-568-6328.
- Scores Please remember that *this is a contest, not a test*—and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, *should be commended*!
- Awards & Results The original contest package contained 5 Certificates of Merit—1 each for the highest scoring student on each grade level, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, PO. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates. Only score reports postmarked by Fri., Feb. 25, 2005, and received by Tues., Mar. 9, 2005 can be used in our Summary of Contest Results newsletter, which you'll receive no later than Tues., May 10, 2005.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Fifteen books of past contests, *Grades 4*, *5*, *& 6* (*Vols. 1*, *2*, *3*, *4*, *5*), *Grades 7 & 8* (*Vols. 1*, *2*, *3*, *4*, *5*), and *High School* (*Vols. 1*, *2*, *3*, *4*, *5*), are available, for \$12.95 per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

	2004-2005 7TH GRADE CONTEST SOLUTIONS	Answers
1.	84 players can split into $84 \div 6 = 14$ teams of 6 players and $84 \div 4 = 21$ teams of 4 players. There are 7 more teams of 4.	1. C
	A) 5 B) 6 C) 7 D) 14	
2.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. D
3.	The sum is 180°. The 3rd angle must be $180^{\circ} - (20^{\circ} + 40^{\circ}) = 120^{\circ}$. A) 60° B) 80° C) 90° D) 120°	3. D
4.	$3456 \times 0.001 = 3.456$. This rounds up to 3.5. A) 0.3 B) 3.4 C) 3.5 D) 34.6	4. C
5.	Since 720 minutes = (720 ÷ 60) hours = 12 hours, my bad hair day began at 7:20 A.M. A) 1:20 A.M. B) 7:20 A.M. C) 12:00 P.M. D) 7:08 P.M.	5. B
6.	The sum = $5 \times 500 = 2500 = 10 \times 250$. A) 25 B) 50 C) 250 D) 2000	6. C
7.	Since every number on the list is greater than the sum of its digits, all 90 numbers are greater than the sum of their digits.A) 88B) 89C) 90D) 99	7. C
8.	$1^3 + 2^4 = 17 = 1^3 + 4^2$. A) $1^4 + 3^2$ B) $1^3 + 4^2$ C) $1^2 + 4^3$ D) $1^1 + 3^4$	8. B
9.	There are 11 prime days in May: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31.A) 10B) 11C) 12D) 13	9. B
10.	$\left(\frac{2}{3} \times \frac{3}{2}\right) \times \left(\frac{4}{5} \times \frac{5}{4}\right) \times \left(\frac{6}{7} \times \frac{7}{6}\right) = 1 \times 1 \times 1 = 1.$ A) 1 B) 3 C) 6 D) 12	10. A
11.	Since 5 nickels = 1 quarter, 500 nickels = 100 quarters. A) 100 B) 250 C) 500 D) 2500	11. A
12.	All side-lengths are equal, so the perimeter is divisible by 4. A) 33 B) 44 C) 55 D) 66	12. B
13.	3 of every 150 is the same as 1 of every 50.That's the same as 2 of every 100, which is 2%.A) 2B) 3C) 5D) 50	13. A
14.	$\frac{33}{50} \text{ cannot be reduced.} A) \frac{9}{15} B) \frac{21}{35} C) \frac{24}{40} D) \frac{33}{50}$	14. D
15.	$\sqrt{100} = \sqrt{36} + \sqrt{?} \Leftrightarrow 10 = 6 + \sqrt{?}$, so $4 = \sqrt{?} = \sqrt{16}$. A) 2 B) 4 C) 16 D) 64	^{15.} С
	Go on to the next page III	▶ 7

	2004-2005 7TH GRADE CONTEST SOLUTIONS	Answers
16.	As shown, 2 squares with a common side form a rectangle.	16. C
17.	Each of the 9 numbers in the first sum is 1 more than the number in the same position in the second sum. A) 9 B) 10 C) 90 D) 100	17. A
18.	Uncle Bookworm eats 2 books a week, or 104 a year. Aunt Bookworm eats 1 book every 2 months, or 6 a year. Uncle eats 104-6 = 98 more books than Aunt. A) 20 B) 40 C) 80 D) 98	18. D
19.	The largest odd factor of 81 is 81. A) 3 B) 9 C) 27 D) 81	19. D
20.	$\left(\frac{2}{3}\right)^3 = \frac{2 \times 2 \times 2}{3 \times 3 \times 3} = \frac{8}{27}$. A) 2 B) $\frac{6}{9}$ C) $\frac{8}{3}$ D) $\frac{8}{27}$	20. _D
21.	To seat the most students, put the students in seats 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25. That's 13 seated students. A) 11 B) 12 C) 13 D) 24	21. C
22.	The smallest multiple of 10 that's greater than $9 \times 9 = 81$ is 90. A) $9 \times 9 + 10$ B) 9.1×9.1 C) 9×10 D) 10×10	^{22.} C
23.	$\frac{6}{5} - \frac{5}{6} = \frac{36}{30} - \frac{25}{30} = \frac{11}{30}.$ A) $\frac{1}{5}$ B) $\frac{1}{6}$ C) $\frac{1}{30}$ D) $\frac{11}{30}$	23. D
24.	The rear wheel's diameter is 6 cm more than the front wheel's. The rear wheel's circumference is $(d+6) \times \pi$ cm, which is 6π cm more than the front wheel's. A) 3π B) 6π C) 9π D) 36π	24. B
25.	All sides of a regular polygon have equal lengths. A) square B) equilateral C) scalene D) isosceles	25. B
26.	My age could be 8 and yours could be 16. When you divide16 by 5, the remainder is 1.A) 1B) 2C) 3D) 4	26. A
27.	If a rectangle's perimeter is 30 cm, and its area is 56 cm², then the longer side's length is 8 cm, and the shorter side's length is 7 cm.A) 1B) 5C) 20D) 26	27. A
28.	Try some numbers. One set that works is 12 and 13. (The sum always exceeds the difference by twice the smaller number.)A) 0B) 6C) 12D) 48	28. C
	Go on to the next page III	▶ 7

		2012-201	3 7TH GRADE CONT	EST	Answers
26.	newt, fly, beetl	e, snake, and	edients. Her choices snail. How many dif se 5 choices are there?	fer-	26.
	A) 6 B)	8 C) 1	0 D) 60		
27.	The sum of si	x consecutive	e integers <i>could</i> be		27.
	A) 81 B)	88 C) 9	2 D) 98		
28.	288 minutes =	= <u>?</u> % of 1 da	ay		28.
	A) 10 B)	15 C) 2	0 D) 40		
29.		ts every 429	oday. One cousin v days. They will nex		
	A) 4296	B) 6006	C) 9009	D) 18018	3
30.	$3^{2013} - 3^{2012} =$:			30.
	A) 3 ¹	B) 3 ²⁰¹¹	C) 2×3^{201}	² D) 6 ¹⁰⁰⁶	
31.	The measure hands of a cir	of the smalle cular clock a	r angle formed by t t 2:46 is	he hour and mir	nute 31.
	A) 84°	B) 137°	C) 167°	D) 174°	
32.	The median o	$f \frac{1}{6}, \frac{2}{5}, \frac{3}{4}, \frac{4}{3}$	$,\frac{5}{2}$, and $\frac{6}{1}$ is		32.
	A) 1	B) $\frac{669}{360}$	C) $\frac{7}{12}$	D) $\frac{25}{24}$	
33.	55% sunflowe is 30% sunflo mix combines mixes. If Mas of each kg of	er and 45% bl wer and 70% some of eac ter mix is 45% Master mix is	t birds. His Blue mi luegrass. His Rye m ryegrass. His Mast h of the Blue and R % sunflower, how n s Blue mix? 600 g D) 650 g	hix ter ye	33.
34.	If I multiply a	ll whole num	bers from 1 through	.100,	34.
	the largest pow	ver of 4 that is	s a factor of the prod	uct is	
	A) 4 ²⁵ B)	4 ³² C) 4	⁴⁸ D) 4 ⁵⁰		=
35.	Of my books, Some are biog the ratio of th to the fractior	85% are new graphies, 70% e fraction of	y and the rest are us 6 of which are new. new books that are ks that are biograp	What is biographies	35.

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

SEVENTH GRADE MATHEMATICS CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample 7th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Instructions

- **Time** Do *not* open this booklet until told by your teacher to begin. You might be *unable* to finish all 35 questions in the 30 minutes allowed.
- **Scores** Remember that *this is a contest, not a test*—there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with 14 points, *should be commended!* High-scoring students may be invited to our "Math Camp," held last August at Stanford University.
- **Results Posted Online** Scores of high-scoring schools, both regional and overall, will be posted at *www.mathleague.com* no later than April 15.
- Format, Point Value, & Eligibility Every answer is an A, B, C, or D. Write answers in the *Answers* column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 7 or below and only if you don't also take this year's Annual 6th or Annual 8th Grade Contest.

Please Print (To the student: You must complete all items below)

 Last Name
 First Name

 School
 Grade Level

Time at Start of Contest _____ Today's Date _____

Do Not Write In The Space Below

To the Teacher:

Please enter the score at the right before you return this paper to the student. *Papers with scores of 30 or higher must be held until June 1. Student's Score:*

Eighteen books of past contests, *Grades 4*, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6), *Grades 7 & 8* (Vols. 1, 2, 3, 4, 5, 6), and *High School* (Vols. 1, 2, 3, 4, 5, 6), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2013 by Mathematics Leagues Inc.

	0.11.1.1		H GRADE CONTEST		Answers
1.		U	hich is closest to 10		1.
	A) 10.00	B) 10.90	C) 10.95	D) 11.00	
2.	$\sqrt{4 \times 9 \times 16} =$				2.
	A) 9	B) 24	C) 29	D) 36	
3.	after he tried	angry. He has 4 to divide 256 gr ıbs. There could	ubs equally		3.
	A) 5 B)	6 C) 8	D) 11		
4.	The tenths di hundredths d	igit of <u>?</u> is large digit.	er than its	su Cares	4.
	A) 543.21	B) 231.23	C) 654.56	D) 642.46	
5.	$3^2 + 3^2 + 3^2 =$				5.
	A) 3 ³	B) 3 ⁶	C) 9 ³	D) 9 ⁶	
6.	$3 \div \frac{1}{6} = 9 \div$				6.
	A) $\frac{1}{18}$	B) $\frac{1}{12}$	C) $\frac{1}{2}$	D) $\frac{9}{2}$	
7.	The greatest	common factor o	of 2013 and <u>?</u> is 1	1.	7.
	A) 231	B) 365	C) 418	D) 542	
8.	Three times a	a certain number	is 36. One-third of	that certain numbe	ris 8.
	A) 4	B) 12	C) 36	D) 108	
9.	If a case of eact of crates of 12 c	ggs contains 12 d ases each?	lozen eggs, how m	any eggs are in two	9.
	A) 48	B) 144	C) 288	D) 3456	
10.	One hundred A) 10	l million divideo B) 100	l by ten thousand o C) 1000	equals D) 10000	10.
11.	square the sa The circular single point.	me size as the o brim touches eac The perimeter o of the circular b	uts his hat down o pening of a chimne ch side of the squar f the square is 4 m. rim of Ashley's hat D) 4 m	ey. re at a What	11.
12.	0 1 0 4	$\frac{4}{6} \times \frac{5}{7} \times \frac{6}{8} \times \frac{7}{9} \times \frac{7}{1}$	10 10		12.
	A) $\frac{3}{19}$ B)	$\frac{2}{9}$ C) $\frac{1}{9}$	D) $\frac{2}{90}$		
13.	20 + 30 + 40 -	(the average of 20	0, 30, and 40) =		> 13.
	A) 0 B)	45 C) 60	D) 90		

2012-2013 7TH GRADE CONTEST	Answers
14. Del loves sandwiches so much that 130 of his last 250 meals were sandwiches. What percent of those last 250 meals were <i>not</i> sandwiches?	14.
A) 40% B) 44% C) 48% D) 52%	
5. The sum of the two least odd divisors of 120 is	15.
A) 4 B) 5 C) 8 D) 15	
16. I collect 20 seashells every 30 minutes, but I drop 3 shells every 2 hours. If I collect shells for 8 hours, I will end up with <u>?</u> shells.	16.
A) 68 B) 136 C) 296 D) 308	
7. The number of nickels in \$3.00 plus the number of dimes in \$6.00 is half the number of quarters in	17.
A) \$12.00 B) \$15.00 C) \$30.00 D) \$60.00	
8. 0.05% of 10 000 equals	18.
A) 5 B) 50 C) 500 D) 5000	
9. The sum of 13 consecutive integers is 13. The greatest of the integers is	19.
A) 6 B) 7 C) 9 D) 13	
20. Apples cost 65¢ each and oranges cost 85¢ each. If I spend \$8.80 on apples and oranges, how many pieces of fruit did I buy all together?	20.
A) 11 B) 12 C) 13 D) 14	
1. Dragon Doug reads a prime number of books each month. If each prime is different, which of the following <i>cannot</i> be the total number of books he reads in 3 months?	21.
A) 10 B) 12 C) 13 D) 15	
2. The number halfway between 45 674 567 and 67 896 789 is	22.
A) 55 443 322 B) 55 556 666 C) 56 565 656 D) 56 785 678	
3. $\sqrt{49} - \sqrt{16} =$	23.
A) $\sqrt{33}$ B) $\sqrt{25}$ C) $\sqrt{9}$ D) $\sqrt{3}$	
4. The greatest power of 3 that divides 2016^{2013} is	24.
A) 3 ²⁰¹³ B) 3 ²⁰¹⁵ C) 3 ⁴⁰²⁶ D) 3 ⁶⁰³⁹	
5. A new spa opens for the first time on Wednesday, March 2. If it is open only on Monday through Friday each week, its 21st day open will be	25.
A) March 22 B) March 23 C) March 30 D) March 31	

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

Information & Solutions

2012-2013 Annual 7th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013 **Directions for Grading**

- **Security and Solutions** *Do not look at these solutions until after the contest.* Detailed solutions appear in each question box, and letter answers are in the *Answers* columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Urgent Questions?** For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- **Scores** Please remember that *this is a contest, and not a test*—there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards & Results The original contest package contained 5 Certificates of Merit—1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Tues., March 8, 2011 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 15, 2011.
- Return of Student Papers Originals of contest papers with scores of 30 or more *must* be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an *understanding* of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Eighteen books of past contests, *Grades* 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6), *Grades* 7 & 8 (Vols. 1, 2, 3, 4, 5, 6), and *High School* (Vols. 1, 2, 3, 4, 5, 6), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2013 by Mathematics Leagues Inc.

	2	012-2013 7TH GR	ADE CONTEST SOL	LUTIONS	Answers
1.	The difference	e between 10.98 a	and $11.00 = 0.02$, s	so 11.00 is closest.	1.
	A) 10.00	B) 10.90	C) 10.95	D) 11.00	D
2.	$\sqrt{4 \times 9 \times 16} = 2$	$2 \times 3 \times 4 = 24.$			2.
	A) 9	B) 24	C) 29	D) 36	В
3.		ce that leaves a r			3.
		rided into 256 is 6 ıld have 6 cubs.	o. Thus,		В
	2		D) 11	Contraction of the second seco	
4.	The tenths di hundredths d	git of 543.21 is 2, igit is 1.	and its		- 4. A
	A) 543.21	B) 231.23	C) 654.56	D) 642.46	11
5.	$3^2 + 3^2 + 3^2 =$	9 + 9 + 9 = 27 = 3	3 ³ .		5.
	A) 3 ³	B) 3 ⁶	C) 9 ³	D) 9 ⁶	А
6.	$3 \div \frac{1}{6} = (3 \times 3)^{1}$	$3) \div (3 \times \frac{1}{6}) = 9 \div$	$\div \frac{3}{6} = 9 \div \frac{1}{2}.$		6.
	A) $\frac{1}{18}$	B) $\frac{1}{12}$	C) $\frac{1}{2}$	D) $\frac{9}{2}$	С
7.	Since 2013 =	$3 \times 11 \times 61$ and 413	$8 = 2 \times 11 \times 19$, the	e correct answer is 418	. 7.
	A) 231	B) 365	C) 418	D) 542	С
8.	If 3 times a nu	umber is 36, the n	umber is 12; one-t	hird of 12 is 4.	8.
	A) 4	B) 12	C) 36	D) 108	А
9.		gs contains $12 \times 12 \times 12 \times 144 = 34$		n two crates of 12	9. D
	A) 48	B) 144	C) 288	D) 3456	2
10.	100000000 ÷	10000 = 10000.			10.
	A) 10	B) 100	C) 1000	D) 10000	D
11.			am, a diameter of to the length of a		11.
	of the	e square. The squ	are has a side-len	gth	
		n. Since a radius radius of the brin	of a circle is half c m is 0.5 m.	ot a	A
			D) 4 m		
12	$\frac{1}{2} \times \frac{2}{2} \times \frac{2}{2} \times \frac{2}{2}$	$\frac{1}{\sqrt{2}} \times \frac{\cancel{8}}{\cancel{8}} \times \frac{\cancel{7}}{\cancel{8}} \times \frac{\cancel{7}}{\cancel{8}} \times \frac{\cancel{8}}{\cancel{10}} \times \frac{\cancel{8}}{\cancel{10}}$	$=\frac{1}{2}\times\frac{2}{2}$		12.
					В
	A) $\frac{3}{19}$ B)	$\frac{2}{9}$ C) $\frac{1}{9}$	D) $\frac{2}{90}$		
13.	20 + 30 + 40 - 6	$(20+30+40) \div 3 =$	= 90 - 30 = 60.		13.
	A) 0 B)	45 C) 60	D) 90		C
			2 0	Go on to the next page	₩ 7

2012-2013 7TH GRADE CONTEST SOLUTIONS	Answers			
 14. If 130 of Del's last meals were sandwiches, then 120 were not. Since 120 ÷ 250 = 0.48, 48% of those last 250 meals were not sandwiches. 				
A) 40% B) 44% C) 48% D) 52%	C			
15. The two least odd divisors of 120 are 1 and 3.	15.			
A) 4 B) 5 C) 8 D) 15	А			
16. Every 4 × 30 min. = 2 hours, I collect 4 × 20 = 80 seashells and drop 3 seashells. In 2 hours I have a total of 77 seashells, so in 8 hours I have 77 × 4 = 308 seashells.	16. D			
A) 68 B) 136 C) 296 D) 308				
17. The number of nickels in \$3.00 is 300 ÷ 5 = 60. The number of dimes in \$6.00 is 600 ÷ 10 = 60. That's 120 coins; 240 quarters = \$60.00.	17. D			
A) \$12.00 B) \$15.00 C) \$30.00 D) \$60.00				
18. 0.05% of $10000 = 0.0005 \times 10000 = 5$.	18.			
A) 5 B) 50 C) 500 D) 5000	A			
19. The middle number is $13 \div 13$. The integers are -5 , -4 , -3 , 5, 6, and 7.	19.			
A) 6 B) 7 C) 9 D) 13	В			
20. One apple plus one orange costs \$1.50. If I spend $5 \times $1.50 = 7.50 , I'll have \$1.30 left to buy 2 more apples. That's a total of 12 pieces.	20. B			
A) 11 B) 12 C) 13 D) 14	_			
21. Since 10 = 2+3+5, 12 = 2+3+7, and 15 = 3+5+7, Dragon Doug cannot read 13 books in 3 months.	21. C			
A) 10 B) 12 C) 13 D) 15				
22. The average of 45 674 567 and 67 896 789 is (45 674 567 + 67 896 789) ÷ 2 = 56 785 678.	22.			
A) 55 443 322 B) 55 556 666 C) 56 565 656 D) 56 785 678	D			
23. $\sqrt{49} - \sqrt{16} = 7 - 4 = 3 = \sqrt{9}$.	23.			
A) $\sqrt{33}$ B) $\sqrt{25}$ C) $\sqrt{9}$ D) $\sqrt{3}$	C			
4. $2016^{2013} = (2^5 \times 3^2 \times 7)^{2013} = 2^{10065} \times 3^{4026} \times 7^{2013}.$				
A) 3 ²⁰¹³ B) 3 ²⁰¹⁵ C) 3 ⁴⁰²⁶ D) 3 ⁶⁰³⁹	C			
25. Friday, Mar. 4, is the 3rd day it's open. Three weeks later, Mar. 25, is the 18th day. Monday, Mar. 28, is day 19, so Mar. 30 is the 21st day.	25.			
A) March 22 B) March 23 C) March 30 D) March 31	C			
3 Go on to the next page \	· –			

Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

SEVENTH GRADE MATHEMATICS CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample 7th Grade Contest

Tuesday, February 19 (alternate date: February 26), 2019

Instructions

- **Time** Do *not* open this booklet until told by your teacher to begin. You might be *unable* to finish all 35 questions in the 30 minutes allowed.
- **Scores** Remember that *this is a contest, not a test*—there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with half that, 14 points, *should be commended!* High-scoring students may be invited to our "Math Camp" in July.
- **Results Posted Online** High-scoring contest results, both overall and regional, will be posted at *www.mathleague.com* no later than April 15.
- Format, Point Value, & Eligibility Every answer is an A, B, C, or D. Write answers in the *Answers* column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 7 or below and only if you don't also take this year's Annual 6th or Annual 8th Grade Contest.

Please Print (To the student: You must complete all items below)

	Last Name		First Name	
	School	Teacher _		_ Grade Level
_	Time at Start of Contest		_ Today's Date	
	Do Not	Write In	The Space Belo	W
_	<i>To the Teacher:</i> Please enter the score at th	e right befo	ore vou	

Please enter the score at the right before you return this paper to the student. *Papers with scores of 30 or higher must be held until June 1.* S

Student's Score:

Twenty-one books of past contests, *Grades 4*, *5*, & 6 (*Vols. 1*, *2*, *3*, *4*, *5*, *6*, *7*), *Grades 7 & 8* (*Vols. 1*, *2*, *3*, *4*, *5*, *6*, *7*), and *High School* (*Vols. 1*, *2*, *3*, *4*, *5*, *6*, *7*) are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright ${\ensuremath{\mathbb O}}$ 2019 by Mathematics Leagues Inc.

		2018-20	19 7TH GR	ADE CONTES	T	Answers
1.	$(2 \times 4 \times 8)$ -	$\div 2 = 4 \times \underline{?}$	_			1.
	A) 2	B) 4		C) 8	D) 16	
2.	awake. For	how many l	nours does	y hours as he Al sleep dai		2.
	A) 6	B) 9	C) 12	D) 18		
3.	The numbe	•				3.
	A) -6	B) 6	C) -30	D) 42		
4.	$20 \times 18 = 20$					4.
	A) -1	B) 0	C) 1	D) 20		
5.		10		for her nooi	n } (((4))	5.
	appointmer	nt. At what t	ime did A	ngel arrive?	<u>destatus</u>	
	A) 11:18 a.	m. B) 11:	20 a.m.	C) 11:40 a.r	n. D) 11:42 a.m.	
6.	The produc	t of the least	and great	est positive o	odd factors of 2019 is	6.
	A) 673	B) 201	19	C) 2020	D) 6057	
7.	The average	e value of th	e ten whol	le numbers fi	rom 0 through 9 is	7.
	A) 5.5	B) 5		C) 4.5	D) 4	
8.	$2019 \times 3 + 2$		019 × (3 +	?)		8.
	A) 0	B) $\frac{1}{3}$		C) 1	D) 3	
9.	The produc	ct of four 4s e	equals the	sum of <u>?</u> 4	S.	9.
	A) 4	B) 3×	× 4	C) 4 ³	D) 4 ⁴	
10.	What is the	area of a sq	uare if one	-third its sid	e-length is 4?	10.
	A) 12 B	6) 16 C)	48 D)	144		
11.	number of 1 day did my	members do club first ha	ubled each ive over 20) members. If 1 day, on wha 118 members' 1ay D) Frida	at ?	11.
12.	yields a nur original dec	mber that is cimal.	at most <u>?</u>	t whole num greater that		12.
			0.5 D)			+
13.				area 2019 an dth differ by	d integral side-lengths	13.
	A) 0	B) 1		C) 670	D) 2018	
					Go on to the next page	₩ 7

2018-2019 7TH GRADE CONTEST	Answers
14. If half of my pals have at least 1 pet, and 1/3 of my pals with a pet have more than 1 pet, what fraction of my pals have exactly 1 pet?	14.
A) $\frac{1}{6}$ B) $\frac{1}{3}$ C) $\frac{2}{3}$ D) $\frac{5}{6}$	
15. The average of 0.5, 1.5, and 2.5 equals the average of 1 and	15.
A) 1 B) 1.5 C) 2 D) 2.5	
16. $9 \times 90 \times 900 \times 9000 = 9 \times _?_$	16.
A) 100 ³ B) 900 ³ C) 9000 ³ D) 9000000 ³	
17. What is one less than the product -18×19 ?	17.
A) -341 B) -342 C) -343 D) -344	
18. When I divide the number of digits in the decimal form of 10^{2018} by 4, the remainder is	18.
A) 3 B) 2 C) 1 D) 0	
19. My first name has 60% as many letters as my last name. My first name <i>could</i> be	19.
A) Al B) Ali C) Alex D) Alexa	
20. What is the <i>least</i> possible sum of two integers whose product is 12?A) -13B) -11C) 7D) 8	20.
21. Of the first 100 positive integers, <u>?</u> are <i>not</i> multiples of both 2 and 3.	21.
A) 16 B) 32 C) 64 D) 84	
22. If one-third of the eggs in each carton of 1-dozen eggs are cracked, I must buy _?_cartons to get 16-dozen eggs that are <i>not</i> cracked.	22.
A) 48 B) 36 C) 24 D) 20	
23. Which of the following is nearest in value to 8.25?	23.
A) $8\frac{2}{5}$ B) $8\frac{2}{10}$ C) $8\frac{5}{10}$ D) $8\frac{10}{25}$	
24. I bowled on 2 days every week, on a different pair of days each week that I bowled. For at most how many weeks did I bowl?	24.
A) 14 B) 21 C) 28 D) 35	
25. Which of the following has the least value?	25.
A) 0.1 B) 0.01 C) 0.0011 D) (0.01) ²	

	2018-2019 7TH GRADE SOLUTIONS	Answers
	Such a prism has 4 edges of each size. The sum of the 3	26.
	dimensions is 15 m, so the sum of all the lengths is 60 m.	
	A) 15 m B) 60 m C) 80 m D) 120 m	
27. 1	The ratio of $\frac{4}{3}$ to $\frac{3}{4}$ is $\frac{16}{9}$.	27. D
	A) 1 B) $\frac{3}{4}$ C) $\frac{4}{3}$ D) $\frac{16}{9}$	
	I bought an odd number of pens, so I bought an odd	28.
]	number of packs of 3. If I bought 1 pack of 3, I could have bought 2 packs of 8, 1 pack of 6, and 8 packs of	P
	12. No other number of packs of 3 yields 12 packs.	B
	A) 1 B) 2 C) 3 D) 4	
29. ($3^2 \times (2 \times 2 \times 2)^2 \times 5^2 = (3 \times 2)^2 \times 2^2 \times (5 \times 2)^2.$	29. C
	A) $\frac{1}{2}$ B) 2 C) 2^2 D) 2^3	
30. 7	There is one "1" from 1 to 9, 11 "1"s from 10 to 19, one "1" in	each of 30.
	the next 8 groups of 10 integers, and one "1" in 100.	D
	A) 18 B) 19 C) 20 D) 21	
31.	When expanded, $20^{10} = 10240000000000$. The difference between the product and the sum of the non-zero digits is $8 - 7 = 1$.	ween 31. A
	•	
	A) 1 B) 2 C) 10^2 D) 2×10^{-10})
32.]	A) 1 B) 2 C) 10^2 D) 2×10^2 In the sequence 20, $\frac{19}{2}$, $\frac{18}{3}$, $\frac{17}{4}$,, each term after the first term	erm is ^{32.}
iı	gotten by subtracting 1 from the previous term's numerator as ing 1 to the previous term's denominator. The only integers ir sequence are 20, 18/3, and 14/7.	nd add- 1 this C
	A) 1 B) 2 C) 3 D) 4	
1	The area of each rectangle is half of the area of the non-overlap region plus the area of the square. Therefore, the area of each re is $12/2 + 4 = 10$.	
	A) 4 B) 6 C) 8 D) 10	
34.	If the mean of three positive integers is 5, their	34.
	sum is 15. The integers could be 5, 5, and 5.	C
	A) 105 B) 120 C) 125 D) 150	
	Since the square root of 100 000 is between 316 and 317, 317 is the smallest such 3-digit integer.	35. D
	A) 5 B) 7 C) 9 D) 11	
	The end of the c	contest 🙇 7

Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Information & Solutions

Tuesday, February 19 (alternate date: February 26), 2019

Directions for Grading

- **Security and Solutions** *Do not look at these solutions until after the contest.* Detailed solutions appear in each question box, and letter answers are in the *Answers* columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Urgent Questions?** For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- **Scores** Please remember that *this is a contest, and not a test* there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards & Results The original contest package contained 5 Certificates of Merit—1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Fri., March 9, 2018 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 12, 2019.
- Return of Student Papers Originals of contest papers with scores of 30 or more *must* be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an *understanding* of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Twenty-one books of past contests, *Grades* 4, 5, & 6 (*Vols.* 1, 2, 3, 4, 5, 6, 7), *Grades* 7 & 8 (*Vols.* 1, 2, 3, 4, 5, 6, 7), and *High School* (*Vols.* 1, 2, 3, 4, 5, 6, 7) are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2019 by Mathematics Leagues Inc.

	2018	3-2019 7TH GRA	DE SOLUTIONS		Answers
1.	$(2 \times 4 \times 8) \div 2 = 1$	$\times 4 \times 8 = 4 \times 8$			1.
	A) 2 B) 4	C) 8	D) 16	С
2.	Al sleeps daily for sleeps for 18 hours		Therefore, Al		2. D
	A) 6 B) 9	C) 12	D) 18		
3.	$36 = 6 \times 6 = (-6) \times$	(-6).			3.
	A) -6 B) 6	C) -30	D) 42		А
4.	$20 \times (19 - 1) = 20 \times$	< 19 + 20 × (-1).			4.
	A) -1 B) 0	C) 1	D) 20		А
5.	Since $\frac{3}{10}$ of 60 min	utes is 18 minu	tes, Angel		5.
	arrived 18 minutes				D
) 11:20 a.m.	C) 11:40 a.m.	D) 11:42 a.m.	
6.	The product of 1 a	nd 2019 is 2019.			6.
	A) 673 B) 2019	C) 2020	D) 6057	В
7.	The sum of the firs	t ten whole nur	nbers is 45. Their	average is 4.5.	7.
	A) 5.5 B) 5	C) 4.5	D) 4	С
8.	$2019 \times 3 + 2019 \times 1$	$/3 = 2019 \times (3 + 10^{-3})$	+ 1/3).		8.
	A) 0 B) $\frac{1}{3}$	C) 1	D) 3	В
9.	The product of fou	r 4s = 256 = 4	× 64; this is the su	ım of 64 4s.	9.
	A) 4 B) 3×4	C) 4 ³	D) 4 ⁴	С
10.	If 1/3 the side-leng	th is 4, the side-	length is 12 and	the area is 144.	10.
	A) 12 B) 16	C) 48 D)	144		D
11.	Doubling 20 six tim members 7 days lat is also a Monday.	ter. Seven days	after a Monday		11. B
10	A) Sunday B) Mor			- /	
12.	A number such as of 0.5. This is the g a number is round	reatest possible	increase when		12. C
	A) 0.05 B) 0.1	C) 0.5 D)	0.9		
13.	The perimeter is gr The difference betw				13. D
	A) 0 B) 1	C) 670	D) 2018	
			Go o	n to the next page 🛯	▶ 7

An	iswers			2018-2019 7TH	GRADE SOLUTIO	NS	Answer
	1. C 2.	0	of them, or 1 p	³ pals have at lea pal, has more th pals with exact	an 1 pet. The ³	GOL	14. B
	D			C) $\frac{2}{3}$ D) $\frac{5}{6}$			
	3.	15. T	The average of	f 0.5, 1.5, and 2.5	5 is 1.5; the averag	ge of 1 and 2 is also 1.5.	15.
	А	A	A) 1	B) 1.5	C) 2	D) 2.5	С
	4.	16. 9	\times (9 \times 10) \times	$(9 \times 100) \times (9 \times$	$1000) = 9 \times (9^3 \times$	$(1000000) = 9 \times 900^3.$	16.
	А	A	A) 100 ³	B) 900 ³	C) 9000 ³	D) 9000000 ³	В
	5.		,	one less than -34	12 is -343.	,	17.
	D	A	A) -341	B) -342	C) -343	D) -344	С
	6.		The number o s 504R3.	of digits in the d	ecimal form of 1	0 ²⁰¹⁸ is 2019; 2019 ÷ 4	18. A
	B	A	A) 3	B) 2	C) 1	D) 0	
	7. C			of letters in the fi 5-letter last nam		60% of the number	19. B
┢		A	A) Al	B) Ali	C) Alex	D) Alexa	
	8. B	20. 1	$2 = \pm 1 \times \pm 12$	$=\pm2\times\pm6=\pm3$	\times ±4; the least su	um is -1 + (-12) = -13.	20.
	_	A	A) -13	B) -11	C) 7	D) 8	А
	9.	21. S	ince 100 ÷ 6 =	= 16R4, 16 are n	nultiples of both 2	2 and 3, and 84 are not.	21.
	С	A	A) 16	B) 32	C) 64	D) 84	D
1	0. D				ggs that are not c cracked. I need 2	racked, 3 cartons con- 4 cartons in all.	22. C
1	1.	A	A) 48	B) 36	C) 24	D) 20	
	В	23. Iı	n order, the cl	hoices are 8.40, 8	8.20, 8.50 and 8.40	: 8.20 is nearest.	23.
		A	A) $8\frac{2}{5}$ B)	$8\frac{2}{10}$ C) $8\frac{2}{10}$	$\frac{5}{10}$ D) $8\frac{10}{25}$		В
	2. C	a	total of 42 pa	be paired with 6 airs. However, e twice, so there a	ach pair has		24. B
4	2	A	A) 14 B)) 21 C) 28	D) 35		_
	3. D	25. V	Vrite with 4 d	ligits to the righ	t of the decimal.		25.
	D	A	A) 0.1	B) 0.01	C) 0.0011	D) (0.01) ²	D

	2004-2005 8TH GRADE CONTEST				
29.	$2^{10} \times 2^{10} =$ A) 2^{20} B) 2^{100} C) 4^{20} D) 4^{100}	29.			
30.	I got immunized on the one millionth second of this calen- dar year. That happened on A) January 11 B) January 12 C) February 1 D) February 2	30.			
31.	$\sqrt{16^{16}} =$ A) 4 ⁴ B) 4 ⁸ C) 16 ⁴ D) 16 ⁸	31.			
32.	Each of 2005 fractions has an even numerator and an odd de- nominator. If the product of all of them is an integer, it must be A) even B) odd C) prime D) 2005	32.			
33.	If x is a whole number, what is the largest possible perimeterof a triangle with side-lengths 3, 4, and x?A) 11B) 12C) 13D) 14	33.			
34.	When fully expanded, 10 000 ⁹⁹⁹⁹ has <u>?</u> digits. A) 9999 B) 10 000 C) 39 996 D) 39 997	34.			
35.	In the diagram, the total number of different triangles is A) 2 B) 3 C) 4 D) 5	35.			
36.	If the sum of 2000 consecutive integers is 1000, then the sumof the digits of the greatest of these 2000 integers isA) 1B) 2C) 9D) 27	36.			
37.	How many of the 15 positive factors of 400 are divisible by 4?A) 4B) 8C) 9D) 10	37.			
38.	I phoned my mom to help me answer this, the final question on a quiz show: How many integers equal their own squares? Mom said, "?" She was right! A) zero B) one C) two D) three	38.			
39.	At 12:22, a clock's hour hand is ? away from a vertical position.A) 10°B) 11°C) 21°D) 22°	39.			
40.	What is the tens' digit of the product $1 \times 2 \times 3 \times \ldots \times 98 \times 99$?A) 4B) 6C) 8D) 0	40.			

The end of the contest 🖄 8

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors EIGHTH GRADE MATHEMATICS CONTEST Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample 8th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005

Instructions

- **Time** Do *not* open this booklet until you are told by your teacher to begin. You will have only 30 *minutes* working time for this contest. You might be *unable* to finish all 40 questions in the time allowed.
- Scores Please remember that this is a contest, not a test—and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, should be commended!
- Format, Point Value, & Eligibility This is a multiple-choice contest. Every answer is an A, B, C, or D. You must write each answer in the Answers column to the right of each question. We suggest (but do not require) that you use a pencil. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you're in grade 8 or below and only if you don't also take this year's Annual 7th Grade or Annual 6th Grade Contest.

Please Print (To the student: You must complete all items below)

Last Name	First Name
School Teacher	Grade Level
Time at Start of Contest	Today's Date
Do Not Write In 1	-
To the Teacher:	-
Please enter the score at the right before return this paper to the student. <i>Papers</i>	
scores of 30 or higher must be held until Ju	
Fifteen books of past contests, Grades 4, 5, 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3,	& 6 (Vols. 1, 2, 3, 4, 5), Grades 7 & 8 (Vols. 4 ,5), are available, for \$12.95 per volume

Copyright © 2005 by Mathematics Leagues Inc.

(\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

	2004-2005 8TH GRADE CONTEST	Answers
1.	1110 - 1020 = 110 - ? A) 102 B) 101 C) 90 D) 20	1.
2.	If my doctor's "IN" sign is a square with a perimeter of 4, then its area is A) 1 B) 4 C) 8 D) 16	2.
3.	$300 \div 200 = 1 \div \underline{?}$ A) $\frac{1}{3}$ B) $\frac{1}{2}$ C) $\frac{2}{3}$ D) $\frac{3}{2}$	3.
4.	When written as an improper fraction, five-fourths is A) $\frac{4}{5}$ B) $1\frac{1}{4}$ C) 1.25 D) $\frac{5}{4}$	4.
5.	2005-2005-2004 = A) 1 B) -2004 C) -2005 D) -2006	5.
6.	Exactly 120 seconds after midnight, the correct time is A) 12:02 P.M. B) 12:02 A.M. C) 2 P.M. D) 2 A.M.	6.
7.	$24 \div 4 \times 2 + 4 =$ A) 1 B) 7 C) 16 D) 36	7.
8.	The reciprocal of $(\frac{1}{2} \times 4)$ is A) $2 \times \frac{1}{4}$ B) $\frac{1}{2} \times 4$ C) $\frac{1}{2} \times \frac{1}{4}$ D) 2×4	8.
9.	Of the following numbers, which is closest in value to 1?Image: Constant of the following numbers, which is to 1?A) 0.995B) 0.99C) 1.01D) 1.1	9.
10.	What is the sum of all the one-digit positive prime numbers?A) 15B) 16C) 17D) 18	10.
11.	$2 \times \frac{1}{2} \times 4 \times \frac{1}{4} \times 6 \times \frac{1}{6} =$	11.
	A) 1 B) 6 C) 12 D) 24	
12.	When I add the measures of any 2 angles of triangle T, the sum is always 120°. Triangle T must beA) scaleneB) rightC) obtuseD) equiangular	12.
13.	I wear my headphones only on cloudy days. The day after each cloudy day is a sunny day. I wear my headphones at most ? times in a week. A) 3 B) 4 C) 5 D) 6	13.
14.	Of the following, which has the largest value? A) 7 B) $(-1)^2$ C) $(-2)^2$ D) $(-3)^2$	14.
15.	9000% + 900% + 90% + 9% = A) 9999 B) 999.9 C) 99.99 D) 0.9999	15.
	Go on to the next page III	▶ 8

	2004-2005 8TH GRADE CONTEST	Answer
16.	A dealer paid Bunny Fabergé 50 pennies for each of his decorated eggs, The dealer then sold each egg for 50 quarters. Bunny (the artist) got what percent of the final purchase price? A) 2% B) 4% C) 25% D) 50%	16.
17.	$\sqrt[4]{\sqrt{256}} =$ A) 2 B) 4 C) 8 D) 16	17.
18.	$30\% \times 40\% =$ A) 12% B) 120% C) 1200% D) 12000%	18.
19.	The number ?has exactly 4 different whole number factors.A) 30B) 24C) 12D) 10	19.
20.	When rounded to the nearest <i>fifth</i> , 0.33 becomes A) 0.2 B) 0.3 C) $\frac{2}{5}$ D) $\frac{3}{5}$	20.
21.	I lost my coins! This morning, I had 7 coins worth 49¢. How many nickels did I have? A) 0 B) 1 C) 2 D) 7	21.
22.	$\begin{array}{c} 1.5 \text{ m} + 60 \text{ cm} + 0.02 \text{ km} = \\ \text{A} \ 0.221 \text{ m} \ \text{B} \ 2.21 \text{ m} \ \text{C} \ 22.1 \text{ m} \ \text{D} \ 221 \text{ m} \end{array}$	22.
23.	How many of the positive multiples of 2 are factors of 222?A) 111B) 4C) 3D) 1	23.
24.	What is the average of the first 99 positive whole numbers?A) 49.00B) 49.50C) 49.75D) 50.00	24.
25.	If a small circle's diameter is a large circle's radius, then the small circle's area is <u>?</u> % of the large circle's area. A) 20 B) 25 C) 40 D) 50	25.
26.	If 2/3 of a cup of fish food can feed 8 goldfish, then 4 cups of fish food should be able to feed <u>?</u> goldfish. A) 12 B) 24 C) 36 D) 48	26.
27.	An integer cannot be ? if its square is even.A) primeB) oddC) evenD) zero	27.
28.	If $4x$ = the reciprocal of $\frac{1}{x^3}$, then x could equal A) $\frac{1}{8}$ B) $\frac{1}{2}$ C) 2 D) 8	28.

	2004-2005 8TH GRADE CONTEST SOLUTIONS	Answers
29.	$2^{10} \times 2^{10} = 2^{10+10} = 2^{20}$. A) 2^{20} B) 2^{100} C) 4^{20} D) 4^{100}	29. A
30.	Divide by 60 to get # minutes. Repeat to get # hours. Divide re- sult by 24 to get # days \approx 11.57. A) January 11 B) January 12 C) February 1 D) February 2	30. В
31.	As in 29 above, $16^8 \times 16^8 = 16^{16}$, so $\sqrt{16^{16}} = 16^8$. A) 4^4 B) 4^8 C) 16^4 D) 16^8	31. D
32.	If 2005 fractions each have an even numerator and an odd denominator of 1, their product would be an even integer. A) even B) odd C) prime D) 2005	32. A
33.	In a \triangle , the sum of the 2 smaller side-lengths must be greater than the 3rd side-length. Thus, the perimeter $\leq 3+4+6 = 13$. A) 11 B) 12 C) 13 D) 14	33. C
34.	$10\ 000^{9999} = (10^4)^{9999} = 10^{39\ 996}$. That's 1 followed by 39 996 zeroes!A) 9999B) 10 000C) 39 996D) 39 997	34. D
35.	The 2 small and 2 large \triangle s are shown: A) 2 B) 3 C) 4 D) 5 \bigtriangleup \triangle \checkmark	35. С
36.	The 2000 integers -999, -998,, 998, 999, 1000 have a sum of 1000. The digit-sum of the largest integer used is $1+0+0+0 = 1$.A) 1B) 2C) 9D) 27	36. A
37.	The 9 factors divisible by 4 are 4, 8, 16, 20, 40, 80, 100, 200, & 400. A) 4 B) 8 C) 9 D) 10	37. С
38.	Notice that $0^2 = 0$ and that $1^2 = 1$. These are the only two integers which are equal to their own squares. A) zero B) one C) two D) three	38. C
39.	The hr. hand moves 30° in 1 hr. and $(22/60) \times 30^{\circ} = 11^{\circ}$ in 22 mins. A) 10° B) 11° C) 21° D) 22°	39. В
40.	The product includes several multiples of 10; it's divisible by 100.A) 4B) 6C) 8D) 0	40. D

The end of the contest $\not \mathbb{A}$ 8

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

Information & Solutions

2004-2005 Annual 8th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005 Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Urgent questions?** Call 1-201-568-6328.
- Scores Please remember that *this is a contest, not a test*—and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, *should be commended*!
- Awards & Results The original contest package contained 5 Certificates of Merit—1 each for the highest scoring student on each grade level, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates. Only score reports postmarked by Fri., Feb. 25, 2005, and received by Tues., Mar. 9, 2005 can be used in our Summary of Contest Results newsletter, which you'll receive no later than Tues., May 10, 2005.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Fifteen books of past contests, *Grades 4*, *5*, *& 6* (*Vols. 1*, *2*, *3*, *4*, *5*), *Grades 7 & 8* (*Vols. 1*, *2*, *3*, *4*, *5*), and *High School* (*Vols. 1*, *2*, *3*, *4*, *5*), are available, for \$12.95 per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

	2004-2005 8TH GRADE CONTEST SOLUTIONS	Answers
1.	Subtract 1000 from each: 110-020. A) 102 B) 101 C) 90 D) 20	1. D
2.	Each side of the square has length $4 \div 4 = 1$. The square's area = $1^2 = 1$. A) 1 B) 4 C) 8 D) 16	2. A
3.	$300 \div 200 = 3/2 = 1 \times (3/2) = 1 \div (2/3).$ A) $\frac{1}{3}$ B) $\frac{1}{2}$ C) $\frac{2}{3}$ D) $\frac{3}{2}$	3. C
4.	Five-fourths = 5/4, which is an improper fraction. A) $\frac{4}{5}$ B) $1\frac{1}{4}$ C) 1.25 D) $\frac{5}{4}$	4. D
5.	(2005-2005)-2004 = -2004. A) 1 B) -2004 C) -2005 D) -2006	5. B
6.	120 seconds = 2 minutes, so the time is 12:02 A.M. A) 12:02 P.M. B) 12:02 A.M. C) 2 P.M. D) 2 A.M.	6. B
7.	$24 \div 4 \times 2 + 4 = [(24 \div 4) \times 2] + 4 = (6 \times 2) + 4 = 12 + 4 = 16.$ A) 1 B) 7 C) 16 D) 36	7. C
8.	$\frac{1}{2} \times 4 = 2$, so its reciprocal is $\frac{1}{2} = 2 \times \frac{1}{4}$. A) $2 \times \frac{1}{4}$ B) $\frac{1}{2} \times 4$ C) $\frac{1}{2} \times \frac{1}{4}$ D) 2×4	8. A
9.	$\begin{array}{c} 1.000-0.995 = 0.005; \ 1.000-0.990 = 0.010; \\ 1.010-1.000 = 0.010; \ 1.100-1.000 = 0.100. \\ A) \ 0.995 \qquad B) \ 0.99 \qquad C) \ 1.01 \qquad D) \ 1.1 \end{array}$	9. A
10.	By definition, 1 is not a prime, so the sum is $2+3+5+7 = 17$. A) 15 B) 16 C) 17 D) 18	^{10.} C
11.	$2 \times \frac{1}{2} \times 4 \times \frac{1}{4} \times 6 \times \frac{1}{6} = (2 \times \frac{1}{2}) \times (4 \times \frac{1}{4}) \times (6 \times \frac{1}{6}) = 1 \times 1 \times 1 = 1.$ A) 1 B) 6 C) 12 D) 24	11. A
12.	The sum of the measures of each possible pair of angles is 120°, so each angle is 60°. Therefore, triangle T must be equilangular.A) scaleneB) rightC) obtuseD) equiangular	12. D
13.	If Sunday is cloudy, then Tuesday, Thursday, and Saturday may also be cloudy. I wear my headphones at most 4 times in a week. A) 3 B) 4 C) 5 D) 6	13. B
14.	Of the choices below, D has the largest value. A) 7 B) $(-1)^2 = 1$ C) $(-2)^2 = 4$ D) $(-3)^2 = 9$	14. D
15.	9000% +900% +90% +9% = 90+9+0.9+0.09 = 99.99. A) 9999 B) 999.9 C) 99.99 D) 0.9999	15. C
	Go on to the next page III	▶ 8

	2004-2005 8TH GRADE CONTEST SOLUTIONS	Answers
16.	A dealer paid Bunny Fabergé 50¢ for each of his eggs. The dealer then sold each egg for 50 quart- ers. For each penny Fabergé got, the dealer got 25¢, so Fabergé got 4¢ on the dollar, which is 4%. A) 2% B) 4% C) 25% D) 50%	16. В
17.	Since $\sqrt{256} = 16$, $\sqrt[4]{\sqrt{256}} = \sqrt{\sqrt{16}} = \sqrt{4} = 2$. A) 2 B) 4 C) 8 D) 16	17. A
18.	$0.3 \times 0.4 = 0.12$. A) 12% B) 120% C) 1200% D) 12000%	18. A
19.	The 4 whole numbers factors of 10 are 1, 2, 5, and 10. A) 30 B) 24 C) 12 D) 10	19. D
20.	1/5 = 0.2 < 0.33 < 0.4 = 2/5; 0.33 closer to 2/5. A) 0.2 B) 0.3 C) $\frac{2}{5}$ D) $\frac{3}{5}$	20. C
21.	I had 4 pennies; need 3 coins = 45ϕ , so I need 1 quarter; 2 coins = 20ϕ are 2 dimes. A) 0 B) 1 C) 2 D) 7	21. A
22.	$1.5 \text{ m} + 60 \times 0.01 \text{ m} + 0.02 \times 1000 \text{ m} = 22.1 \text{ m}.$ A) 0.221 m B) 2.21 m C) 22.1 m D) 221 m	22. C
23.	There are four even factors of 222. They are 2, 6, 74, and 222. A) 111 B) 4 C) 3 D) 1	23. B
24.	The average of 1, 2,, 98, 99 is the middle number, 50. A) 49.00 B) 49.50 C) 49.75 D) 50.00	24. D
25.	In the large circle, if $r = 2$, then the large circle's area would be 4π . Small circle then has $r = 1$, so $A = \pi$. That's 25% of 4π . A) 20 B) 25 C) 40 D) 50	25. B
26.	If 2/3 cup of fish food feeds 8 goldfish, then 1/3 cup feeds 4 fish, and 1 cup feeds 12 fish. Thus, 4 cups feed 48 fish. A) 12 B) 24 C) 36 D) 48	26. D
27.	The square of an odd number is always odd.A) primeB) oddC) evenD) zero	27. B
	Since the reciprocal of $\frac{1}{x^3}$ is x^3 , $4x = x^3$. The value $x = 2$ works.	28.

EIGHTH GRADE MATHEMATICS CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample 8th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Instructions

- **Time** Do *not* open this booklet until told by your teacher to begin. You might be unable to finish all 35 questions in the 30 minutes allowed.
- **Scores** Remember that *this is a contest, not a test*—there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with 14 points, should be commended! High-scoring students may be invited to our "Math Camp," held last August at Stanford University.
- **Results Posted Online** Scores of high-scoring schools, both regional and overall, will be posted at *www.mathleague.com* no later than April 15.
- Format, Point Value, & Eligibility Every answer is an A, B, C, or D. Write answers in the Answers column. A correct answer is worth 1 point. Unanswered questions get no credit. You **may** use a calculator. You're eligible for this contest only if you are in grade 8 or below and only if you don't also take this year's Annual 6th or Annual 7th Grade Contest.

Please Print (To the student: You must complete all items below)

Last Name _____ First Name _____ School ______ Teacher ______ Grade Level _____

Time at Start of Contest Today's Date _____

Do Not Write In The Space Below

To the Teacher:

Please enter the score at the right before you return this paper to the student. Papers with scores of 30 or higher must be held until June 1. Student's Score:

Eighteen books of past contests, Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

1		8TH GRADE CONTES	ST	Answers
1.	$(1+4+1+4) \times ? = 14140$		D) 10000	1.
	A) 10 B) 1010	C) 1414	D) 10000	
2.	The number of fish in a gia wich is divisible by 2, 3, 4, There could be <u>?</u> fish.			2.
	A) 2345B) 4567C) 5550D) 6660			
3.	The average of 25 and _?	is 2013.		= 3.
	A) 994 B) 1019	C) 1988	D) 4001	
4.	Bob rides his bicycle at 40 minutes?	km per hour. How	far will Bob ride in 3	4.
	A) 1 km B) 2 km	C) 3 km	D) 4 km	
5.	I am waiting in line with 1 brother. My brother has 10 If my brother is right in fro) people behind him	n in line, including me.	5.
	A) 11 B) 19	C) 20	D) 21	
6.	Each of my 60 books has e 4 times as many hard cove			6.
	A) 48 B) 35	C) 15	D) 12	
7.	The largest odd factor of 1	11 is		7.
	A) 3 B) 37	C) 109	D) 111	
8.	My coin jar has 100 pennie in it. The coins have a tota		limes, and 400 quarters	8.
	A) \$91 B) \$121	C) \$141	D) \$161	
9.	The hundreds digit of the p	roduct 123456789×	234567890 is	9.
	A) 0 B) 1	C) 2	D) 3	
.0.	Ben finds a pair of eyes un the rocks he checks. If he l 400 rocks, he will find <u>?</u>	ooks under eyes.		10.
	A) 100 B) 160 C) 20	0 D) 320		<u> </u>
1.	$12 \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{6} =$			11.
	A) $\frac{1}{144}$ B) $\frac{1}{12}$ C) 1	D) 12		
2.	If the measures of the angle kind of triangle is <i>T</i> ?	es of triangle T are	in a 1:2:3 ratio, what	12.

Go on to the next page 0.000 8

	Of the foll	owing, which		ADE CONTEST		
15.						1
		$6 - 4 \div 2$ (6 - 4) ÷ 2				
11					- 72	
14.		r Axel found o ds Axel found				
				? diamonds.		
	A) 2	B) 84 C) 4788 D) 19152	_ Carlos	
15.	7 hundred	ths + 7 thousa	ndths = 7 te	enths – <u>?</u>	K inn	1
	A) 0.623	B) 0.7	777	C) 0.784	D) 0.854	
16.	$2^2 \times 2^2 \times 2$	$2^{2} + 2^{2} \times 2^{2} + 2^{2}$	$2^2 = 2^2 \times \underline{?}$			1
	A) 16	B) 21		C) 32	D) 33	
17.	If I multip	ly the numbe	er of math co	ontests I have	taken in my life by	6 1
	and then a	dd 5, the res	ulting numb	per <i>cannot</i> be d	ivisible by	
	A) 5	B) 7		C) 9	D) 11	
18.					ep for 10000 hours.	If 1
	the princes	ss talls asleep	at 6:00 P.M	., she will wak	ie at	
	A) 10:00 A	A.M. B) 4:0	00 P.M.	C) 8:00 P.M.	D) 11:00 P.M.	
19.				ous, 60 are met low many roc	amorphic, and the ks are in the box?	1
	A) 160	B) 18	0	C) 200	D) 225	
20.	The sum o	,	ve even inte	C) 200		s 2
20.	The sum o	f 4 consecuti	ve even inte integers is	C) 200	D) 225	5 2
	The sum of the smart A) 6 Max has 9	f 4 consecuti llest of the 4 B) 7 pairs of glasse	ve even inte integers is es for every 2	C) 200 egers is 148. Th C) 9 2 surfboards he	D) 225 ne sum of the digits D) 12	
	The sum o of the sma A) 6 Max has 9 has. If he ha	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g	ve even inte integers is es for every 2 glasses, he ha	C) 200 egers is 148. Th C) 9 2 surfboards he s <u>?</u> surfboards	D) 225 ne sum of the digits D) 12	
21.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24	ve even inte integers is es for every 2	C) 200 egers is 148. Th C) 9 2 surfboards he	D) 225 ne sum of the digits D) 12	2
21.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12 180 + 150%	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 6 of 180 =	ve even inte integers is es for every 2 glasses, he ha C) 48	C) 200 egers is 148. Th C) 9 2 surfboards he s <u>?</u> surfboards D) 486	D) 225 ne sum of the digits D) 12	2
21. 22.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12 180 + 150% A) 270	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 6 of 180 = B) 330	ve even inte integers is es for every 2 glasses, he ha C) 48 C) 450	C) 200 egers is 148. Th C) 9 2 surfboards he s <u>?</u> surfboards D) 486 D) 630	D) 225 ne sum of the digits D) 12	2
21. 22.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12 180 + 150% A) 270 The perim	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 6 of 180 = B) 330	ve even inte integers is es for every 2 glasses, he ha C) 48 C) 450 gle is 50. Th	C) 200 egers is 148. Th C) 9 2 surfboards he s <u>?</u> surfboards D) 486 D) 630 he length of the	D) 225 ne sum of the digits D) 12	2
21. 22.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12 180 + 150% A) 270 The perim	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 b of 180 = B) 330 eter of a trian	ve even inte integers is es for every 2 glasses, he ha C) 48 C) 450 gle is 50. Th	C) 200 egers is 148. Th C) 9 2 surfboards he s <u>?</u> surfboards D) 486 D) 630 he length of the	D) 225 ne sum of the digits D) 12	2
21. 22. 23.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12 180 + 150% A) 270 The perim longest sid A) 15	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 6 of 180 = B) 330 eter of a trian	ve even inte integers is es for every 2 glasses, he ha C) 48 C) 450 gle is 50. Th gle could be C) 25	C) 200 egers is 148. The C) 9 2 surfboards he s <u>?</u> surfboards D) 486 D) 630 the length of the D) 29	D) 225 ne sum of the digits D) 12	2
21. 22. 23.	The sum o of the sma A) 6 Max has 9 has. If he ha A) 12 180 + 150% A) 270 The perim longest sid A) 15	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 6 of $180 =$ B) 330 eter of a trian le of the trian B) 20	ve even interintegers is es for every 2 glasses, he ha C) 48 C) 450 egle is 50. Th gle could be C) 25 $+y)^2 - 2xy$,	C) 200 egers is 148. The C) 9 2 surfboards he s <u>?</u> surfboards D) 486 D) 630 the length of the D) 29	D) 225 ne sum of the digits D) 12	s 2 2 2 2 2 2
21.22.23.24.	The sum of of the smaller A) 6 Max has 9 has. If he has A) 12 180 + 150% A) 270 The perime longest side A) 15 If $x \Box y$ is a A) 12	f 4 consecuti llest of the 4 B) 7 pairs of glasse is 108 pairs of g B) 24 6 of 180 = B) 330 eter of a trian le of the trian B) 20 defined as (x B) 24	ve even interintegers is es for every 2 glasses, he ha C) 48 C) 450 gle is 50. The gle could be C) 25 $+y)^2 - 2xy$,	 C) 200 egers is 148. The constraints of the constra	D) 225 he sum of the digits D) 12	2

Go on to the next page IIII 8

	2012-2013 8TH GRADE CONT	EST SOLUTIONS	Answers
26.	Since 18 km per 60 minutes = 18/60 km per seconds, and 0.3 km = 300 m, he runs 300 m	1 minute = 0.3 km per 60	26.
	in 60 seconds, or $300/60 = 5 \text{ m in 1 second.}$		А
	A) 5 B) 6 C) 10 D) 18		
27.	$-5 \times 30 = -150, 5 \times 20 = 100, \text{ and } 11 \times 14 = 154$	·	27.
	A) -150 B) -30 C) 100 D) 154		В
28.	Since 1000/20 = 50, 50 are multiples of 4 and 5 Since 1000/60 = 16.666 , 16 are also multip		28.
	A) 34 B) 42 C) 50 D) 58	10-04.	A
20	, , , , ,		29.
29.	$\frac{3}{5}: 6 = (5 \times \frac{3}{5}):(5 \times 6) = 3:30 = 1:10 = 8:80.$		D
	A) $\frac{20}{9}$ B) $\frac{9}{5}$ C) 24	D) 80	D
30.	If the average of these integers is 5, then the	ir sum is 15, and the great-	30.
	est possible value of the sum of their square	$es is 1^2 + 1^2 + 13^2 = 171.$	С
	A) 107 B) 149 C) 171	D) 197	
31.	Suppose Cody walked 10 km in 2 hrs. yest wants to walk 15 km in 1 hr. Since her rate		31.
	hr. and her rate today is 15 km per hr., that		А
	A) 200% B) 300% C) 400%	,	
32.	$9^{18} - 3^{32} = 3^{36} - 3^{32} = 3^{32} \times (3^4 - 1) = 3^{32} \times 8^{32}$	$0 = 3^{32} \times 2^4 \times 5.$	32.
	A) 5 B) 17 C) 19	D) 31	A
33.	$3 \times 6 \times 9 \times 12 \times 15 \times 18 = 2^4 \times 3^8 \times 5$; the factors		33.
	2 ² , 2 ⁴ , 3 ² , 3 ⁴ , 3 ⁶ , 3 ⁸ , 2 ² 3 ² , 2 ² 3 ⁴ , 2 ² 3 ⁶ , 2 ² 3 ⁸ , 2 ⁴ 3 ² ,		В
	A) 15 B) 14 C) 7	D) 6	
34.	Whatever box Bette checks 1st, the probs. <i>a</i> 2/3 that she checks a different one on the 2h		34.
	form and 1/3 that the 3rd form differs from	the Call	С
	first two. So the final prob. is $2/3 \times 1/3 = 2/9$		
1	A) $\frac{1}{4}$ B) $\frac{1}{3}$ C) $\frac{2}{9}$ D) $\frac{3}{10}$		
35.	Each number in the sequence 105, 112, 119,, a multiple of 7, and each number in the sequence		35.
	107, 114, 121, , is 2 more than a multiple of 7.		С
	Since 2137 is 2 more than a multiple of 7, it m A) 1296 B) 1648 C) 2137		
	1) 12/0 D) 10+0 C) 213/	•	<u> </u>
		The end of the contest 🖉	-

Information & Solutions

2012-2013 Annual 8th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Urgent Questions?** For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- **Scores** Please remember that *this is a contest, and not a test*—there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards & Results The original contest package contained 5 Certificates of Merit—1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Tues., March 5, 2013 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 12, 2013.
- Return of Student Papers Originals of contest papers with scores of 30 or more *must* be held until June 1. Copies of these papers, and originals of all oter papers, should be rturned to students after grading. Students scoring 30 points or more must confirm an *understanding* of the contest rules by signing the *Selected Math League Rules* (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Eighteen books of past contests, *Grades 4, 5, & 6* (Vols. 1, 2, 3, 4, 5, 6), *Grades 7 & 8* (Vols. 1, 2, 3, 4, 5, 6), and *High School* (Vols. 1, 2, 3, 4, 5, 6), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright $\ensuremath{\mathbb{C}}$ 2013 by Mathematics Leagues Inc.

Visit our Web site at http://www.mathleague.com

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

		012-2013 8TH GR			Answers)12-2
1.	Since 1 + 4 +	1 + 4 = 10, (1 + 4 - 4)	$+1+4) \times 1414 = 1$	14140.	1.	13. $(9+8) \times 6 - 4 \div$	+ 2 =
	A) 10	B) 1010	C) 1414	D) 10000	С	A) $9 + 8 \times 6 - 4$	
2.		divisible by 2 an			2.	C) $9 + 8 \times (6 - 4)$	4) ÷
	also divisible	ly 6660 ends in 0 by 3 and 4.			5	14. The least common $\frac{1}{2}$	
	A) 2345	B) 4567			D	and 2×19 is 2× Alex found 478	
	C) 5550	D) 6660				A) 2 B) 8	
3.	(25 + 4001) ÷	2 = 2013.			= 3.	15. $0.07 + 0.007 = 0.007$.077
	A) 994	B) 1019	C) 1988	D) 4001	D	A) 0.623	В
4.				In 30 minutes he ride	s 4.	16. $2^2 \times 2^2 \times 2^2 + 2^2$	$\times 2^2$
	20 km, so in	3 minutes he ride			В	A) 16	В
	A) 1 km	B) 2 km	C) 3 km	D) 4 km		17. Multiplying any	v w
5.				there are 9 people be her and me, that's a	- 5.	3; after adding	
	total of 20 pe		functing my broth	ier and me, that s a	С	A) 5	В
	A) 11	B) 19	C) 20	D) 21		18. Divide 10000 ho	
6.	Of every 5 be	ooks, 4 have hard	l covers. Since 60	$3 \div 5 = 12$, there are 12	6.	hours. The prin	cess
	groups of 5 b	ooks each. Since	$12 \times 4 = 48$, I have	ve 48 hard covers.	А	A) 10:00 A.M.	В
	A) 48	B) 35	C) 15	D) 12		19. Since 40% + 1/3	
7.	Since $111 = 2$	1×111 , the larges	t odd factor of 1	11 is 111.	7.	metamorphic ro	
	A) 3	B) 37	C) 109	D) 111	D	A) 160 20. The sum of 4 cc	B
8.	-			$300 \text{ dimes} = 300 \times 10^{10}$		The 4 integers a	
		1		e coins' value is \$141.	С	A) 6	В
	A) \$91	B) \$121	C) \$141	D) \$161		21. Since 108 ÷ 9 =	12,
9.	1 9	U		; the hundreds digit is 2			,
	A) 0	B) 1	C) 2	D) 3	С	A) 12 B)	24
10.	Ben finds 2 e	yes under 40% of nder 400 rocks, h	f the rocks.		10.	22. 180 + 180×1.5 =	= 18
	$2 \times 0.4 \times 400$			- Contraction	D	A) 270 B)	33
		160 C) 200	D) 320			23. The longest side	e's l
11	$12 \times \frac{1}{2} \times \frac{1}{3} \times$	$\frac{1}{1} \times \frac{1}{1} =$			11.	sides. A possibl	
					B	A) 15 B)	20
	A) $\frac{1}{144}$ B)	$\frac{1}{12}$ C) 1	D) 12		D	24. If $x \Box y = (x + y)$) ² –
12.	If the measu	res of the angles o	of triangle T are	in a 1:2:3 ratio, they	12.	A) 12	В
	must have m	easures 30°, 60°,	and 90°. So T is	a right triangle.	С	25. A square of side-	-len
	A) acute	B) obtuse	C) right	D) isosceles		A) 2	В

	Answers	2012-2013 8TH GRADE CONTEST SOLUTIONS	Answers
$+4+1+4 = 10, (1+4+1+4) \times 1414 = 14140.$	1.	13. $(9+8) \times 6 - 4 \div 2 = 17 \times 6 - 2 = 100.$	13.
B) 1010 C) 1414 D) 10000	С	A) $9 + 8 \times 6 - 4 \div 2$ B) $(9 + 8) \times 6 - 4 \div 2$	В
umber divisible by 2 and 5 0. Only 6660 ends in 0 and is visible by 3 and 4.	2. D	C) $9+8 \times (6-4) \div 2$ D) $(9+8) \times (6-4) \div 2$ 14. The least common multiple of $2 \times 3 \times 3$, $2 \times 2 \times 7$, and 2×19 is $2 \times 2 \times 3 \times 3 \times 7 \times 19 = 4788$. Thus,	14.
5 B) 4567		Alex found 4788 diamonds.	C
0 D) 6660		A) 2 B) 84 C) 4788 D) 19152	
001) ÷ 2 = 2013.	⇒ 3.	15. $0.07 + 0.007 = 0.077 = 0.700 - 0.623$.	15.
B) 1019 C) 1988 D) 4001	D	A) 0.623 B) 0.777 C) 0.784 D) 0.854	А
es his bicycle at 40 km per 60 minutes. In 30 minutes he rides so in 3 minutes he rides 2 km.	4. B	16. $2^2 \times 2^2 \times 2^2 + 2^2 \times 2^2 + 2^2 = 4 \times 4 \times 4 + 4 \times 4 + 4 = 64 + 16 + 4 = 84 = 2^2 \times 21$	
n B) 2 km C) 3 km D) 4 km		A) 16 B) 21 C) 32 D) 33	В
re 9 people in front of my brother, and there are 9 people be- e. That's 18 people. Counting my brother and me, that's a	5.	17. Multiplying any whole number by 6 results in a product divisible by3; after adding 5, the sum can no longer be divisible by 3 or 9.	17. C
20 people in line.	С	A) 5 B) 7 C) 9 D) 11	
B) 19 C) 20 D) 21	_	18. Divide 10000 hours by 24 hours per day to find that it is 416 days, 16 hours. The princess wakes 16 hours after 6:00 P.M., at 10:00 A.M.	18.
y 5 books, 4 have hard covers. Since $60 \div 5 = 12$, there are 12 of 5 books each. Since $12 \times 4 = 48$, I have 48 hard covers.	6. A	A) 10:00 A.M. B) 4:00 P.M. C) 8:00 P.M. D) 11:00 P.M.	А
B) 35 C) 15 D) 12		19. Since $40\% + 1/3 = 2/5 + 1/3 = 11/15$, the remaining $4/15$ are the 60	19.
$11 = 1 \times 111$, the largest odd factor of 111 is 111.	7.	metamorphic rocks. Hence $4:15 = 60:?$, and $? = 225$.	D
B) 37 C) 109 D) 111	D	A) 160 B) 180 C) 200 D) 225	
nnies = $$1;200$ nickels = $200 \times 5c$ = $$10;300$ dimes = $300 \times 10c$ and 400 quarters = $400 \times 25c$ = $$100$; the coins' value is \$141.	¢ 8. C	20. The sum of 4 consecutive even integers is 148. Their average is 37. The 4 integers are 34, 36, 38, and 40. The sum of the digits of 34 is 7.	20. B
B) \$121 C) \$141 D) \$161		A) 6 B) 7 C) 9 D) 12	_
y the last 3 digits of each: $789 \times 890 = 702210$; the hundreds digit is 2.	9.	21. Since $108 \div 9 = 12$, Max has $12 \times 2 = 24$ surfboards.	21. B
B) 1 C) 2 D) 3	С	A) 12 B) 24 C) 48 D) 486	
ds 2 eyes under 40% of the rocks. oks under 400 rocks, he will find	10.	22. $180 + 180 \times 1.5 = 180 + 270 = 450$.	22.
400 = 320 eyes.	D	A) 270 B) 330 C) 450 D) 630	С
B) 160 C) 200 D) 320	11	23. The longest side's length is < the sum of the other 2 sides. A possible longest side-length is 20.	23.
$\langle \frac{1}{3} \times \frac{1}{4} \times \frac{1}{6} \rangle =$	11.	A) 15 B) 20 C) 25 D) 29	В
B) $\frac{1}{12}$ C) 1 D) 12	B	24. If $x \Box y = (x + y)^2 - 2xy$, then $5 \Box 7 = (5 + 7)^2 - 2 \times 5 \times 7 = 144 - 70 = 74$	
neasures of the angles of triangle <i>T</i> are in a 1:2:3 ratio, they	12.	A) 12 B) 24 C) 35 D) 74	D
ave measures 30° , 60° , and 90° . So <i>T</i> is a right triangle.	C	25. A square of side-length 4π has perimeter 16π ; $C = \pi d$, so $d = 16$.	25.
te B) obtuse C) right D) isosceles		A) 2 B) 4 C) 8 D) 16	D

2018-2019 8TH GRADE CONTEST

		-	010-2019 01			Answers
26. Jacques, who paints only smiley faces, signs and numbers each of his paintings. If he started with Smiley #1 and has painted through Smiley #111, how many times has he used the digit 1 in his numbering?						
	A) 12	B) 22	C) 24	D) 36		
27.	How many between 2		mbers have	e squares that are	e C3	27.
	A) 12	B) 13	C) 24	D) 26		
28.	If the recta	ingle is 2 m	by 1 m, an	d the cookies ha	gle of cookie dough. we radius 10 cm, at the sheet of dough?	28.
	A) 50	B) 6	53	C) 64	D) 200	
29.	0.02% of 20	% of <u>?</u> = 2	00% of 2000)		29.
	A) 1000	B) 1	100 000	C) 1000000	D) 100000000	
30.	kg of ore tl	hat is on av	erage 6% g	old. If the 100 kg	ge 3% gold with 2400 ; containing the most e will be <u>?</u> gold.	30.
	A) 20/		0/	(-) 10/	D) 5%	
	A) 2%	B) 3	3%	C) 4%	D) 578	
31.	•	,		/	gonals of a cube is	31.
31.	•	,	als, the tota	/	,	31.
	Including A) 12 How many	face diagon B) 1	als, the tota 4 ;it integers	ll number of diag C) 16	gonals of a cube is	31. 32.
	Including A) 12 How many	face diagon B) 1 y odd 3-dig	als, the tota 4 ;it integers gits?	ll number of diag C) 16	gonals of a cube is D) 24	
32.	Including f A) 12 How many different n A) 154 If I square	face diagon B) 1 y odd 3-dig on-zero dig B) 1	als, the tota 4 git integers gits? 75 number fac	Il number of diag C) 16 greater than 500 C) 185 tors of 36 and m	gonals of a cube is D) 24 are composed of 3	
32.	Including f A) 12 How many different n A) 154 If I square	face diagon B) 1 y odd 3-dig on-zero dig B) 1 all whole-r	als, the tota 4 git integers gits? 75 number fac t will be eq	Il number of diag C) 16 greater than 500 C) 185 tors of 36 and m	gonals of a cube is D) 24 are composed of 3 D) 200	32.
32.	Including (A) 12 How many different n A) 154 If I square numbers, (A) 36 ² When the Beaverton each has a tripping, a independe the probab	face diagon B) 1 y odd 3-dig on-zero dig B) 1 all whole-r the product B) 3	als, the tota 4 it integers gits? 75 number fac t will be eq 86 ⁴ ers of the bability of bability is hers. What ey will carr	I number of diag C) 16 greater than 500 C) 185 tors of 36 and m ual to C) 36 ⁸	gonals of a cube is D) 24 are composed of 3 D) 200 ultiply the resulting	32.
32. 33.	Including (A) 12 How many different n A) 154 If I square numbers, (A) 36 ² When the Beaverton each has a tripping, a independe the probab	face diagon B) 1 y odd 3-dig on-zero dig B) 1 all whole-r the product B) 3 four memb family carr 0.02 proba nd each pro nt of the otl jility that th hout any of	als, the tota 4 it integers gits? 75 number fac t will be eq 86 ⁴ ers of the bability of bability is hers. What ey will carr	I number of diag C) 16 greater than 500 C) 185 tors of 36 and m ual to C) 36 ⁸	gonals of a cube is D) 24 are composed of 3 D) 200 ultiply the resulting	32. 33.
32.	Including f A) 12 How many different n A) 154 If I square numbers, f A) 36 ² When the Beaverton each has a tripping, a independe the probab the log wit A) 1–(0.0	face diagon B) 1 y odd 3-dig ion-zero dig B) 1 all whole-r the product B) 3 four memb family carr 0.02 proba nd each pro nd each pro nd each pro nt of the otl ility that th hout any of 02) ⁴ B) (e largest pr	als, the tota 4 it integers gits? 75 number fac t will be eq 36 ⁴ ers of the bability of bability of bability is hers. What ey will carr them tripp 0.98) ⁴	I number of diag C) 16 greater than 500 C) 185 tors of 36 and m ual to C) 36 ⁸ is y ping? C) (0.02) ⁴	gonals of a cube is D) 24 are composed of 3 D) 200 ultiply the resulting D) 36 ⁹	32. 33.

Visit our Web site at http://www.mathleague.com

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

Answers

EIGHTH GRADE MATHEMATICS CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample 8th Grade Contest

Tuesday, February 19 (alternate date: February 26), 2019

Instructions

- **Time** Do *not* open this booklet until told by your teacher to begin. You might be *unable* to finish all 35 questions in the 30 minutes allowed.
- **Scores** Remember that *this is a contest, not a test*—there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with half that, 14 points, *should be commended!* High-scoring students may be invited to our "Math Camp" in July.
- **Results Posted Online** High-scoring contest results, both overall and regional, will be posted at *www.mathleague.com* no later than April 15.
- Format, Point Value, & Eligibility Every answer is an A, B, C, or D. Write answers in the *Answers* column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 8 or below and only if you don't also take this year's Annual 6th or Annual 7th Grade Contest.

Please Print (To the student: You must complete all items below)

Last Name		_ First Name	
School	Teacher		Grade Level
Time at Start of Contest		_ Today's Date	
			88
Do No	ot Write In	The Space Belo	w
To the Teacher:			

Please enter the score at the right before you return this paper to the student. *Papers with scores of 30 or higher must be held until June 1.* Stud

Student's Score:

Twenty-one books of past contests, *Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6, 7),* and *High School (Vols. 1, 2, 3, 4, 5, 6, 7)* are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2019 by Mathematics Leagues Inc.

	2018-2019 8TH GRADE CONTEST	<u>Answer</u> s
1. (4 >	$(6 \times 8 \times 10) \div (6 \times 8 \times 10) =$	1.
A)	3 B) 4 C) 12 D) 3×6×8×10	
2. (2 -	÷ 3) rounded to the nearest hundredth is	2.
A)	0.33 B) 0.66 C) 0.67 D) 0.70	
	by Amy is one day older than Baby Barry. The product heir ages measured in days could be	3.
A)		
•	e largest even divisor of 200) ÷ (the gest odd divisor of 200) =	4.
A)	4 B) 8 C) 20 D) 200	
tha	equilateral triangle with integer side-lengths has a perimeter t is numerically equal to the area of a square. Which of the fol- ring could be the length of a side of the square?	5.
A)	12 B) 10 C) 8 D) 4	
	ive only nickels, dimes, and quarters to pay for my dinner, ich costs \$12.60. The smallest number of coins I can use to pay is	6.
A)	51 B) 52 C) 54 D) 55	
7. The	e smallest prime factor of 2019 is	7.
A)	1 B) 3 C) 19 D) 673	
	e product of four consecutive integers must be divisible by each of following <u>except</u>	8.
A)	4 B) 6 C) 10 D) 12	
9. The	ere are <u>?</u> hours in 4 weeks.	9.
A)	48 B) 96 C) 336 D) 672	
quo	otient is 10 times as large as my favorite number.	10.
	00 000 cm, which is the same as <u>?</u> km.	11.
A)	1 B) 10 C) 100 D) 1000	
in a	ne degree measures of the angles of a triangle are 4:5:6 ratio, what is the difference between the asures of the largest and the smallest angles?	12.
A)	12° B) 24° C) 30° D) 36°	

		20)18-2019 8T	H GRADE CONTE	ST	Answers
13.		lation of	a town star	rted at 1000, then	went up 10%, then of the town ended at	13.
	A) 968	В	8) 972	C) 1000	D) 1024	
14.	than orar	nges, and	5 times as a	nore apples many apples s are there? D) 125		14.
15.	,	,	,	,	pplementary <u>must</u> be a	15.
	A) triang		B) square	C) rectang		10.
6.			-	allest in value?	, 0	16.
	A) 2 ⁶⁰⁰		3) 3 ⁵⁰⁰	C) 4 ⁴⁰⁰	D) 5 ³⁰⁰	101
7.	$(2^{100} \times 4^5)$	$(50) \div 2 =$				17.
		, B	3) 2 ¹⁰⁰	C) 2 ¹⁴⁹	D) 2 ¹⁹⁹	
8.	What is t	he remair	nder when	3 ³³³ is divided b	y 10?	18.
	A) 1	В	3) 3	C) 7	D) 9	
9.				00 once, 90 twice or all of the tests	e, and 80 five times. ?	19.
	A) 80	В	3) 85	C) 90	D) 92	
0.	The prod	uct of the	e thousand	s and tenths digi	ts of 1234.5678 is	20.
	A) 5	В	B) 10	C) 35	D) 40	
1.	The prob	ability of	heads then	tails then heads	on 3 tosses of a coin is	21.
	A) 0.125	В	3) 0.25	C) 0.375	D) 0.5	
2.	the same eating an	number o y and he	of jellybean counted 38	s. He counted 56	ans. On each day he ate 0 on January 31 before efore eating any. There	22.
	A) 600	E	3) 650	C) 680	D) 740	
3.				s in 3 days! There _ tissues per minu		23.
	A) 2	B) 3	C) 4	D) 5		
4.	The num	ber 5184 l	has <u>?</u> pos	itive odd divisors	s.	24.
	A) 1	B) 2	C) 4	D) 5		
	/					
5.		of 5 conse	ecutive ever	n integers could b		25.

Go on to the next page 100

		2018-2019 8TH	H GRADE SOLUTIO	NS	Answers
26.	100 to 109 is 1	1 1s, and from 110 ve have (1 + 11 + 8		20 to 99 is 8 1s; from	26. D
	A) 12 B)	22 C) 24	D) 36	M. Sal	
27.		mbers with squar 5, , 13, and 14	es between 2 and . There are 13.		27. B
	A) 12 B)	13 C) 24	D) 26		
28.	dough. If the r	ectangle is 200 cr		ctangle of cookie he cookies have di- cookies in each row.	28. A
	A) 50	B) 63	C) 64	D) 200	
29.	0.02% of 20% =	= 0.00004; 200% of	f 2000 = 4000 = 0	$.00004 \times 100000000.$	29.
	A) 1000	B) 100000	C) 1000000	D) 100000000	D
30.	40 kg, the rem	aining 3500 kg of	ore has 140 kg of	and 40% of 100 kg is gold. Since 140 divid-	30.
	ed by $3500 = 0$	0.04, the remaining	g ore will be 4% g	old.	С
	A) 2%	B) 3%	C) 4%	D) 5%	
31.	There are 12 fa		l diagonals passing	g through the interior.	31.
	A) 12	B) 14	C) 16	D) 24	C
32.			ones digit, then the odd, the count is (ie tens digit. Based on 3×4×7 + 2×5×7.	32. A
	A) 154	B) 175	C) 185	D) 200	
33.			6 are 1 and 36, 2 a eir squares is 36 ⁹ .	nd 18, 3 and 12, 4	33. D
	A) 36 ²	B) 36 ⁴	C) 36 ⁸	D) 36 ⁹	
34.		members of the			34.
	each has a pro tripping of 0.9 none of them t	nily carry a log, bability of not 8, The probability ripping is 0.98 × 0.98 = (0.9			В
	A) $1 - (0.02)^4$	B) (0.98) ⁴	C) (0.02) ⁴	D) $1 - (0.98)^4$	
35.			product of all even $00 \div 2 = 100$, which	n numbers from 2 to ch is 97.	35. В
	A) 47	B) 97	C) 199	D) 2019	
		our Woh site a	* b ****** / //	The end of the contest f	ă 18

EIGHTH GRADE MATHEMATICS CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Information & Solutions

Tuesday, February 19 (alternate date: February 26), 2019

Directions for Grading

- **Security and Solutions** *Do not look at these solutions until after the con*test. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- **Urgent Questions?** For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- **Scores** Please remember that *this is a contest, and not a test* there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards & Results The original contest package contained 5 Certificates of Merit-1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Fri., March 9, 2018 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 12, 2019.
- Return of Student Papers Originals of contest papers with scores of 30 or more *must* be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Twenty-one books of past contests, Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7) are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2019 by Mathematics Leagues Inc.

	2018-2019 8TH GRADE SOLUTIONS	Answers
1.	$(4 \times 6 \times 8 \times 10) \div (6 \times 8 \times 10) = 4 \times 1 \times 1 \times 1 = 4.$	1.
	A) 3 B) 4 C) 12 D) 3×6×8×10	В
2.	$2 \div 3 = 0.666$; this rounds to 0.67.	2.
	A) 0.33 B) 0.66 C) 0.67 D) 0.70	С
3.	Their ages in days are consecutive integers. Since $132 = 11 \times 12$, the product of their ages in days could be 132.	3. B
	A) 33 B) 132 C) 245 D) 246	
4.	The largest even divisor of 200 is 200, and the largest odd divisor of 200 is 25; 200 \div 25 = 8.	4. B
	A) 4 B) 8 C) 20 D) 200	
5.	An equilateral triangle with integer side-lengths has a perimeter that is a multiple of 3. The area of the square must also be a multiple of 3. If the length of a side of the square is 12, its area is 144.	5. A
	A) 12 B) 10 C) 8 D) 4	
6.	We can pay \$12.50 using 50 quarters. That leaves \$0.10, which I can pay using one dime. The smallest number of coins is 51.	6. A
	A) 51 B) 52 C) 54 D) 55	
7.	Since the sum of the digits of 2019 is divisible by 3, 2019 is also.	7.
	A) 1 B) 3 C) 19 D) 673	В
8.	Since it is possible that the four integers do not include a multiple of 5, their product might not be divisible by a multiple of 5.	8. C
	A) 4 B) 6 C) 10 D) 12	
9.	There are 28 days in 4 weeks. There are 24×28 hours in 28 days.	9.
	A) 48 B) 96 C) 336 D) 672	D
10.	Try each choice and find the correct one. Since 10 divided by 1/10 is 100, choice D is correct.	10. D
	A) $\frac{1}{10}$ B) $\frac{1}{5}$ C) $\frac{1}{2}$ D) 10	
11.	The height of the smoke is 100 000 cm. To convert to km, divide by $10^2 \times 10^3 = 10^5$.	11. A
	A) 1 B) 10 C) 100 D) 1000	
12.	Since $180^{\circ} \div (4 + 5 + 6) = 180^{\circ} \div (15) = 12^{\circ}$, the measures are $4 \times 12^{\circ} = 48^{\circ}$, $5 \times 12^{\circ} = 60^{\circ}$, and $6 \times 12^{\circ} = 72^{\circ}$. Finally, $72^{\circ} - 48^{\circ} = 24^{\circ}$.	12. B
	A) 12° B) 24° C) 30° D) 36°	
	Go on to the next page	₩ 8

		2018	8-2019 8TH	GRADE SOLUTIO	ONS	<u>Answers</u>
13.				ed at 1000, then	went up to 1100, then	13.
		380, then u	•	C) 1000	D) 1024	Α
14	A) 968	,	972	C) 1000	D) 1024	
14.				uotients are) is 75, choice		14.
	B is corre	ct.				В
	A) 50	B) 75	C) 100	D) 125		
15.	Each pair	of angles	in any rect	angle is supplen	nentary.	15.
	A) triang	le B)	square	C) rectangl	e D) hexagon	С
16.	Drop the	zeroes and	d evaluate:	choices become	64, 243, 256, and 125.	16.
	A) 2 ⁶⁰⁰	B)	3 ⁵⁰⁰	C) 4 ⁴⁰⁰	D) 5 ³⁰⁰	А
17.	$(2^{100} \times 4^5)$	$^{0}) \div 2 = (2)$	$2^{100} \times 2^{100}$	$\div 2 = 2^{200} \div 2^1$	$1 = 2^{199}$.	17.
	A) 2 ⁷⁵	B)	2 ¹⁰⁰	C) 2 ¹⁴⁹	D) 2 ¹⁹⁹	D
18.	,	,		,	s 39713971, and the	18.
	333rd dig		0	1	,	B
	A) 1	B)	3	C) 7	D) 9	
19.					, and 80 five times. The	19.
				the average is δ		В
20	A) 80	· · ·	85 d E io E	C) 90	D) 92	20
20.	The prod				\mathbf{D}	20. A
	A) 5	,	10	C) 35	D) 40	
21.	•	2			$s 0.5 \times 0.5 \times 0.5 = 0.125.$	21.
	A) 0.125	,	0.25	C) 0.375	D) 0.5	A
22.					arch 16. Rui ate 180 h day. There are 30	22.
	days from	n January 1	l through J	anuary 30. Rui a	ate 120 jellybeans on	С
	-			20 jellybeans on	January 1.	
	A) 600		650	C) 680	D) 740	
23.				day or 5760 tiss per minute.	sues. Since $5760 \div 24 =$	23.
	A) 2	B) 3	C) 4	D) 5	See T	C
24			,	are 1, 3, 9, 27, an	$\frac{1}{d 81}$	24.
- 1.				D) 5	A PAR	24. D
25	A) 1	B) 2	C) 4	•		25
23.	2		even multi	•		25. A
	A) 120	B) 125	C) 164	D) 212		
				3	Go on to the next page	₩ 8

Go on to the next page III O

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

ALGEBRA COURSE 1 CONTEST Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017 Sample Algebra I Contest Spring, 2005 Instructions **Time** Do not open this booklet until you are told by your teacher to begin. You will have only 30 minutes working time for this contest. You

Scores Please remember that *this is a contest, not a test*—and there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct). Students with half that, 12 points, should be commended!

might be unable to finish all 30 questions in the time allowed.

Format and Point Value This is a multiple-choice contest. Each an-swer will be one of the capital letters A, B, C, or D. Write each answer in the Answer Column to the right of each question. We suggest (but do not require) that you use a pencil. Each question you answer correctly is worth 1 point. Unanswered questions receive no credit. You may use a calculator unless your school does not allow you to use one.

Please Print

Last Name _____ First Name _____

School ______ Teacher _____ Grade Level _____

Do Not Write In The Space Below

To the Teacher:

Please enter the student's score at the right before you return this paper to the student.

Student's Score: ____

The school's top scorer will receive the book Math Contests-High School (Vol. 3). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Fifteen books of past contests, Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3, 4, 5), are available, for \$12.95 per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

	2004-2005 ALGEBRA COURSE 1 CONTEST	Answer Column
1.	$1^{2005} + 1^{2005} =$ A) 1^{4010} B) 2^{1} C) 2^{2005} D) 2^{4010}	1.
2.	From <i>n</i> piles of 12 coconuts each, I am able to make ? piles of 3 coconuts each. A) $n+3$ B) $n+4$ C) $3n$ D) $4n$	2.
3.	$x^{400} \div x^{100} =$ A) x^{500} B) x^{300} C) x^4 D) 4	3.
4.	$(-1)^{1} + (-1)^{2} + (-1)^{3} + \ldots + (-1)^{98} + (-1)^{99} =$ A) 1 B) 0 C) -1 D) -99	4.
5.	If $x^2-y^2 = 10$, and $x+y = 10$, then $x-y =$ A) 1 B) -1 C) 10 D) -10	5.
6.	The total value of $2x$ nickels and x dimes is $60e$ when $x =$ A) 6B) 4C) 3D) 2	6.
7.	The least common multiple of 2, 4, and 8 is A) 2 B) 8 C) 16 D) 64	7.
8.	$2 = \sqrt{8} \div \underline{?}$ A) 4 B) $\sqrt{6}$ C) $\sqrt{4}$ D) $\sqrt{2}$	8.
9.	There are 6 more football players wearing dark helmets than wearing light ones. The ratio of dark helmets to light is 2:1. The number of light helmets is A) 2 B) 3 C) 6 D) 12	9.
0.	The graph of $\underline{?}$ is parallel to the graph of $2x+y = -3$. A) $2x+y = 3$ B) $2x+4y = 6$ C) $2x-y = 3$ D) $x+2y = -3$	10.
1.	Of 5 consecutive integers whose average is x, the smallest is A) $x-2$ B) $x-3$ C) $x-4$ D) $x-5$	11.

Go on to the next page IIII A

	2004-2005 ALGEBRA COURSE 1 CONTEST	Answe Colum
12.	Of 5 consecutive <i>even</i> integers whose average is x, the smallest is A) $x-2$ B) $x-3$ C) $x-4$ D) $x-5$	12.
13.	The greatest common factor of 2^{2004} and 2^{2005} is A) 1 B) 2 C) 2^{2004} D) 2^{2005}	13.
14.	I ran away with a big prize when I was the 7th caller to know that the slope of every horizontal line is A) 0 B) 1 C) -1 D) nonexistent	14.
15.	If 10% of a is b, then $a =$ A) 0.1b B) b C) 9b D) 10b	15.
16.	For which of the following is n^n the square of an integer? A) $n = 3$ B) $n = 5$ C) $n = 6$ D) $n = 7$	16.
17.	If $k = \underline{?}$, then the two roots of $x^2+4x+k = 0$ are equal. A) 1 B) 2 C) 3 D) 4	17.
18.	Jesse has worn the same hat for d years. If he wears it for 12 more years, he will have worn this hat for d^2 years. For how many years has Jesse worn this hat? A) 4 B) 6 C) 8 D) 12	18.
19.	x + -x = A) 0 B) x C) -x D) 2 x	19.
20.	Circle C's center is (0,0), and the length of C's radius is 5.Which of the following are the coordinates of a point on C?A) (0,5)B) $(-5,-5)$ C) $(-10,0)$ D) $(5,5)$	20.
21.	For primes a and b, if $a > b$, then ab has $?$ unequal positive factors.A) 4B) 3C) 2D) 1	21.
	The product of $\underline{?}$ and x^{100} has the same value as $(-x)^{100}$.	22.

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

- Date You may give this contest anytime after April 15. The Algebra Course 1 Contest is for use in your own school or district. We've enclosed a registration form for next year. Since results are not used for interschool comparisons, we do not enclose a score report form.
- Urgent questions? Call 1-201-568-6328.
- Scores Remind students that this is a contest, not a test—and there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct); students with half that, 12 points, should be commended!
- Solutions Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Awards The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 *Certificates of Merit*—1 each for the runner-up on each grade level, plus extras for ties.
- Additional Book Awards & Additional Certificates To give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates.

The school's top scorer will receive the book *Math Contests—High School (Vol. 3)*. Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Fifteen books of past contests, *Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5),* and *High School (Vols. 1, 2, 3, 4, 5),* are available, for \$12.95 per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

	2004-2005 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers
1.	$1^{2005} + 1^{2005} = 1 + 1 = 2 = 2^{1}.$ A) 1^{4010} B) 2^{1} C) 2^{2005} D) 2^{4010}	1. B
2.	<i>n</i> piles of 12 coconuts each = (12 <i>n</i>) coconuts = $(3 \times 4n)$ coconuts = 4 <i>n</i> piles of 3 coconuts each. A) <i>n</i> +3 B) <i>n</i> +4 C) 3 <i>n</i> D) 4 <i>n</i>	2. D
3.	$x^{400} \div x^{100} = x^{(400 - 100)} = x^{300}.$ A) x^{500} B) x^{300} C) x^{4} D) 4	3. B
4.	$(-1)^{1} + (-1)^{2} + \dots + (-1)^{99} = (-1) + (1) + \dots + (-1) = 0 + \dots + (-1) = -1.$ A) 1 B) 0 C) -1 D) -99	4. C
5.	Since $x^2 - y^2 = (x+y)(x-y) = 10(x-y) = 10$, we see that $x-y = 1$. A) 1 B) -1 C) 10 D) -10	5. A
6.	Since $(2x)(5\varphi) + (x)(10\varphi) = 60\varphi$, add to get $20x\varphi = 60\varphi$, so $x = 3$. A) 6 B) 4 C) 3 D) 2	6. C
7.	Since 8 is divisible by both 2 and 4, the l.c.m. of all three is 8.A) 2B) 8C) 16D) 64	7. B
8.	$2 = \sqrt{4} = \sqrt{8/2} = \sqrt{8} \div \sqrt{2}.$ A) 4 B) $\sqrt{6}$ C) $\sqrt{4}$ D) $\sqrt{2}$	8. D
9.	If $h = \#$ of light helmets, then 2h = # of dark helmets. There are 6 more dark helmets than light ones, so $2h-h = 6$, or $h = 6$. The number of light helmets is 6. A) 2 B) 3 C) 6 D) 12	9. C
10.	Any 2 lines of the form $2x+y = k$, with unequal k's, are parallel. A) $2x+y = 3$ B) $2x+4y = 6$ C) $2x-y = 3$ D) $x+2y = -3$	10. A
11.	The average is x, so the integers are $x-2$, $x-1$, x, $x+1$, and $x+2$. A) $x-2$ B) $x-3$ C) $x-4$ D) $x-5$	11. A
	Go on to the next page III	⇒ A

	2004-2005 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answer
12.	The average is x, so the integers are $x-4$, $x-2$, x, $x+2$, and $x+4$. A) $x-2$ B) $x-3$ C) $x-4$ D) $x-5$	12. C
13.	2^{2004} is a factor of 2^{2005} , so 2^{2004} is the g.c.f. A) 1 B) 2 C) 2^{2004} D) 2^{2005}	13. C
14.	A horizontal line is parallel to the x-axis. I was the 7th caller to know that the slope of any such line is 0. A) 0 B) 1 C) -1 D) nonexistent	14. A
15.	$a = 100\%$ of $a = 10 \times 10\%$ of $a = 10b$. A) 0.1b B) b C) 9b D) 10b	15. D
16.	When $n = 6$, $n^n = 6^6 = (6^{6/2})^2 = (6^3)^2$, which is the square of 6^3 . A) 3 B) 5 C) 6 D) 7	16. C
17.	If $k = 4$, then $x^2+4x+4 = (x+2)(x+2) = 0$ and $x = -2$ or -2 . A) 1 B) 2 C) 3 D) 4	17. D
18.	Jesse has worn the same hat for d years. If he wears it for 12 more years, he will have worn this hat for d^2 years. So, $d+12 = d^2$, or $(d+3)(d-4) = 0$. Since $d > 0$, $d = 4$. A) 4 B) 6 C) 8 D) 12	18. A
[9.	x + -x = x + x = 2 x . A) 0 B) x C) -x D) 2 x	19. D
20.	Sketch circle C. Of the choices, y only choice A, $(0,5)$, is on circle C. A) $(0,5)$ B) $(-5,-5)$ C) $(-10,0)$ D) $(5,5)$	20. A
21.	The 4 positive factors of ab are 1, a , b , and ab . A) 4 B) 3 C) 2 D) 1	21. A
2.	Since $(-x)^{100} = (-1)^{100}(x^{100}) = 1 \times x^{100}$, choice B is correct. A) 100 B) 1 C) -1 D) -100	22. B

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

ALGEBRA COURSE 1 CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

Sample Algebra I Contest

Spring, 2013

Instructions

- **Time** Do *not* open this booklet until you are told by your teacher to begin. You will have only *30 minutes* working time for this contest. You might be *unable* to finish all 30 questions in the time allowed.
- **Scores** Please remember that *this is a contest, and not a test*—there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct). Students with half that, 12 points, *should be commended*!
- **Format and Point Value** This is a multiple-choice contest. Each answer will be one of the *capital letters* A, B, C, or D. Write each answer in the *Answer Column* to the right of each question. We suggest (but do not require) that you use a pencil. Each question you answer correctly is worth 1 point. Unanswered questions receive no credit. You **may** use a calculator *unless* your school does *not* allow you to use one.

Please Print

Do Not Write In The Space Below

To the Teacher:

Please enter the student's score at the right before you return this paper to the student.

Student's Score: _____

Eighteen books of past contests, *Grades* 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6), *Grades* 7 & 8 (Vols. 1, 2, 3, 4, 5, 6), and *High School* (Vols. 1, 2, 3, 4, 5, 6), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright $\ensuremath{\mathbb C}$ 2013 by Mathematics Leagues Inc.

20	012-2013 ALGEBRA	A COURSE 1 CONT	TEST	Answers
1. If $x = 2013$, the	nen $(x - 2012)^{(x-2)}$	013) =		1.
A) 0	B) 1	C) 2	D) 10	
2. If $a = 5$, then	$4a^3 - 3a^2 + 2a - 1$	=		2.
A) 39	B) 125	C) 434	D) 586	
3. Fred and Gin	ger danced for $\frac{2}{2}$	$\frac{2013}{r}$ hours		3.
last year. If th	ney danced for a purs, then <i>x canno</i>	whole 🔨		
A) 3 B) 12	1 C) 13	D) 61		
4. Which of the of $x^2 - 4x - 12$	following is a face?	ctor 🥧	JUX Y	4.
A) $x + 2$ B) x	-2 C) x	D) <i>x</i> – 8		
5. $2^{400} + 2^{400} =$				5.
A) 2 ⁴⁰¹	B) 2 ⁸⁰⁰	C) 4 ⁴⁰⁰	D) 4 ⁸⁰⁰	
6. If $\frac{p}{q} = \frac{2}{3}$, the	$\operatorname{en} \frac{-p}{-q} =$			6.
A) $-\frac{2}{3}$	B) $\frac{-2}{3}$	C) $\frac{2}{-3}$	D) $\frac{2}{3}$	
7. The number of respectively.	of 5 kg weights a If my weights all	nd 10 kg weights l together weigh	s I have is $4w$ and $2w$, 200 kg, then $w =$	7.
A) 4	B) 5	C) 10	D) 20	
8. $(3x^3 - 4x^2) + ($	$(2x^2 - 3x) - (3x^3 - 3x)$	4) =		8.
A) $2x^2 - 3x - 3$	4 B) $2x^2 - 3x +$	4 C) $-2x^2 - 3x$	$(x-4)$ D) $-2x^2 - 3x + 4$	
9. If $3x - 4$ is odd	d, then $3x + 10$ m	ust be		9.
A) positive	B) prime	C) odd	D) even	
later 80% of t rang 50 times phone rang	grabs the phone orday it rang at 4 he time it rang, a before 4 PM. Th chimes yesterda b) 250 C) 30	PM or and it ay.	Ring	10.
11. The ages of 5	sequoia trees in	a forest are conse 4440 years, the c	ecutive even integers. oldest tree is <u>?</u> old. s D) 892 years	11.
		2	Go on to the next page	A

	2012-2013 ALGEBRA COURSE 1 CONTEST	Answers
12.	A straight line that passes through the points (p, q) and $(2p, 3q)$ must also pass through the point	12.
	A) (3 <i>p</i> , 4 <i>q</i>) B) (3 <i>p</i> , 5 <i>q</i>) C) (4 <i>p</i> , 6 <i>q</i>) D) (4 <i>p</i> , 8 <i>q</i>)	
13.	What is the product of all multiples of 3 between -9 and 12?	13.
	A) -314928 B) -2916 C) 0 D) 2916	
14.	Of children born at the maternity ward yester- day, the ratio of boys to girls was $3x:4y$, which is also 5:6. The ratio x:y is A) 10:9 B) 24:15 C) 15:24 D) 4:5	14.
15.	$\frac{\left(x^{200}\right)^{400}}{\left(x^{100}\right)^{200}} =$ A) x^4 B) x^6 C) x^{40000} D) x^{60000}	15.
16	, , , , ,	<u> </u>
16.	If the average of <i>x</i> , <i>y</i> , and <i>z</i> is 16 and the average of <i>x</i> and <i>y</i> is 12, then $z =$	16.
	A) 4 B) 14 C) 20 D) 24	
17.	If <i>n</i> is a prime > 5, the least common multiple of $6n^8$ and $10n^{12}$ is	17.
	A) 2n ⁸ B) 30n ¹² C) 30n ²⁴ D) 60n ⁹⁶	
18.	A square is inscribed in a circle. If the perimeter of the square region is 64, what is the area of the circle?	18.
	A) 16π B) 32π C) 64π D) 128π	
19.	If $x - y = 3$ and $x^2 + y^2 = 485$ then $xy =$ A) 162 B) 238 C) 482 D) 3880	19.
20.	Gilda the guide has a lucky number that is the sum of all the roots of $(x-1)(x+2)(x-3) \times \times (x-19)(x+20)(x-21) = 0$. Gilda's lucky number is A) 10 B) 11 C) 21 D) 31	20.
21.	4x +4 -x =	21.
	A) 0 B) 8 C) $8 x $ D) $4 4x $	
22.	$\sqrt{36^{64}} =$	22.
	A) 6 ⁸ B) 6 ³² C) 36 ⁸ D) 36 ³²	
	Go on to the next page \}}	≫ A

Visit our Web site at http://www.mathleague.com

- **Awards** The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 *Certificates of Merit*−1 each for the runner-up on each grade level, plus extras for ties.
- Additional Book Awards & Additional Certificates If you want to give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017. Include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates.

The school's top scorer will receive the book *Math Contests*—*High School (Vol. 4)*. Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Eighteen books of past contests, *Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6),* and *High School (Vols. 1, 2, 3, 4, 5, 6),* are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

201	12-2013 ALGEBRA CO	URSE 1 CONTEST	SOLUTIONS	Answers	2012-201
1. If $x = 201$	3, then $(x - 2012)^{(x - 2)}$	(2013) = (2013 - 201)	$2)^{(2013 - 2013)} = 1^0 = 1.$	1.	12. A line that passe $(3q-q)/(2p-p) =$
A) 0	B) 1	C) 2	D) 10	В	($3p, 4q$) ($3p, 4q$)
2. If $a = 5$, the	$en 4a^3 - 3a^2 + 2a - 1 =$	$4(5)^3 - 3(5)^2 + 2(5)$	-1 = 500 - 75 + 10 - 1.	2.	13. The multiples o
A) 39	B) 125	C) 434	D) 586	С	A) -314928
last year. 13, x canno	Since 2013 is not div ot be 13.	visible by	Color	3. C	14. Of children borday, the ratio of Thus, $18x = 20y$ A) 10:9 B) 2
4. We may r $(x-6)(x+1)$	rewrite $x^2 - 4x - 12$ a 2), so $x + 2$ is a facto	s r.		4. A	15. $\frac{\left(x^{200}\right)^{400}}{\left(x^{100}\right)^{200}} = \frac{1}{2}$
5. $2^{400} + 2^{400}$	$= 2(2^{400}) = (2^1)(2^{400})$	$=2^{400+1}=2^{401}.$		5.	A) <i>x</i> ⁴ B) <i>x</i>
A) 2 ⁴⁰¹	B) 2 ⁸⁰⁰	C) 4 ⁴⁰⁰	D) 4 ⁸⁰⁰	A	16. If the average o
6. If $\frac{p}{q} = \frac{2}{3}$, then $\frac{-p}{-q} = \frac{-2}{-3} = \frac{2}{3}$	•		6.	age of x and y is A) 4
A) $-\frac{2}{2}$	B) $\frac{-2}{2}$	C) $\frac{2}{2}$	D) $\frac{2}{2}$		17. Both 6 <i>n</i> ⁸ and 10
1. If $x = 2013$, then $(x - 2012)^{(x - 2013)} = (2013 - 2012)^{(2013 - 2013)} = 1^0 = 1. 1. B A) 0 B) 1 C) 2 D) 10 B 2. If a = 5, then 4a^3 - 3a^2 + 2a - 1 = 4(5)^3 - 3(5)^2 + 2(5) - 1 = 500 - 75 + 10 - 1. 2. A) (3p, -1) A) 39 B) 125 C) 434 D) 586 C 3. Fred and Ginger danced for \frac{2013}{x} hours last year. Since 2013 is not divisible by 13, x cannot be 13. A C A) 3 B) 11 C) 13 D) 61 4. A 4. We may rewrite x^2 - 4x - 12 as (x - 6)(x + 2), so x + 2 is a factor. A A A) 2^{401} B) 2^{800} C) 4^{400} D) 4^{800} A 5. 2^{400} + 2^{400} = 2(2^{400}) = (2^1)(2^{400}) = 2^{400 + 1} = 2^{401}. 5. A A) 2^{401} B) 2^{800} C) 4^{400} D) 4^{800} A 6. If \frac{p}{q} = \frac{2}{3}, then \frac{-p}{-q} = \frac{-2}{-3} = \frac{2}{3}. B D A A 7. The number of 5 kg weights and 10 kg weights 1 have is 4w and 2w, respectively. Hence, 5(4w) + 10(2w) = 200, so 40w = 200 and w = 5. B B 8. (3x^3 - 4x^2) + (2x^2 - 3x - 4 B) 2x^2 - 3x + 4 C) 2x^2 - 3x - 4 D A) 16\pi $		A) 2 <i>n</i> ⁸			
•				В	18. If the perim. is Th., a diameter
8. $(3x^3 - 4x^2) +$	$+(2x^2-3x)-(3x^3-4) =$	$3x^3 - 4x^2 + 2x^2 - 3x^3$	$-3x^3 + 4 = -2x^2 - 3x + 4.$	8.	A) 16π B) 3
A) $2x^2 - 3$	$3x - 4$ B) $2x^2 - 3x + 3x^2 - 3x + 3x^2 - 3x^2 + 3x^2 + 3x^2 - 3x^2 -$	-4 C) $-2x^2 - 3x$	-4 D) $-2x^2 - 3x + 4$	D	19. Since $(x - y)^2 =$
9. Since 3 <i>x</i> +	10 = (3x - 4) + 14, 3	3x + 10 is odd. (Od	dd # + 14 = odd #.)	9.	A) 162
A) positiv	ve B) prime	C) odd	D) even	С	20. The roots of $(x - (x - 19)(x + 20)(x - 19)(x - 1$
later 80% rang 50 tin rings are 2 the phone	of the time it rang, a mes before 4 PM. Th 20% of all the rings. e rang 250 times yest	and it nose 50 Thus, terday.			-20, and 21. The + (19 - 20) + 21 = A) 10 B) 11 21. $ 4x +4 -x = 4 $
$(t-4) + (\breve{t}$	(-6) + (t-8) = 4440.	Thus, $5t - 20 = 4$	440, and $t = 892$.		V
		2	Go on to the next page);	→ A	

RSE 1 CONTEST SOL	UTIONS	Answers		Answei
$(2013 - 2012)^{(20)}$		1. B	12. A line that passes through the points (p, q) and $(2p, 3q)$ has slope $(3q - q)/(2p - p) = 2q/p$. The slope between (p, q) and $(3p, 5q)$ is also $2q/p$.	12. В
C) 2	D) 10		A) (3 <i>p</i> , 4 <i>q</i>) B) (3 <i>p</i> , 5 <i>q</i>) C) (4 <i>p</i> , 6 <i>q</i>) D) (4 <i>p</i> , 8 <i>q</i>)	
$(5)^3 - 3(5)^2 + 2(5) - 1$	= 500 - 75 + 10 - 1.	2.	13. The multiples of 3 between -9 and 12 include 0, so their product is 0.	13.
C) 434	D) 586	С	A) -314928 B) -2916 C) 0 D) 2916	C
13 ible by		3. C	14. Of children born at the maternity ward yester- day, the ratio of boys to girls was $3x:4y = 5:6$. Thus, $18x = 20y$ or $9x = 10y$. Hence, $x:y = 10:9$.	14. A
) 61		4. A	A) 10:9 B) 24:15 C) 15:24 D) 4:5 15. $\frac{(x^{200})^{400}}{(x^{100})^{200}} = \frac{x^{80000}}{x^{20000}} = x^{60000}.$	15. D
x - 8 = $2^{400 + 1} = 2^{401}$.		5.		
·		э. А	A) x^4 B) x^6 C) x^{40000} D) x^{60000}	
C) 4 ⁴⁰⁰	D) 4 ⁸⁰⁰	6.	16. If the average of x , y , and z is 16, their sum is $3(16) = 48$. If the average of x and y is 12, their sum is $2(12) = 24$. Hence $z = 48 - 24 = 24$.A) 4B) 14C) 20D) 24	16. D
2	2	D	17. Both $6n^8$ and $10n^{12}$ are factors of $30n^{12}$, the lcm.	17.
$\frac{C)\frac{2}{-3}}{110 \log 2}$	D) $\frac{2}{3}$		A) $2n^8$ B) $30n^{12}$ C) $30n^{24}$ D) $60n^{96}$	В
1 10 kg weights I h v) = 200, so 40w = 2 C) 10	200 and $w = 5$. D) 20	7. B	18. If the perim. is 64, each side has length 16. By Pythag. Th., a diameter is $16\sqrt{2}$. The area is $(8\sqrt{2})^2\pi = 128\pi$.	18. D
$x^3 - 4x^2 + 2x^2 - 3x - 3x$,	8.	A) 16π B) 32π C) 64π D) 128π	
C) $-2x^2 - 3x - 4$		D	19. Since $(x - y)^2 = 3^2$, $x^2 + y^2 - 2xy = 9$. Hence $485 - 2xy = 9$, and $xy = 238$.	19.
+ 10 is odd. (Odd #	+ 14 = odd #.)	9.	A) 162 B) 238 C) 482 D) 3880	В
C) odd	D) even	С	20. The roots of $(x-1)(x+2)(x-3) \times \ldots \times$ $(x-10)(x+20)(x-21) = 0 \operatorname{are} 1 = 2 \cdot 2 = 4$ 10	20.
M or d it	21NG	10.	(x-19)(x+20)(x-21) = 0 are 1, -2, 3, -4,, 19, -20, and 21. Their sum is $(1-2) + (3-4) +$ + $(19-20) + 21 = -10 + 21 = 11.$	В
se 50	RING!	В	A) 10 B) 11 C) 21 D) 31	
day.			21. 4x +4 -x = 4 x +4 x = 8 x .	21.
D) 400			A) 0 B) 8 C) $8 x $ D) $4 4x $	C
-2, t-4, t-6, t-8 nus, $5t-20 = 4440$,	, and $t = 892$.	11. D	22. $\sqrt{36^{64}} = \sqrt{(36^{32})(36^{32})} = 36^{32}$.	22. D
C) 890	D) 892	1	A) 6^8 B) 6^{32} C) 36^8 D) 36^{32}	1

	2018-2019 ALGEBRA COURSE 1 CONTEST	Answers
23.	Don and Juan had a total of <i>x</i> cherries, but then Don ate 27 fewer than <i>x</i> cherries and Juan ate 11 fewer than <i>x</i> cherries. If they each ate at least 10 cherries, and there was at least one cherry that wasn't eaten, then $x =$ A) 37 B) 38 C) 39 D) 49	23.
24.	Of the 200 pets for sale at Pip's Pets, <i>a</i> have scales, <i>b</i> have gills, and <i>c</i> have both. How many of the pets have neither scales nor gills? A) $200 - a - b$ B) $200 - c$ C) $200 - a - b - c$ D) $200 - a - b$	24. b+c
25.	The product of two numbers is 144, and the lesser of the two is 6than three times the greater. What is the greater of the two numbA) 18B) 8C) -6D) -24	
26.	If x and y are positive numbers and $x + y = 2$, which of the followcould be the value of $20x + 50y$?A) 35B) 65C) 105D) 140	ving 26.
27.	Iko's rectangular vegetable garden is $2x$ m wide and $3x$ m long. wants to plant flowers to form a border of uniform width around vegetable garden, and measures that the border will cover $14x^2$	d the
	How wide is the border of flowers going to be? A) 0.5x m B) x m C) 1.5x m D) 2x m	m ² .
28.	How wide is the border of flowers going to be?	
	How wide is the border of flowers going to be? A) $0.5x$ m B) x m C) $1.5x$ m D) $2x$ m If $10^{2019} - 2019$ is written as an integer in decimal form, what is sum of its digits?	
29.	How wide is the border of flowers going to be? A) $0.5x$ m B) x m C) $1.5x$ m D) $2x$ m If $10^{2019} - 2019$ is written as an integer in decimal form, what is sum of its digits? A) 2019 B) 18160 C) 18161 D) 18169 Tom mixes x kg of cake mix that is 10% sugar with y kg of cake mix that is 20% sugar. If the resulting mixture is $z\%$ sugar, then the ratio of x to y is A) $(20 - z):(z - 10)$ B) $(10 - z):(z + 20)$	the 28.

ALGEBRA COURSE 1 CONTEST

Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017

2018-2019 Annual Algebra Course 1 Contest

Spring, 2019

Instructions

- **Time** Do *not* open this booklet until you are told by your teacher to begin. You will have only *30 minutes* working time for this contest. You might be *unable* to finish all 30 questions in the time allowed.
- **Scores** Please remember that *this is a contest, and not a test*—there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct). Students with half that, 12 points, *should be commended*!
- **Format and Point Value** This is a multiple-choice contest. Each answer will be one of the *capital letters* A, B, C, or D. Write each answer in the *Answer Column* to the right of each question. We suggest (but do not require) that you use a pencil. Each question you answer correctly is worth 1 point. Unanswered questions receive no credit. You **may** use a calculator *unless* your school does *not* allow you to use one.

Please Print

 Last Name
 First Name

 School
 Teacher

 Do Not Write In The Space Below

To the Teacher:

Please enter the student's score at the right before you return this paper to the student.

Student's Score:

The school's top scorer will receive the book *Math Contests*—*High School (Vol. 4)*. Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Twenty-one books of past contests, *Grades 4, 5, & 6* (*Vols. 1, 2, 3, 4, 5, 6, 7*), *Grades 7 & 8* (*Vols. 1, 2, 3, 4, 5, 6, 7*), and *High School* (*Vols. 1, 2, 3, 4, 5, 6, 7*), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2019 by Mathematics Leagues Inc.

2018-2019 ALGEBRA COURSE 1 CONTEST	Answers	2018-2019 ALGEBRA COURSE 1 CONTEST
1. If $a = 2$, $r = 0$, $t = 1$, and $s = 9$, then $s + t + a + r + t =$	1.	13. Today Li turned 42 and Mae turned 8. How old will Mae be when Li is exactly three times Mae's age?
A) 0 B) 12 C) 13 D) 21		A) 9 B) 17 C) 26 D) 51
2. There were <i>a</i> ants in my ant farm, but then 3 ants escaped! If each ant has 6 legs, the ants remaining have a combined total of <u>?</u> legs.	2.	14. If a crate of lightbulbs contains <i>b</i> boxes, and each box contains <i>p</i> packages, how many bulbs are in 3 crates if each package holds 4 bulbs?
A) $6a - 3$ B) $6(a - 3)$ C) $6a - 3a$ D) $a^6 - 3$		A) $12bp$ B) $\frac{3bp}{4}$ C) $\frac{4bp}{3}$ D) $\frac{bp}{12}$
3. $6x^2 - 5 + 4x - 3 + 2x^2 - 1 + 2x - 3 + 4x^2 - 5 + 6x =$	3.	15. Avi and Bea were building sand castles all day.
A) $36x - 17$ B) $24x - 9$ C) $12x^2 + 12x - 12$ D) $12x^2 + 12x - 17$		Avi had built three times as many castles as Bea, but then a wave destroyed 3 of Avi's castles while Bea built 1 more. At that point
4. $(x - y)(x + y) =$	4.	the ratio of Avi's castles to Bea's was 5.2. Avi had built _? castles before the wave hit.
A) $x^2 - y^2$ B) $x^2 - 2xy + y^2$ C) $x^2 + 2xy + y^2$ D) $x^2 + y^2$		A) 11 B) 12 C) 30 D) 33
5. $(x-y)(x+y)(x-y) =$	5.	16. If $135 \times 46 = a$, then $135 \times 48 =$
A) $x^3 - y^3$ B) $x^3 - x^2y - xy^2 + y^3$		A) <i>a</i> + 2 B) <i>a</i> + 92 C) <i>a</i> + 94 D) <i>a</i> + 270
C) $x^3 + y^3$ D) $x^3 + x^2y + xy^2 + y^3$		17. If $3x + 8y = 21$ and $8x + 3y = 23$, then $x + y =$
6. Which of the following is negative for all real values of <i>s</i> ?	6.	A) 2 B) 4 C) 11 D) 22
A) $-s^3 - 1$ B) $(-s)^3 - 1$ C) $-s^2 - 1$ D) $(-s)^2 - 1$		18. If the hands on a circular clock start at midnight, what number will the hour hand point to 1000 hours later?
7. $(x^2 - 1)(x^2 - 2)(x^2 - 3)(x^2 - 4) = 0$ has how many integer solution	_{.s?} 7.	A) 2 B) 4 C) 8 D) 12
A) 2 B) 4 C) 6 D) 8		19. If <i>x</i> is an integer, what is the least possible value of $ 20-7x $?
8. If <i>x</i> , <i>y</i> , and <i>z</i> are distinct prime numbers, which of the following the least common multiple of $x^2y^3z^4$ and $x^4y^3z^2$?	g is 8.	A) 1 B) 2 C) 3 D) 6
A) $x^8y^9z^8$ B) $x^6y^6z^6$ C) $x^4y^3z^4$ D) $x^2y^3z^2$		20. If Sy can shovel snow from half of a driveway in 2 hours, and Ty
9. $((x^3 + x^3) \times x^3)^3 =$	9.	can shovel snow from one quarter of the driveway in 2 hours, how many <i>minutes</i> would it take them to shovel the whole driveway
A) $2x^{18}$ B) $8x^{18}$ C) $8x^{27}$ D) x^{54}		working together at their respective constant rates?A) 120B) 160C) 180D) 360
10. In my big jar of jellybeans there are exactly 3 <i>b</i> red beans, 5 <i>b</i> green beans, and 6 <i>b</i> orange beans, and	10.	21. Of the bottles that Viola collects, 80% are ρ_{α}
no others. There could be a total of ? beans.		green. Of the green bottles, 30% held perfume and 45% held spices. If the
A) 35 B) 42 C) 60 D) 90		remaining 25 green bottles held pills, How many bottles are in Viola's collection?
11. What is the sum of all solutions to $ 2x-2.5 = 4$?	11.	A) 75 B) 100 C) 120 D) 125
A) 2 B) 2.5 C) 3.75 D) 4		DECETIME 1
12. The positive difference between the two roots of $x^2 - 3x - 28 = 0$) _{is} 12.	22. If $x \neq 0$ and $2x - \frac{y - 3x^2}{x} = \frac{4}{x}$, then $y = \frac{1}{2}$
A) 3 B) 4 C) 7 D) 11		A) $4 - x^2$ B) $4 + x^2$ C) $5x^2 - 4$ D) $4 - 5x^2$
Go on to the next page	age IIIII 🗛	Go on to the next page \\\ 3

018-2019 ALGEBRA COURSE 1 CONTEST	Answers	2018-2019 ALGEBRA COURSE 1 CONTEST	Answer
= 1, and $s = 9$, then $s + t + a + r + t =$ 12 C) 13 D) 21	1.	13. Today Li turned 42 and Mae turned 8. How old will Mae be when Li is exactly three times Mae's age?	13.
its in my ant farm, but then 3		A) 9 B) 17 C) 26 D) 51	
each ant has 6 legs, the ants a combined total of <u>?</u> legs	2.	14. If a crate of lightbulbs contains <i>b</i> boxes, and each box contains <i>p</i> packages, how many bulbs are in 3 crates if each package holds 4 bulbs?	14.
$5(a-3)$ C) $6a-3a$ D) a^6-3		A) $12bp$ B) $\frac{3bp}{4}$ C) $\frac{4bp}{3}$ D) $\frac{bp}{12}$	
$2x^2 - 1 + 2x - 3 + 4x^2 - 5 + 6x =$	3.	15. Avi and Bea were building sand castles all day.	15.
B) $24x - 9$ 12 D) $12x^2 + 12x - 17$		Avi had built three times as many castles as Bea, but then a wave destroyed 3 of Avi's castles while Bea built 1 more. At that point	
,	4.	the ratio of Avi's castles to Bea's was 5:2. Avi'/	
B) $x^2 - 2xy + y^2$ C) $x^2 + 2xy + y^2$ D) $x^2 + y^2$		had built <u>?</u> castles before the wave hit. A) 11 B) 12 C) 30 D) 33	
<i>y</i>) =	5.	16. If $135 \times 46 = a$, then $135 \times 48 =$	16.
B) $x^3 - x^2y - xy^2 + y^3$		A) <i>a</i> + 2 B) <i>a</i> + 92 C) <i>a</i> + 94 D) <i>a</i> + 270	
D) $x^3 + x^2y + xy^2 + y^3$		17. If $3x + 8y = 21$ and $8x + 3y = 23$, then $x + y = 23$	17.
lowing is negative for all real values of <i>s</i> ?	6.	A) 2 B) 4 C) 11 D) 22	
B) $(-s)^3 - 1$ C) $-s^2 - 1$ D) $(-s)^2 - 1$		18. If the hands on a circular clock start at midnight, what number will the hour hand point to 1000 hours later?	18.
$(x^2 - 3)(x^2 - 4) = 0$ has how many integer solutions?	7.	A) 2 B) 4 C) 8 D) 12	
B) 4 C) 6 D) 8		19. If <i>x</i> is an integer, what is the least possible value of $ 20-7x $?	19.
distinct prime numbers, which of the following is on multiple of $x^2y^3z^4$ and $x^4y^3z^2$?	8.	A) 1 B) 2 C) 3 D) 6	
B) $x^6 y^6 z^6$ C) $x^4 y^3 z^4$ D) $x^2 y^3 z^2$		20. If Sy can shovel snow from half of a driveway in 2 hours, and Ty can shovel snow from one quarter of the driveway in 2 hours, how	20.
=	9.	many <i>minutes</i> would it take them to shovel the whole driveway working together at their respective constant rates?	
¹⁸ C) $8x^{27}$ D) x^{54}		A) 120 B) 160 C) 180 D) 360	
jellybeans there are exactly $3b$ red beans, and $6b$ orange beans, and	10.	21. Of the bottles that Viola collects, 80% are green. Of the green bottles, 30% held	21.
e could be a total of <u>?</u> beans.		perfume and 45% held spices. If the remaining 25 green bottles held pills,	
2 C) 60 D) 90		How many bottles are in Viola's collection?	
th of all solutions to $ 2x - 2.5 = 4$? .5 C) 3.75 D) 4	11.	A) 75 B) 100 C) 120 D) 125	
, ,	12.	22. If $x \neq 0$ and $2x - \frac{y - 3x^2}{x} = \frac{4}{x}$, then $y = \frac{y - 3x^2}{x} = \frac{4}{x}$, then $y = \frac{y - 3x^2}{x} = \frac{4}{x}$, then $y = \frac{y - 3x^2}{x} = \frac{4}{x}$.	22.
ference between the two roots of $x^2 - 3x - 28 = 0$ is	1	A) $4-x^2$ B) $4+x^2$ C) $5x^2-4$ D) $4-5x^2$	1

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors 4

ALGEBRA COURSE 1 CONTEST Math League Press, P.O. Box 17, Tenafly, New Jersey 07670-0017 Information & Solutions Spring, 2019 **Directions for Grading Date** You may give this contest any time after April 15. The Algebra Course 1 Contest is for use in your own school or district. We've enclosed a registra-

Urgent questions? Write to comments@mathleague.com, or call 1-201-568-6328 or 1-516-365-5656.

included on a separate sheet entitled "Using the Score Report Center."

tion form for next year. Instructions for optionally submitting results are

- **Scores** Remind students that *this is a contest, and not a test*—there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct); students with half that, 12 points, should be commended!
- **Solutions** Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Awards The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 *Certificates of Merit*-1 each for the runner-up on each grade level, plus extras for ties.
- Additional Book Awards & Additional Certificates If you want to give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017. Include a self-addressed, stamped envelope (**2** stamps required) large enough to hold certificates.

The school's top scorer will receive the book Math Contests-High School (Vol. 4). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Twenty-one books of past contests, Grades 4, 5, & 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades 7 & 8 (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7), are available, for \$12.95 per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2019 by Mathematics Leagues Inc.

2018-2	2019 ALGEBRA CO	OURSE 1 CONTEST	SOLUTIONS	Answers	
1. If $a = 2, r = 0$, $t = 1$, and $s = 9$,	then $s + t + a + r + a$	t = 9 + 1 + 2 + 0 + 1 = 13.	1. C	
A) 0	B) 12 C) 1	3 D) 21	المحمد	C	
6a legs. Afte ants have 6a	r 3 ants leave, th -18 = 6(a-3) leave -3) leave	egs.		2. B	
A) 6a – 3	B) $6(a-3)$ C) $6a$	$a - 3a$ D) $a^6 - 3$			
3. Regroup: $(6x^2)$	$+2x^2+4x^2)+(4x+2x^2)$	(x+6x) - (5+3+1+3+5).		3.	
A) 36 <i>x</i> – 17	B) 24	4x - 9	ALL A	D	
C) $12x^2 + 12$	2x – 12 D) 1	$2x^2 + 12x - 17$			
4. $(x - y)(x + y)$	$= x^2 + xy - xy -$	$y^2 = x^2 - y^2.$		4.	
A) $x^2 - y^2$	B) $x^2 - 2xy$	$x + y^2$ C) $x^2 + 2xy$	$y + y^2$ D) $x^2 + y^2$	А	
5. $(x - y)(x + y)$	$(x-y) = (x^2 - y^2)$	$(x-y) = x^3 - x^2 y$	$-xy^2 + y^3.$	5.	
A) $x^3 - y^3$	B) x	$x^3 - x^2y - xy^2 + y^3$		В	
C) $x^3 + y^3$	D) <i>x</i>	$x^3 + x^2y + xy^2 + y^3$			
6. Since $-s^2 \le 0$	for all real value	s of <i>s</i> , $-s^2 - 1 < 0$ for	or all real values of <i>s</i> .	6.	
A) $-s^3 - 1$	B) $(-s)^3 - 1$	C) $-s^2 - 1$	D) $(-s)^2 - 1$	C	
7. The integer	solutions of $(x^2 -$	$(x^2 - 2)(x^2 - 3)(x^2 - 3)($	$(x^2 - 4) = 0$ are $\pm 1, \pm 2$.	7.	
A) 2	B) 4	C) 6	D) 8	В	
•	-		east common multiple	8.	
of $x^2y^3z^4$ and	$1 x^4 y^3 z^2$ must co	ntain the highest	power of each prime.	С	
A) $x^8 y^9 z^8$	B) $x^6 y^6 z^6$	C) $x^4 y^3 z^4$	D) $x^2y^3z^2$		
9. $((x^3+x^3) \times x^3)$	$(2x^3 \times x^3)^3$	$= (2x^6)^3 = 2^3 x^{18} =$	$= 8x^{18}$.	9.	
A) $2x^{18}$ B)	$8x^{18}$ C) $8x^{27}$	⁷ D) x ⁵⁴		В	
		eans, 5b green bea	uns,	10.	
	eans, for a total c tal number of be	of 14 <i>b</i> beans. If eans would be 42.	A MARTIN	B	
,	42 C) 60	D) 90			
, ,	,	,	the solutions is 2.5.	11.	
	B) 2.5 C) 3.75			В	
12. The roots of $(x - 7)(x + 4) = 0$ are 7 and -4. Their difference is 11.					
A) 3	B) 4	C) 7	D) 11	D	
		2	Go on to the next page	M⇒ A	
		2			

13.	2018-2019 ALGEBRA COURSE 1 CONTEST SOLUTIONS Today Li turned 42 and Mae turned 8. In <i>x</i> years, we want $42 + x = 3(8 + x)$. Solving, $x = 9$. Therefore, Mae will be 17.						
	A) 9	B) 17	C) 26	D) 51			
14.	Three crates contain $3b$ boxes, and three boxes contain $3bp$ packages. If each package holds 4 bulbs, three crates contain $12bp$ bulbs.						
	A) 12bp	B) $\frac{3bp}{4}$	C) $\frac{4bp}{3}$	D) $\frac{bp}{12}$			
15.	hit, $(a - 3)/(a - 3)$	vave hit, $a = 3b$. A b + 1) = 5/2. Com 3b - 3/ $(b + 1) = 5/+ 5. Solving, b = 12s, Avi had built 33vave hit.$	bining these 2. Simplifying, 1. Since $a = 3b$,		15		
	A) 11 l	B) 12 C) 30	D) 33				
16.	If $135 \times (46 + 2) = (135 \times 46) + 270 = a + 270$.						
	A) <i>a</i> + 2 l	B) <i>a</i> + 92 C) <i>a</i> + 92	a + 94 D) a + 270				
17.	If $3x + 8y = 21$ and $8x + 3y = 23$, $11x + 11y = 44$ and $x + y = 4$.						
	A) 2	B) 4	C) 11	D) 22	17		
18.	. If the hands on a circular clock start at midnight, 1000 hours later is 83 full times around and then one-third more, which is 4 hours.						
	A) 2	B) 4	C) 8	D) 12			
19.	If $x = 3$, the value of $ 20-7x $ is 1.						
	A) 1	B) 2	C) 3	D) 6			
20.	can shovel s gether they	snow from one qu	arter of the drive ters of the drive	r in 2 hours, and Ty eway in 2 hours, to- way in 120 minutes or 160 minutes. D) 360	20		
21.	Of the bottle green. Of th 45% held sp held pills. S	es that Viola collecter that Viola collecter the green bottles, 30 pices. Thus, 25% of ince 25% of 80% is s 25, 100% of her b	cts, 80% are % held perfume the green bottle 5 20%, and 20% c	es (Martin	21		
	A) 75 l	3) 100 C) 120	D) 125				
			,	1 PERFUME	22		
22.	Clearing fra	y = y + 3x	$x^{-} = 4; y = 5x^{-} - 1$	4.			