29. The first 12 contestants won an average of $\$ 80$. The next 20 won an average of $\$ 70$. The 32 contestants won an average of
A) $\$ 73.75$
B) $\$ 74.75$
C) $\$ 75.00$
D) $\$ 75.75$
30. $4^{3} \times 4^{3}=$
A) 16^{9}
B) 16^{6}
$\begin{array}{ll}\text { C) } 4^{9} & \text { D) } 4^{6}\end{array}$
$4^{6} \quad 30$
31. At most ? circles of radius 1 with non-overlapping interiors 31. can fit inside a square with side-length 4.

Sample 7th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005

Instructions

- Time Do not open this booklet until you are told by your teacher to begin. You will have only 30 minutes working time for this contest. You might be unable to finish all 40 questions in the time allowed.
- Scores Please remember that this is a contest, not a test-and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, should be commended!
- Format, Point Value, \& Eligibility This is a multiple-choice contest. Every answer is an A, B, C, or D. You must write each answer in the Answers column to the right of each question. We suggest (but do not require) that you use a pencil. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you're in grade 7 or below and only if you don't also take this year's Annual 8th Grade or Annual 6th Grade Contest.

Please Print (To the student: You must complete all items below)

Last Name \qquad First Name
School \qquad Teacher \qquad Grade Level \qquad
Time at Start of Contest \qquad Today's Date \qquad

Do Not Write In The Space Below

To the Teacher:
Please enter the score at the right before you return this paper to the student. Papers with scores of 30 or higher must be held until June 1.

Student's Score: \qquad

Fifteen books of past contests, Grades 4,5, \& 6 (Vols. 1, 2, 3, 4, 5), Grades $7 \mathcal{\&} 8$ (Vols. 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3, 4,5), are available, for $\$ 12.95$ per volume ($\$ 15.95$ Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

[^0]1. If 84 players split themselves into teams, how many more teams can they form by splitting into teams of 4 instead of teams of 6 ?
A) 5
B) 6
C) 7
D) 14
2. $0 \times 1+1 \times 10+0 \times 0+1=$
A) 0
B) 1
C) 3
D) 11
3. The three angles of a triangle can measure $20^{\circ}, 40^{\circ}$, and
A) 60°
B) 80°
C) 90°
D) 120°
4. To the nearest tenth, $3456 \times 0.001=$ $\begin{array}{llll}\text { A) } 0.3 & \text { B) } 3.4 & \text { C) } 3.5 & \text { D) } 34.6\end{array}$
5. If my bad hair day began 720 minutes before 7:20 P.M., then my bad hair day began at
A) 1:20 A.M.
B) $7: 20$ A.M.
C) 12:00 P.M.
D) 7:08 P.M.

6. $500+500+500+500+500=10 \times ?$
A) 25
B) 50
C) 250
D) 2000
7. Of the whole numbers $10,11, \ldots, 98,99$, how many are greater than the sum of their digits?

$\begin{array}{ll}\text { A) } 88 & \text { B) } 89\end{array}$	C) $90 \quad$ D) 99	
8. $1^{3}+2^{4}=\quad$ A) $1^{4}+3^{2}$	$\begin{array}{lll}\text { B) } 1^{3}+4^{2} & \text { C) } 1^{2}+4^{3} & \text { D) } 1^{1}+3^{4}\end{array}$	8.
9. 7 is prime, so May 7 th is a prim A) 10 B) 11	day. In all, May has ? prime days. C) 12 D) 13	9.
10. $\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{7}{6} \times \frac{5}{4} \times \frac{3}{2}=$	A) $1 \begin{array}{llll}\text { B) } 3 & \text { C) } 6 & \text { D) } 12\end{array}$	10.
11. 500 nickels $=$? quarters A) 100 B) 250	C) 500 D) 2500	11.

12. If a square's side-lengths are integers, its perimeter could be
A) 33
B) 44
C) 55
D) 66
13. If 3 of every 150 astronauts walk on the moon, then ? $\%$ of all astronauts walk on the moon. $\begin{array}{llll}\text { A) } 2 & \text { B) } 3 & \text { C) } 5 & \text { D) } 50\end{array}$
14. Of the following, which doesn't reduce to $\frac{3}{5}$?
A) $\frac{9}{15}$
B) $\frac{21}{35}$
C) $\frac{24}{40}$
D) $\frac{33}{50}$
15. $\sqrt{100}=\sqrt{36}+\sqrt{?}$

A) 2
B) 4
C) 16
D) 64
-9.

2004-2005	
29. The 1 st 12 won $12 \times \$ 80=\$ 960$. The next 20 won $20 \times \$ 70=$ $\$ 1400$. The 32 contestants won an average of $\$ 2360 \div 32=\$ 73.75$. A) $\$ 73.75$ B) $\$ 74.75$ C) $\$ 75.00$ D) $\$ 75.75$	A
30. $4^{3} \times 4^{3}=4^{3+3}=4^{6} . ~ \begin{array}{cllll}16^{9} & \text { B) } 16^{6} & \text { C) } 4^{9} & \text { D) } 4^{6}\end{array}$	30. D
31. 4 such circles fit inside a square of side-length 4. A) 1 B) 4 C) 5 D) 16	$31 .$
32. Just as $1-0.9=0.1,0.1 \%=1.0 \%-0.9 \%$. A) 0.009% B) 0.09% C) 0.9% D) 10%	
33. Change each answer choice to months. Since 6 years $=72$ months, and 5 years ago I was 1 year old, choice A is correct. A) 6 B) 7 C) 8 D) 12	33.
34. $\sqrt{81 \times 81 \times 81 \times 81}=\sqrt{81^{4}}=81^{2}$, so $\sqrt{\sqrt{81 \times 81 \times 81 \times 81}}=\sqrt{81^{2}}=81$. A) 3 B) 9 C) 27 D) 81	D
35. If a product is even, at least 1 factor must be even. A) 2005 B) 2004 C) 1 D) 0	B
36. $1 / 2$ is one-fourth of 2 , its reciprocal, so choice A is correct. A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) 2 D) 4	A
37. $21=3 \times 7 ; 51=3 \times 17 ; 81=3 \times 27 ; 91=7 \times 13$. Other 5 are prime. A) 4 B) 5 C) 6 D) 7	B
38. $(301-1)+(302-2)+\ldots+(325-25)=(300) \times 25=7500$. A) 25 B) 2500 C) 5000 D) 7500	$38 .$ D
39. Angle at $4: 30$ is 45°. Each min., the min. hand moves 6°, hr. hand moves 0.5°, so the angle increases 5.5°. The $8-\mathrm{min}$. increase is 44°, so the angle at $4: 38$ is only 89°. A) $4: 36$ B) $4: 37$ C) $4: 38$ D) $4: 39$	39. D
40. If $H+K+L+N=2005$, then H is less than $2005 \div 4=501.25$. If $H=498, H+K+L+N=$ $498+501+502+504=2005$. Since M and N are the middle of the alphabet, the average of all 26 letters is $(503+504) \div 2=503.5$. A) 491 B) 498 C) 503.5 D) 505.5	40. C

The end of the contest 7

Information

Solutions

2004-2005 Annual 7th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.

■ Urgent questions? Call 1-201-568-6328.

- Scores Please remember that this is a contest, not a test-and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, should be commended!
- Awards \& Results The original contest package contained 5 Certificates of Merit-1 each for the highest scoring student on each grade level, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates. Only score reports postmarked by Fri., Feb. 25, 2005 , and received by Tues., Mar. 9, 2005 can be used in our Summary of Contest Results newsletter, which you'll receive no later than Tues., May 10, 2005.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

[^1]Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

Answers

1. 84 players can split into $84 \div 6=14$ teams of 6 players and $84 \div 4=21$ teams of 4 players. There are 7 more teams of 4 . A) 5 B) 6 C) 7 D) 14	1. C
2. $(0 \times 1)+(1 \times 10)+(0 \times 0)+1=0+10+0+1=11$. A) 0 B) 1 C) 3 D) 11	2. ${ }^{2 .}{ }_{D}$
3. The sum is 180°. The 3 rd angle must be $180^{\circ}-\left(20^{\circ}+40^{\circ}\right)=120^{\circ}$. A) 60° B) 80° C) 90° D) 120°	3.
4. $3456 \times 0.001=3.456$. This rounds up to 3.5 . A) 0.3 B) 3.4 C) 3.5 D) 34.6	${ }^{4 .}$
5. Since 720 minutes $=(720 \div 60)$ hours $=12$ hours, my bad hair day began at 7:20 A.M. A) $1: 20$ A.M. B) $7: 20$ A.M. C) $12: 00$ P.M. D) 7:08 P.M.	5. B
6. The sum $=5 \times 500=2500=10 \times 250$. A) 25 B) 50 C) 250 D) 2000	${ }^{6 .} \mathrm{C}$
7. Since every number on the list is greater than the sum of its digits, all 90 numbers are greater than the sum of their digits. A) 88 B) 89 C) 90 D) 99	7.
8. $1^{3}+2^{4}=17=1^{3}+4^{2} . ~ \begin{array}{lllll} & \text { A) } 1^{4}+3^{2} & \text { B) } 1^{3}+4^{2} & \text { C) } 1^{2}+4^{3} & \text { D) } 1^{1}+3^{4}\end{array}$	8. B
9. There are 11 prime days in May: $2,3,5,7,11,13,17,19,23,29$, and 31 . A) 10 B) 11 C) 12 D) 13	${ }^{9 .} \mathrm{B}$
	10. A
11. Since 5 nickels $=1$ quarter, 500 nickels $=100$ quarters. A) 100 B) 250 C) 500 D) 2500	A
12. All side-lengths are equal, so the perimeter is divisible by 4 . A) 33 B) 44 C) 55 D) 66	12. B
13. 3 of every 150 is the same as 1 of every 50 . That's the same as 2 of every 100 , which is 2%. A) 2 B) 3 C) 5 D) 50	13.
14. $\frac{33}{50}$ cannot be reduced. A) $\frac{9}{15}$ B) $\frac{21}{35}$ C) $\frac{24}{40}$ D) $\frac{33}{50}$	$14 .$ D
15. $\sqrt{100}=\sqrt{36}+\sqrt{?} \Leftrightarrow 10=6+\sqrt{?}$, so $4=\sqrt{?}=\sqrt{16}$. A) 2 B) 4 C) 16 D) 64	$15 .$ C

16. As shown, 2 squares with a common side form a rectangle. \square $\begin{array}{llll}\text { A) An octagon } & \text { B) A hexagon } & \text { C) A rectangle } & \text { D) A triangle }\end{array}$
17. Each of the 9 numbers in the first sum is 1 more than the number in the same position in the second sum.
A) 9
B) 10
C) 90
D) 100
18. Uncle Bookworm eats 2 books a week, or 104 a year. Aunt Bookworm eats 1 book every 2 months, or 6 a year. Uncle eats 104-6 = 98 more books than Aunt.
A) 20
B) 40
C) 80
D) 98
19. The largest odd factor of 81 is 81 .

A) 3	B) 9	C) 27	D) 81

20. $\left(\frac{2}{3}\right)^{3}=\frac{2 \times 2 \times 2}{3 \times 3 \times 3}=\frac{8}{27}$.
A) 2
B) $\frac{6}{9}$
C) $\frac{8}{3}$
D) $\frac{8}{27}$
21. To seat the most students, put the students in seats $1,3,5,7,9$, $11,13,15,17,19,21,23$, and 25 . That's 13 seated students.

A) 11
B) 12
C) 13
D) 24
22. The smallest multiple of 10 that's greater than $9 \times 9=81$ is 90 .
23. $\frac{6}{5}-\frac{5}{6}=\frac{36}{30}-\frac{25}{30}=\frac{11}{30}$.
$\begin{array}{lll}\text { A) } \frac{1}{5} & \text { B) } \frac{1}{6} & \text { C) } \frac{1}{30}\end{array}$
D) $\frac{11}{30}$ than the front wheel's. The rear wheel's circumference is $(d+6) \times \pi \mathrm{cm}$, which
A) 3π
B) 6π
C) 9π
D) 36π
C
25. All sides of a regular polygon have equal lengths.

Visit our Web site at http://www.mathleague.com

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

Sample 7th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Instructions

- Time Do not open this booklet until told by your teacher to begin. You might be unable to finish all 35 questions in the 30 minutes allowed.
- Scores Remember that this is a contest, not a test-there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with 14 points, should be commended! High-scoring students may be invited to our "Math Camp," held last August at Stanford University.
- Results Posted Online Scores of high-scoring schools, both regional and overall, will be posted at www.mathleague.com no later than April 15.
- Format, Point Value, \& Eligibility Every answer is an A, B, C, or D. Write answers in the Answers column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 7 or below and only if you don't also take this year's Annual 6th or Annual 8th Grade Contest.

Please Print (To the student: You must complete all items below)
Last Name \qquad First Name \qquad
School \qquad Teacher \qquad Grade Level \qquad
Time at Start of Contest \qquad Today's Date \qquad

Do Not Write In The Space Below

To the Teacher:
Please enter the score at the right before you return this paper to the student. Papers with scores of 30 or higher must be held until June 1. Student's Score: \qquad
Eighteen books of past contests, Grades 4, 5, $\mathcal{E} 6$ (Vols. 1, 2, 3, 4, 5, 6), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Copyright © 2013 by Mathematics Leagues Inc.

1. Of the following numbers, which is closest to 10.98 ?
A) 10.00
B) 10.90
C) 10.95
D) 11.00
2. $\sqrt{4 \times 9 \times 16}=$
A) 9
B) 24
C) 29
3. Mr. Barry is angry. He has 4 grubs left after he tried to divide 256 grubs equally among his cubs. There could be ? cubs.
A) 5
B) 6
C) 8
D) 11
4. The tenths digit of ? is larger than its hundredths digit.

A) 543.21
B) 231.23
C) 654.56
D) 642.46
5. $3^{2}+3^{2}+3^{2}=$

A) 3^{3}	B) 3^{6}	C) 9^{3}	D) 9^{6}	
$6.3 \div \frac{1}{6}=9 \div \underline{?}$			6.	
A) $\frac{1}{18}$	B) $\frac{1}{12}$	C) $\frac{1}{2}$	D) $\frac{9}{2}$	

7. The greatest common factor of 2013 and ? is 11 .
A) 231
B) 365
C) 418
D) 542
8. Three times a certain number is 36 . One-third of that certain number is
A) 4
B) 12
C) 36
D) 108
9. If a case of eggs contains 12 dozen eggs, how many eggs are in two crates of 12 cases each?
A) 48
B) 144
C) 288
D) 3456
10. One hundred million divided by ten thousand equals
A) 10
B) 100
C) 1000
D) 10000
11. Ashley the chimney sweep puts his hat down on a square the same size as the opening of a chimney. The circular brim touches each side of the square at a single point. The perimeter of the square is 4 m . What is the radius of the circular brim of Ashley's hat?
$\begin{array}{llll}\text { A) } 0.5 \mathrm{~m} & \text { B) } 1 \mathrm{~m} & \text { C) } 2 \mathrm{~m} & \text { D) } 4 \mathrm{~m} \\ \text { 12. } \frac{1}{3} \times \frac{2}{4} \times \frac{3}{5} \times \frac{4}{6} \times \frac{5}{7} \times \frac{6}{8} \times \frac{7}{9} \times \frac{8}{10}=\frac{1}{10} \times ?\end{array}$

12. $20+30+40-($ the average of 20,30 , and 40$)=$
A) 0
B) 45
C) 60
D) 90

2012-2013 7TH GRADE CONTEST SOLUTIONS

Information \mathcal{E} Solutions

2012-2013 Annual 7th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Urgent Questions? For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- Scores Please remember that this is a contest, and not a test-there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards \& Results The original contest package contained 5 Certificates of Merit-1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Tues., March 8, 2011 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 15, 2011.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Eighteen books of past contests, Grades 4, 5, $\mathcal{E} 6$ (Vols. 1, 2, 3, 4, 5, 6), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017

1. The difference between 10.98 and $11.00=0.02$, so 11.00 is closest.

A) $\frac{1}{18}$
B) $\frac{1}{12}$
C) $\frac{1}{2}$
D) $\frac{9}{2}$
2. Since $2013=3 \times 11 \times 61$ and $418=2 \times 11 \times 19$, the correct answer is 418 .
A) 231
B) 365
C) 418
D) 542
3. If 3 times a number is 36 , the number is 12 ; one-third of 12 is 4 .
4.

A) 4
B) 12
C) 36
D) 108 \square
9. If a case of eggs contains $12 \times 12=144$ eggs, then two crates of 12 cases contain $2 \times 12 \times 144=3456$ eggs.
A) 48
B) 144
C) 288
D) 3456
10. $100000000 \div 10000=10000$.
A) 10
B) 100
C) 1000
D) 10000
10.
11. As shown in the diagram, a diameter of the circular brim is equal to the length of a side of the square. The square has a side-length of 1 m . Since a radius of a circle is half of a
 diameter, the radius of the brim is 0.5 m .
$\begin{array}{llll}\text { A) } 0.5 \mathrm{~m} & \text { B) } 1 \mathrm{~m} & \text { C) } 2 \mathrm{~m} & \text { D) } 4 \mathrm{~m}\end{array}$
12. $\frac{1}{\not 2} \times \frac{2}{4} \times \frac{\not \partial}{\not 2} \times \frac{4}{8} \times \frac{8}{7} \times \frac{8}{8} \times \frac{7}{9} \times \frac{8}{10}=\frac{1}{10} \times \frac{2}{9}$.
A) $\frac{3}{19}$
B) $\frac{2}{9}$
C) $\frac{1}{9}$
D) $\frac{2}{90}$
13. $20+30+40-(20+30+40) \div 3=90-30=60$.
A) 0
B) 45
C) 60
D) 90

C
14. If 130 of Del's last meals were sandwiches, then 120 were not. Since $120 \div 250=0.48,48 \%$ of those last 250 meals were not sandwiches.
A) 40%
B) 44%
C) 48%
D) 52%
15. The two least odd divisors of 120 are 1 and 3 .
A) 4
B) 5
C) 8
D) 15
16. Every $4 \times 30 \mathrm{~min}$. $=2$ hours, I collect $4 \times 20=$ 80 seashells and drop 3 seashells. In 2 hours I
 have a total of 77 seashells, so in 8 hours I have $77 \times 4=308$ seashells.
A) 68
B) 136
C) 296
D) 308
17. The number of nickels in $\$ 3.00$ is $300 \div 5=60$. The number of dimes in $\$ 6.00$ is $600 \div 10=60$. That's 120 coins; 240 quarters $=\$ 60.00$.
A) $\$ 12.00$
B) $\$ 15.00$
C) $\$ 30.00$
D) $\$ 60.00$
18. 0.05% of $10000=0.0005 \times 10000=5$.
A) 5
B) 50
C) 500
D) 5000
19. The middle number is $13 \div 13$. The integers are $-5,-4,-3 \ldots, 5,6$, and 7 .
A) 6
B) 7
C) 9
D) 13
20. One apple plus one orange costs $\$ 1.50$. If I spend $5 \times \$ 1.50=\$ 7.50$, I'll have $\$ 1.30$ left to buy 2 more apples. That's a total of 12 pieces.
A) 11
B) 12
C) 13
D) 14
21. Since $10=2+3+5,12=2+3+7$, and $15=3+5+7$, Dragon Doug cannot read 13 books in 3 months.
A) 10
B) 12
C) 13
D) 15
22. The average of 45674567 and 67896789 is $(45674567+67896789) \div 2=56785678$.
A) 55443322
B) 55556666
C) 56565656
D) 56785678
23. $\sqrt{49}-\sqrt{16}=7-4=3=\sqrt{9}$.
A) $\sqrt{33}$
B) $\sqrt{25}$
C) $\sqrt{9}$
D) $\sqrt{3}$
24. $2016^{2013}=\left(2^{5} \times 3^{2} \times 7\right)^{2013}=2^{10065} \times 3^{4026} \times 7^{2013}$.
A) 3^{2013}
B) 3^{2015}
C) 3^{4026}
D) 3^{6039}
25. Friday, Mar. 4, is the 3rd day it's open. Three weeks later, Mar. 25, is the 18th day. Monday, Mar. 28, is day 19, so Mar. 30 is the 21st day.
A) March 22
B) March 23
C) March 30
D) March 31
26. A rectangular prism is 5 m long, 4 m wide, and 6 m high. What is the sum of the lengths of its edges?
A) 15 m
B) 60 m
C) 80 m
D) 120 m
27. What is the ratio of $1 \frac{1}{3}$ to its reciprocal?
A) 1
B) $\frac{3}{4}$
C) $\frac{4}{3}$
D) $\frac{16}{9}$

28. Pens come in packs of $3,6,8$, and 12 .

I bought 12 packs and got a total of 121 pens. If I bought at least one of each size pack, how many packs of 8 pens did I buy?
A) 1
B) 2
C) 3
D) 4
29. $3^{2} \times 8^{2} \times 5^{2}=6^{2} \times ? \times 10^{2}$
A) $\frac{1}{2}$
B) 2
C) 2^{2}
D) 2^{3}
30. I wrote the first 100 positive integers in order, and then erased every " 1 " I had written. How many digits did I erase?
A) 18
B) 19
C) 20
D) 21
31. What is the difference between the product and the sum of the nonzero digits of 20^{10} when it is written in decimal form?
A) 1
B) 2
C) 10^{2}
D) 2×10
32. In the sequence $20, \frac{19}{2}, \frac{18}{3}, \frac{17}{4}, \ldots$, each term after the first term is gotten by subtracting 1 from the previous term's numerator and adding 1 to the previous term's denominator. How many terms in this sequence are positive integers?
A) 1
B) 2
C) 3
D) 4
33. Two congruent rectangular cards partially overlap. The area of overlap is a square with area 4, and the total area of the regions of the faces of the two cards that do not overlap is 12 . What is the area of one card?
A) 4
B) 6
C) 8
D) 10
34. If the mean of three positive integers is 5 , then the product of all 3 integers is at most
A) 105
B) 120
C) 125
D) 150
35. What is the sum of the digits of the least 3-digit integer whose square is a 6-digit integer?
A) 5
B) 7
C) 9
D) 11

Sample 7th Grade Contest

Tuesday, February 19 (alternate date: February 26), 2019

Instructions

- Time Do not open this booklet until told by your teacher to begin. You might be unable to finish all 35 questions in the 30 minutes allowed.
- Scores Remember that this is a contest, not a test-there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with half that, 14 points, should be commended! High-scoring students may be invited to our "Math Camp" in July.
- Results Posted Online High-scoring contest results, both overall and regional, will be posted at www.mathleague.com no later than April 15.
- Format, Point Value, \& Eligibility Every answer is an A, B, C, or D. Write answers in the Answers column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 7 or below and only if you don't also take this year's Annual 6th or Annual 8th Grade Contest.

Please Print (To the student: You must complete all items below)
Last Name \qquad First Name \qquad
School \qquad Teacher \qquad Grade Level \qquad
Time at Start of Contest \qquad Today's Date \qquad

Do Not Write In The Space Below

To the Teacher:
Please enter the score at the right before you return this paper to the student. Papers with scores of 30 or higher must be held until June 1

Student's Score:

Twenty-one books of past contests, Grades 4,5, \& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7) are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

[^2]

2018-2019 7TH GRADE CONTEST	Answers
14. If half of my pals have at least 1 pet, and $1 / 3$ of my pals with a pet have more than 1 pet, what fraction of my pals have exactly 1 pet? A) $\frac{1}{6}$ B) $\frac{1}{3}$ C) $\frac{2}{3}$ D) $\frac{5}{6}$	14.
15. The average of $0.5,1.5$, and 2.5 equals the average of 1 and A) 1 B) 1.5 C) 2 D) 2.5	15.
16. $9 \times 90 \times 900 \times 9000=9 \times$? A) 100^{3} B) 900^{3} C) 9000^{3} D) 9000000^{3}	16.
17. What is one less than the product -18×19 ? A) -341 B) -342 C) -343 D) -344	17.
18. When I divide the number of digits in the decimal form of 10^{2018} by 4 , the remainder is A) 3 B) 2 C) 1 D) 0	18.
19. My first name has 60% as many letters as my last name. My first name could be A) Al B) Ali C) Alex D) Alexa	19.
20. What is the least possible sum of two integers whose product is 12 ? A) -13 B) -11 C) 7 D) 8	20.
21. Of the first 100 positive integers, ? are not multiples of both 2 and 3 . A) 16 B) 32 C) 64 D) 84	21.
22. If one-third of the eggs in each carton of 1-dozen eggs are cracked, I must buy ? cartons to get 16-dozen eggs that are not cracked. A) 48 B) 36 C) 24 D) 20	22.
23. Which of the following is nearest in value to 8.25 ? A) $8 \frac{2}{5}$ B) $8 \frac{2}{10}$ C) $8 \frac{5}{10}$ D) $8 \frac{10}{25}$	23.
24. I bowled on 2 days every week, on a different pair of days each week that I bowled. For at most how many weeks did I bowl? A) 14 B) 21 C) 28 D) 35	24.
25. Which of the following has the least value? A) 0.1 B) 0.01 C) 0.0011 D) $(0.01)^{2}$	25.

26. Such a prism has 4 edges of each size. The sum of the 3 dimensions is 15 m , so the sum of all the lengths is 60 m .
A) 15 m
B) 60 m
C) 80 m
D) 120 m
27. The ratio of $\frac{4}{3}$ to $\frac{3}{4}$ is $\frac{16}{9}$
A) 1
в) $\frac{3}{4}$
C) $\frac{4}{3}$
D) $\frac{16}{9}$
28. I bought an odd number of pens, so I bought an odd number of packs of 3 . If I bought 1 pack of 3 , I could have bought 2 packs of 8,1 pack of 6 , and 8 packs of 12. No other number of packs of 3 yields 12 packs.
A) 1
B) 2
C) 3
D) 4

29. $3^{2} \times(2 \times 2 \times 2)^{2} \times 5^{2}=(3 \times 2)^{2} \times 2^{2} \times(5 \times 2)^{2}$.
A) $\frac{1}{2}$
B) 2
C) 2^{2}
D) 2^{3}
30. There is one " 1 " from 1 to 9,11 " 1 "s from 10 to 19 , one " 1 " in each of the next 8 groups of 10 integers, and one " 1 " in 100 .
A) 18
B) 19
C) 20
D) 21
31. When expanded, $20^{10}=10240000000000$. The difference between the product and the sum of the non-zero digits is $8-7=1$.
A) 1
B) 2
C) 10^{2}
D) 2×10
32. In the sequence $20, \frac{19}{2}, \frac{18}{3}, \frac{17}{4}, \ldots$, each term after the first term is gotten by subtracting 1 from the previous term's numerator and adding 1 to the previous term's denominator. The only integers in this sequence are $20,18 / 3$, and $14 / 7$.
A) 1
B) 2
C) 3
D) 4
33. The area of each rectangle is half of the area of the non-overlapping region plus the area of the square. Therefore, the area of each rectangle is $12 / 2+4=10$.
A) 4
B) 6
C) 8
D) 10
34. If the mean of three positive integers is 5 , their sum is 15 . The integers could be 5,5 , and 5 .
A) 105
B) 120
C) 125
D) 150
35. Since the square root of 100000 is between 316 and 317, 317 is the smallest such 3-digit integer.
A) 5
B) 7
C) 9
D) 11
36.

Information \mathcal{E} Solutions

Tuesday, February 19 (alternate date: February 26), 2019

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Urgent Questions? For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- Scores Please remember that this is a contest, and not a test - there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards \& Results The original contest package contained 5 Certificates of Merit-1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Fri., March 9, 2018 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 12, 2019.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Twenty-one books of past contests, Grades 4,5, \& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7) are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

2018-2019 7 TH GRADE SOLUTIONS
14. Using 6 pals, 3 pals have at least 1 pet, and $\frac{1}{3}$
of them, or 1 pal, has more than 1 pet. The
fraction of my pals with exactly 1 pet is $2 / 6$.

2004-2005 8TH GRADE CONTEST	Answers
29. $2^{10} \times 2^{10}=\quad \begin{array}{llll}\text { A) } 2^{20} & \text { B) } 2^{100} & \text { C) } 4^{20} & \text { D) } 4^{100}\end{array}$	29.
30. I got immunized on the one millionth second of this calendar year. That happened on A) January 11 B) January 12 C) February 1 D) February 2	30.
31. $\sqrt{16^{16}}=$ A) 4^{4} B) 4^{8} C) 16^{4} D) 16^{8}	31.
32. Each of 2005 fractions has an even numerator and an odd denominator. If the product of all of them is an integer, it must be A) even B) odd C) prime D) 2005	32.
33. If x is a whole number, what is the largest possible perimeter of a triangle with side-lengths 3,4 , and x ? A) 11 B) 12 C) 13 D) 14	33.
34. When fully expanded, 10000^{9999} has ? digits. A) 9999 B) 10000 C) 39996 D) 39997	34.
35. In the diagram, the total number of different triangles is A) 2 B) 3 C) 4 D) 5	35.
36. If the sum of 2000 consecutive integers is 1000 , then the sum of the digits of the greatest of these 2000 integers is A) 1 B) 2 C) 9 D) 27	36.
37. How many of the 15 positive factors of 400 are divisible by 4 ? A) 4 B) 8 C) 9 D) 10	37.
38. I phoned my mom to help me answer this, the final question on a quiz show: How many integers equal their own squares? Mom said, "? ." She was right! A) zero B) one C) two D) three	38.
39. At 12:22, a clock's hour hand is ? away from a vertical position. A) 10° B) 11° C) 21° D) 22°	39.
40. What is the tens' digit of the product $1 \times 2 \times 3 \times \ldots \times 98 \times 99$? A) 4 B) 6 C) 8 D) 0	40.
The end of the contest 8	

Visit our Web site at http://www.mathleague.com

Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

1. $1110-1020=110-$?
 A)

2. If my doctor's "IN" sign is a square with a perimeter of 4 , then its area is | A) 1 | B) 4 | C) 8 | D) 16 |
| :--- | :--- | :--- | :--- |
3. $300 \div 200=1 \div$?

A) $\frac{1}{3}$
B) $\frac{1}{2}$
C) $\frac{2}{3}$
D) $\frac{3}{2}$
4. When written as an improper fraction, five-fourths is
A) $\frac{4}{5}$
B) $1 \frac{1}{4}$
C) 1.25
D) $\frac{5}{4}$

5. 2005-2005-2004 = \quad A) 1 B) -200				
6. Exactly 120 seconds after midnight, the cor				
A) 12:02 P.M. B) 12:02 A.M. C) 2 P.M.				
7. $24 \div 4 \times 2+4=$				
	A) $1 \quad$ B) 7	C) 16		D) 36
8. The reciprocal of $\left(\frac{1}{2} \times 4\right)$ is				
	A) $2 \times \frac{1}{4} \quad$ B) $\frac{1}{2} \times 4$	C) $\frac{1}{2} \times \frac{1}{4}$) 2×4

9. Of the following numbers, which is closest in value to 1 ?
A) 0.995
B) 0.99
C) 1.01
D) 1.1
10. What is the sum of all the one-digit positive prime numbers?
$\begin{array}{ll}\text { A) } 15 & \text { B) } 16 \\ \text { 11. } 2 \times \frac{1}{2} \times 4 \times \frac{1}{4} \times 6 \times \frac{1}{6}\end{array}$
C) 17
D) 18
11.

$\begin{array}{ll}\text { A) } 1 & \text { B) } 6\end{array}$
C) 12
D) 24
12. When I add the measures of any 2 angles of triangle T, the sum is always 120°. Triangle T must be
A) scalene
B) right
C) obtuse
D) equiangular
13. I wear my headphones only on cloudy days. The day after each cloudy day is a sunny day. I wear my headphones at most ? times in a week.
A) 3
B) 4
C) 5
D) 6
14. Of the following, which has the largest value?
A) 7
B) $(-1)^{2}$
C) $(-2)^{2}$
D) $(-3)^{2}$
15. $9000 \%+900 \%+90 \%+9 \%=$
A) 9999
B) 999.9
C) 99.99
D) 0.9999

16. A dealer paid Bunny Fabergé 50 pennies for each of his decorated eggs, The dealer then sold each egg for 50 quarters. Bunny (the artist) got what percent of the final purchase price?
A) 2%
B) 4%
C) 25%
D) 50%

17. $\sqrt{\sqrt{\sqrt{2}}}$
A)

18. $30 \% \times 40 \%=$
19. The number ? has exactly 4 different whole number factors.
A) 30
B) 24
C) 12
D) 10
20. When rounded to the nearest fifth, 0.33 becomes
A) 0.2
B) 0.3
C) $\frac{2}{5}$
D) $\frac{3}{5}$
21. I lost my coins! This morning, I had 7 coins worth 49 . How many nickels did I have?
A) 0
B) 1
C) 2
D) 7
22. $1.5 \mathrm{~m}+60 \mathrm{~cm}+0.02 \mathrm{~km}=$
$\begin{array}{llll}\text { A) } 0.221 \mathrm{~m} & \text { B) } 2.21 \mathrm{~m} & \text { C) } 22.1 \mathrm{~m} & \text { D) } 221 \mathrm{~m}\end{array}$

23. How many of the positive multiples of 2 are factors of 222 ?
A) 111
B) 4
C) 3
D) 1
24. What is the average of the first 99 positive whole numbers?
A) 49.00
B) 49.50
C) 49.75
D) 50.00
25. If a small circle's diameter is a large circle's radius, then the small circle's area is ? \% of the large circle's area.
A) 20
B) 25
C) 40
D) 50
26. If $2 / 3$ of a cup of fish food can feed 8 goldfish, then 4 cups of fish food should be able to feed ? goldfish.
A) 12
B) 24
C) 36
D) 48
27. An integer cannot be ? if its square is even.
A) prime
B) odd
C) even
D) zero

28. If $4 x=$ the reciprocal of $\frac{1}{x^{3}}$, then x could equal
A) $\frac{1}{8}$
B) $\frac{1}{2}$
C) 2
D) 8
29.

\begin{tabular}{|c|c|}
\hline 2004-2005 8TH GRADE CONTEST SOLUTIONS \& Answers \\
\hline \& 29. A \\
\hline \begin{tabular}{l}
30. Divide by 60 to get \(\#\) minutes. Repeat to get \# hours. Divide result by 24 to get \# days \(\approx 11.57\). \\
A) January 11 \\
B) January 12 \\
C) February 1 \\
D) February 2
\end{tabular} \& 30.
B \\
\hline \begin{tabular}{l}
31. As in 29 above, \(16^{8} \times 16^{8}=16^{16}\), so \(\sqrt{16^{16}}=16^{8}\). \\
A) \(4^{4}\) \\
B) \(4^{8}\) \\
C) \(16^{4}\) \\
D) \(16^{8}\)
\end{tabular} \& D \\
\hline \begin{tabular}{l}
32. If 2005 fractions each have an even numerator and an odd denominator of 1 , their product would be an even integer. \\
A) even \\
B) odd \\
C) prime \\
D) 2005
\end{tabular} \& \begin{tabular}{l}
32. \\
A
\end{tabular} \\
\hline \begin{tabular}{l}
33. In a \(\triangle\), the sum of the 2 smaller side-lengths must be greater than the 3 rd side-length. Thus, the perimeter \(\leq 3+4+6=13\). \\
A) 11 \\
B) 12 \\
C) 13 \\
D) 14
\end{tabular} \& \begin{tabular}{l}
\[
33 .
\] \\
C
\end{tabular} \\
\hline \begin{tabular}{l}
34. \(10000^{9999}=\left(10^{4}\right)^{9999}=10^{39996}\). That's 1 followed by 39996 zeroes! \\
A) 9999 \\
B) 10000 \\
C) 39996 \\
D) 39997
\end{tabular} \& \[
34 .
\]
D \\
\hline \begin{tabular}{l}
35. The 2 small and 2 large \(\triangle \mathrm{s}\) are shown: \\
A) 2 \\
B) 3 \\
C) 4 \\
D) 5 \\
\(\infty\)
\end{tabular} \& \begin{tabular}{l}
\[
35 .
\] \\
C
\end{tabular} \\
\hline \begin{tabular}{l}
36. The 2000 integers \(-999,-998, \ldots, 998,999,1000\) have a sum of 1000. The digit-sum of the largest integer used is \(1+0+0+0=1\). \\
A) 1 \\
B) 2 \\
C) 9 \\
D) 27
\end{tabular} \& \begin{tabular}{l}
\[
36 .
\] \\
A
\end{tabular} \\
\hline \begin{tabular}{l}
37. The 9 factors divisible by 4 are \(4,8,16,20,40,80,100,200, \& 400\). \\
A) 4 \\
B) 8 \\
C) 9 \\
D) 10
\end{tabular} \& C \\
\hline \begin{tabular}{l}
38. Notice that \(0^{2}=0\) and that \(1^{2}=1\). These are the only two integers which are equal to their own squares. \\
A) zero \\
B) one \\
C) two \\
D) three
\end{tabular} \& 38.

C

\hline | 39. The hr. hand moves 30° in 1 hr . and $(22 / 60) \times 30^{\circ}=11^{\circ}$ in 22 mins. |
| :--- |
| A) 10° |
| B) 11° |
| C) 21° |
| D) 22° | \& 39.

\hline | 40. The product includes several multiples of 10 ; it's divisible by 100 . |
| :--- |
| A) 4 |
| B) 6 |
| C) 8 |
| D) 0 | \& \[

{ }^{40 .}{ }_{D}
\]

\hline
\end{tabular} The end of the contest 8 Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

Information \mathcal{E} Solutions

2004-2005 Annual 8th Grade Contest

Tuesday, February 22 (alternate date: February 15), 2005

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Urgent questions? Call 1-201-568-6328.
- Scores Please remember that this is a contest, not a test-and there is no "passing" or "failing" score. Few students score as high as 30 points (75% correct). Students with half that, 15 points, should be commended!
- Awards \& Results The original contest package contained 5 Certificates of Merit-1 each for the highest scoring student on each grade level, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates. Only score reports postmarked by Fri., Feb. 25, 2005 , and received by Tues., Mar. 9,2005 can be used in our Summary of Contest Results newsletter, which you'll receive no later than Tues., May 10, 2005.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

> Fifteen books of past contests, Grades $4,5, \mathcal{E} 6$ (Vols. 1, 2, 3, 4, 5), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3, 4,5), are available, for $\$ 12.95$ per volume ($\$ 15.95$ Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

1. Subtract 1000 from each: $110-020$.

A) 102
$\begin{array}{llll}\text { B) } 101 & \text { C) } 90 & \text { D) } 20\end{array}$

2. Each side of the square has length $4 \div 4=1$. The square's area $=1^{2}=1$. | A) 1 | B) 4 | C) 8 | D) 16 |
| :--- | :--- | :--- | :--- |
3. $300 \div 200=3 / 2=1 \times(3 / 2)=1 \div(2 / 3)$.

A) $\frac{1}{3}$
B) $\frac{1}{2}$
C) $\frac{2}{3}$
D) $\frac{3}{2}$
4. Five-fourths $=5 / 4$, which is an improper fraction.

5. $1.000-0.995=0.005 ; 1.000-0.990=0.010$; $1.010-1.000=0.010 ; 1.100-1.000=0.100$.
A) 0.995
B) 0.99
C) 1.01
D) 1.1
6. By definition, 1 is not a prime, so the sum is $2+3+5+7=17$.

A) 15	B) 16	C) 17	D) 18
11. $2 \times \frac{1}{2} \times 4 \times \frac{1}{4} \times 6 \times \frac{1}{6}=\left(2 \times \frac{1}{2}\right) \times\left(4 \times \frac{1}{4}\right) \times\left(6 \times \frac{1}{6}\right)=1 \times 1 \times 1=1$.			

A) 1
B) 6
C) 12
D) 24
12. The sum of the measures of each possible pair of angles is 120°, so each angle is 60°. Therefore, triangle T must be equilangular.
A) scalene
B) right
C) obtuse
D) equiangular
13. If Sunday is cloudy, then Tuesday, Thursday, and Saturday may also be cloudy. I wear my headphones at most 4 times in a week.
A) 3
B) 4
C) 5
D) 6
14. Of the choices below, D has the largest value. $\begin{array}{llll}\text { A) } 7 & \text { B) }(-1)^{2}=1 & \text { C) }(-2)^{2}=4 & \text { D) }(-3)^{2}=9\end{array}$
15. $9000 \%+900 \%+90 \%+9 \%=90+9+0.9+0.09=99.99$. $\begin{array}{llll}\text { A) } 9999 & \text { B) } 999.9 & \text { C) } 99.99 & \text { D) } 0.9999\end{array}$

Go on to the next page IIII 8
16. A dealer paid Bunny Fabergé $50 ¢$ for each of his eggs. The dealer then sold each egg for 50 quarters. For each penny Fabergé got, the dealer got 25 , so Fabergé got $4 ¢$ on the dollar, which is 4%.
A) 2%
B) 4%
C) 25%
D) 50%
17. Since $\sqrt{256}=16, \sqrt{\sqrt{\sqrt{256}}}=\sqrt{\sqrt{16}}=\sqrt{4}=2$.
16.
B) 4
C) 8

A) 2
$18 . ~$

B) 120%
C) $1200 \% \quad$ D) 12000%
19. The 4 whole numbers factors of 10 are $1,2,5$, and 10 .
A) 30
B) 24
C) 12
D) 10
20. $1 / 5=0.2<0.33<0.4=2 / 5 ; 0.33$ closer to $2 / 5$.
A) 0.2
B) 0.3
C) $\frac{2}{5}$
D) $\frac{3}{5}$
21. I had 4 pennies; need 3 coins $=45 ¢$, so I need 1 quarter; 2 coins $=20 ¢$ are 2 dimes.
A) 0
B) 1
C) 2
D) 7
22. $1.5 \mathrm{~m}+60 \times 0.01 \mathrm{~m}+0.02 \times 1000 \mathrm{~m}=22.1 \mathrm{~m}$. $\begin{array}{llll}\text { A) } 0.221 \mathrm{~m} & \text { B) } 2.21 \mathrm{~m} & \text { C) } 22.1 \mathrm{~m} & \text { D) } 221 \mathrm{~m}\end{array}$
23. There are four even factors of 222. They are $2,6,74$, and 222.
A) 111
B) 4
C) 3
D) 1
24. The average of $1,2, \ldots, 98,99$ is the middle number, 50 . A) 49.00
B) 49.50
C) 49.75
D) 50.00
24.
25. In the large circle, if $r=2$, then the large circle's area would be 4π. Small circle then has $r=1$, so $A=\pi$. That's 25% of 4π.
A) 20
B) 25
C) 40
D) 50
26. If $2 / 3$ cup of fish food feeds 8 goldfish, then $1 / 3$ cup feeds 4 fish, and 1 cup feeds 12 fish. Thus, 4 cups feed 48 fish.
A) 12
B) 24
C) 36
D) 48
27. The square of an odd number is always odd.

A) prime
B) odd
C) even
D) zero
28. Since the reciprocal of $\frac{1}{x^{3}}$ is $x^{3}, 4 x=x^{3}$. The value $x=2$ works.
A) $\frac{1}{8}$
B) $\frac{1}{2}^{x}$
C) 2
D) 8

2012-2013 8TH GRADE CONTEST	Answers
26. Sprinkles the dog likes to chase marching bands. When he does, he runs at 18 km per hour, which is the same as running at ? m per second. A) 5 B) 6 C) 10 D) 18	26.
27. If the sum of 2 integers is 25 , the product of the integers could not be A) -150 B) -30 C) 100 D) 154	27.
28. How many of the first 1000 positive integers are multiples of both 4 and 5 but not of 6 ?	28.
29. $\frac{3}{5}: 6=8: ?$ A) $\frac{20}{9}$ B) $\frac{9}{5}$ C) 24 D) 80	29.
30. If the average of three positive integers is 5 , the greatest possible value of the sum of the squares of the three integers is	30.
$\begin{array}{llll}\text { A) } 107 & \text { B) } 149 & \text { C) } 171 & \text { D) } 197\end{array}$	
31. After a long walk yesterday, Cody wants to go 50% farther today in half as much time. What percent faster will she have to walk today than she did yesterday to meet her goal?	31
$\begin{array}{llll}\text { A) } 200 \% & \text { B) } 300 \% & \text { C) } 400 \% & \text { D) } 500 \%\end{array}$	
32. What is the greatest prime factor of $9^{18}-3^{32}$?	32.
$\begin{array}{llll}\text { A) } 5 & \text { B) } 17 & \text { C) } 19 & \text { D) } 31\end{array}$	
33. How many factors of $3 \times 6 \times 9 \times 12 \times 15 \times 18$ are greater than 1 and are the square of an integer?	33.
$\begin{array}{llll}\text { A) } 15 & \text { B) } 14 & \text { C) } 7 & \text { D) } 6\end{array}$	
34. Each time Bette fills out a form, she marks just one box: A, B, or C . If she checks boxes at random, the probability that in filling out 3 such forms she will mark one each of A, B, and C is	34
A) $\frac{1}{4}$ B) $\frac{1}{3}$ C) $\frac{2}{9}$ D) $\frac{3}{10}$	
35. In the sequence $105,107,112,114, \ldots$, every number besides 105 and 107 is 7 greater than an earlier number. Which of the following may appear in this sequence?	35.
$\begin{array}{llll}\text { A) } 1296 & \text { B) } 1648 & \text { C) } 2137 & \text { D) } 2818\end{array}$	

Sample 8th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Instructions

- Time Do not open this booklet until told by your teacher to begin. You might be unable to finish all 35 questions in the 30 minutes allowed.
- Scores Remember that this is a contest, not a test-there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with 14 points, should be commended! High-scoring students may be invited to our "Math Camp," held last August at Stanford University.
- Results Posted Online Scores of high-scoring schools, both regional and overall, will be posted at www.mathleague.com no later than April 15.
- Format, Point Value, \& Eligibility Every answer is an A, B, C, or D. Write answers in the Answers column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 8 or below and only if you don't also take this year's Annual 6th or Annual 7th Grade Contest.

Please Print (To the student: You must complete all items below)
Last Name \qquad First Name \qquad
School \qquad Teacher \qquad Grade Level \qquad
Time at Start of Contest \qquad Today's Date \qquad

Do Not Write In The Space Below

To the Teacher:

Please enter the score at the right before you return this paper to the student. Papers with scores of 30 or higher must be held until June 1. Student's Score: \qquad
Eighteen books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6), Grades 7 \& 8 (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

2012-2013 8TH GRADE CONTEST	Answ
1. $(1+4+1+4) \times$? $=14140$	1.
$\begin{array}{llll}\text { A) } 10 & \text { B) } 1010 & \text { C) } 1414 & \text { D) } 10000\end{array}$	
2. The number of fish in a giant sandwich is divisible by $2,3,4$, and 5 . There could be ? fish.	2.
3. The average of 25 and ? is 2013.	3.
4. Bob rides his bicycle at 40 km per hour. How far will Bob ride in 3 minutes?	4.
$\begin{array}{llll}\text { A) } 1 \mathrm{~km} & \text { B) } 2 \mathrm{~km} & \text { C) } 3 \mathrm{~km} & \text { D) } 4 \mathrm{~km}\end{array}$	
5. I am waiting in line with 10 people in front of me, including my brother. My brother has 10 people behind him in line, including me. If my brother is right in front of me, how many people are in line?	5.
$\begin{array}{llll}\text { A) } 11 & \text { B) } 19 & \text { C) } 20 & \text { D) } 21\end{array}$	
6. Each of my 60 books has either a hard cover or a soft cover. If I have 4 times as many hard covers as soft covers, I have ? hard covers.	6.
$\begin{array}{llll}\text { A) } 48 & \text { B) } 35 & \text { C) } 15 & \text { D) } 12\end{array}$	
7. The largest odd factor of 111 is	7.
$\begin{array}{llll}\text { A) } 3 & \text { B) } 37 & \text { C) } 109 & \text { D) } 111\end{array}$	
8. My coin jar has 100 pennies, 200 nickels, 300 dimes, and 400 quarters in it. The coins have a total value of	8.
$\begin{array}{llll}\text { A) } \$ 91 & \text { B) } \$ 121 & \text { C) } \$ 141 & \text { D) } \$ 161\end{array}$	
9. The hundreds digit of the product $123456789 \times 234567890$ is	9.
$\begin{array}{llll}\text { A) } 0 & \text { B) } 1 & \text { C) } 2 & \text { D) } 3\end{array}$	
10. Ben finds a pair of eyes under 40% of the rocks he checks. If he looks under 400 rocks, he will find ? eyes.	10.
11. $12 \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{6}=$ A) $\frac{1}{144}$ B) $\frac{1}{12}$ C) 1 D) 12	11.
12. If the measures of the angles of triangle T are in a 1:2:3 ratio, what kind of triangle is T ?	12.
$\begin{array}{llll}\text { A) acute } & \text { B) obtuse } & \text { C) right } & \text { D) isosceles }\end{array}$	

2012-2013 8TH GRADE CONTEST
Answers
13. Of the following, which is greatest?
A) $9+8 \times 6-4 \div 2$
B) $(9+8) \times 6-4 \div 2$
C) $9+8 \times(6-4) \div 2$
D) $(9+8) \times(6-4) \div 2$
14. Coal miner Axel found diamonds! If the number of diamonds Axel found was the least common multiple of 18,28 , and 38 , he found ? diamonds.
A) 2
B) 84
C) 4788
D) 19152
15. 7 hundredths +7 thousandths $=7$ tenths - ?
15.
A) 0.623
B) 0.777
C) 0.784
D) 0.854
16. $2^{2} \times 2^{2} \times 2^{2}+2^{2} \times 2^{2}+2^{2}=2^{2} \times ?$

A) 16
B) 21
C) 32
D) 33
17. If I multiply the number of math contests I have taken in my life by 6 and then add 5 , the resulting number cannot be divisible by
A) 5
B) 7
C) 9
D) 11
18. An evil witch casts a spell to put a princess to sleep for 10000 hours. If the princess falls asleep at 6:00 P.M., she will wake at
A) 10:00 A.M.
B) 4:00 P.M.
C) 8:00 P.M.
D) 11:00 P.M.
19. Of the rocks in a box, $1 / 3$ are igneous, 60 are metamorphic, and the remaining 40% are sedimentary. How many rocks are in the box?
A) 160
B) 180
C) 200
D) 225
20. The sum of 4 consecutive even integers is 148 . The sum of the digits of the smallest of the 4 integers is
A) 6
B) 7
C) 9
D) 12
21. Max has 9 pairs of glasses for every 2 surfboards he has. If he has 108 pairs of glasses, he has ? surfboards.

A) 12	B) 24
22. $180+150 \%$ of $180=$	

A) 270
B) 330
C) 450
D) 630

23. The perimeter of a triangle is 50 . The length of the longest side of the triangle could be
A) 15
B) 20
C) 25
D) 29
24. If $x \square y$ is defined as $(x+y)^{2}-2 x y$, then $5 \square 7=$
A) 12
B) 24
C) 35
D) 74
25. A square of side-length 4π has the same perimeter as a circle of diameter
A) 2
B) 4
C) 8
D) 16

2012-2013 8TH GRADE CONTEST SOLUTIONS	Answers
26. Since 18 km per 60 minutes $=18 / 60 \mathrm{~km}$ per 1 minute $=0.3 \mathrm{~km}$ per 60 seconds, and $0.3 \mathrm{~km}=300 \mathrm{~m}$, he runs 300 m in 60 seconds, or $300 / 60=5 \mathrm{~m}$ in 1 second. A) 5 B) 6 C) 10 D) 18	26. A
27. $-5 \times 30=-150,5 \times 20=100$, and $11 \times 14=154$. A) -150 B) -30 C) 100 D) 154	$27 .$ B
28. Since $1000 / 20=50,50$ are multiples of 4 and 5 . Since $1000 / 60=16.666 \ldots, 16$ are also multiples of $6 ; 50-16=34$. A) 34 B) 42 C) 50 D) 58	$\begin{array}{r} 28 . \\ \text { A } \end{array}$
29. $\frac{3}{5}: 6=\left(5 \times \frac{3}{5}\right):(5 \times 6)=3: 30=1: 10=8: 80$. A) $\frac{20}{9}$ B) $\frac{9}{5}$ C) 24 D) 80	29. D
30. If the average of these integers is 5 , then their sum is 15 , and the greatest possible value of the sum of their squares is $1^{2}+1^{2}+13^{2}=171$. A) 107 B) 149 C) 171 D) 197	$30 .$
31. Suppose Cody walked 10 km in 2 hrs . yesterday. Then today she wants to walk 15 km in 1 hr . Since her rate yesterday was 5 km per hr. and her rate today is 15 km per hr., that's a 200% increase. A) 200% B) 300% C) 400% D) 500%	31. A
32. $9^{18}-3^{32}=3^{36}-3^{32}=3^{32} \times\left(3^{4}-1\right)=3^{32} \times 80=3^{32} \times 2^{4} \times 5$. A) 5 B) 17 C) 19 D) 31	32. A
33. $3 \times 6 \times 9 \times 12 \times 15 \times 18=2^{4} \times 3^{8} \times 5$; the factors that are perfect squares are $2^{2}, 2^{4}, 3^{2}, 3^{4}, 3^{6}, 3^{8}, 2^{2} 3^{2}, 2^{2} 3^{4}, 2^{2} 3^{6}, 2^{2} 3^{8}, 2^{4} 3^{2}, 2^{4} 3^{4}, 2^{4} 3^{6}$, and $2^{4} 3^{8}$. A) 15 B) 14 C) 7 D) 6	33.8
34. Whatever box Bette checks 1st, the probs. are $2 / 3$ that she checks a different one on the 2 nd form and $1 / 3$ that the 3rd form differs from the first two. So the final prob. is $2 / 3 \times 1 / 3=2 / 9$. A) $\frac{1}{4}$ B) $\frac{1}{3}$ C) $\frac{2}{9}$ D) $\frac{3}{10}$	34. C
35. Each number in the sequence $105,112,119, \ldots$, is a multiple of 7 , and each number in the sequence $107,114,121, \ldots$, is 2 more than a multiple of 7 . Since 2137 is 2 more than a multiple of 7 , it may appear in the sequence. A) 1296 B) 1648 C) 2137 D) 2818	35. C
The end of the contest 8	

Information \mathcal{Z} Solutions

2012-2013 Annual 8th Grade Contest

Tuesday, February 26 (alternate date: February 19), 2013

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Urgent Questions? For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- Scores Please remember that this is a contest, and not a test-there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards \& Results The original contest package contained 5 Certificates of Merit-1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Tues., March 5, 2013 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 12, 2013.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all oter papers, should be rturned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Eighteen books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

1. Since $1+4+1+4=10,(1+4+1+4) \times 1414=14140$
A) 10
B) 1010
C) 1414
D) 10000
\qquad
2. Any number divisible by 2 and 5 ends in 0 . Only 6660 ends in 0 and is also divisible by 3 and 4 .
A) 2345
B) 4567
C) 5550
D) 6660
3. $(25+4001) \div 2=2013$.

A) 994
B) 1019
C) 1988
D) 4001
4. Bob rides his bicycle at 40 km per 60 minutes. In 30 minutes he rides 20 km , so in 3 minutes he rides 2 km .
A) 1 km
B) 2 km
C) 3 km
D) 4 km
5. There are 9 people in front of my brother, and there are 9 people behind me. That's 18 people. Counting my brother and me, that's a total of 20 people in line.
A) 11
B) 19
C) 20
D) 21
6. Of every 5 books, 4 have hard covers. Since $60 \div 5=12$, there are 12 groups of 5 books each. Since $12 \times 4=48$, I have 48 hard covers.
A) 48
B) 35
C) 15
D) 12
7. Since $111=1 \times 111$, the largest odd factor of 111 is 111 .
A) 3
B) 37
C) 109
D) 111
8. 100 pennies $=\$ 1 ; 200$ nickels $=200 \times 5 \$=\$ 10 ; 300$ dimes $=300 \times 10 \$$ $=\$ 30$; and 400 quarters $=400 \times 25 \Phi=\$ 100$; the coins' value is $\$ 141$.
A) $\$ 91$
B) $\$ 121$
C) $\$ 141$
D) $\$ 161$
9. Multiply the last 3 digits of each: $789 \times 890=702210$; the hundreds digit is 2 .
A) 0
B) 1
C) 2
D) 3
10. Ben finds 2 eyes under 40% of the rocks. If he looks under 400 rocks, he will find $2 \times 0.4 \times 400=320$ eyes.
A) 100
B) 160
C) 200
D) 320
11. $12 \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{6}=$

A) $\frac{1}{144}$
B) $\frac{1}{12}$
C) 1
D) 12
12. If the measures of the angles of triangle T are in a $1: 2: 3$ ratio, they must have measures $30^{\circ}, 60^{\circ}$, and 90°. So T is a right triangle.
A) acute
B) obtuse
C) right
D) isosceles
13. $(9+8) \times 6-4 \div 2=17 \times 6-2=100$
A) $9+8 \times 6-4 \div 2$
B) $(9+8) \times 6-4 \div 2$
C) $9+8 \times(6-4) \div 2$
D) $(9+8) \times(6-4) \div 2$
14. The least common multiple of $2 \times 3 \times 3,2 \times 2 \times 7$, and 2×19 is $2 \times 2 \times 3 \times 3 \times 7 \times 19=4788$. Thus, Alex found 4788 diamonds.
A) 2
B) 84
C) 4788
D) 19152

15. $0.07+0.007=0.077=0.700-0.623$.

A) 0.623	B) 0.777	C) 0.784	D) 0.854	A

16. $2^{2} \times 2^{2} \times 2^{2}+2^{2} \times 2^{2}+2^{2}=4 \times 4 \times 4+4 \times 4+4=64+16+4=84=2^{2} \times 21$.
A) 16
B) 21
C) 32
D) 33

B
17. Multiplying any whole number by 6 results in a product divisible by 3 ; after adding 5 , the sum can no longer be divisible by 3 or 9
A) 5
B) 7
C) 9
D) 11
18. Divide 10000 hours by 24 hours per day to find that it is 416 days, 16 hours. The princess wakes 16 hours after 6:00 P.M., at 10:00 A.M.
A) 10:00 A.M.
B) $4: 00$ P.M.
C) 8:00 P.M.
D) 11:00 P.M.
19. Since $40 \%+1 / 3=2 / 5+1 / 3=11 / 15$, the remaining $4 / 15$ are the 60 metamorphic rocks. Hence $4: 15=60: ?$, and $?=225$.
A) 160
B) 180
C) 200
D) 225
20. The sum of 4 consecutive even integers is 148 . Their average is 37 . The 4 integers are $34,36,38$, and 40 . The sum of the digits of 34 is 7 .
A) 6
B) 7
C) 9
D) 12
21. Since $108 \div 9=12$, Max has $12 \times 2=24$ surfboards.
A) 12
B) 24
C) 48
D) 486
22. $180+180 \times 1.5=180+270=450$.
A) 270
B) 330
C) 450
D) 630
23. The longest side's length is < the sum of the other 2 sides. A possible longest side-length is 20.
A) 15
B) 20
C) 25
D) 29

24. If $x \square y=(x+y)^{2}-2 x y$, then $5 \square 7=(5+7)^{2}-2 \times 5 \times 7=144-70=74$. 2
A) 12
B) 24
C) 35
D) 74
25. A square of side-length 4π has perimeter $16 \pi ; C=\pi d$, so $d=16$.
A) 2
B) 4
C) 8
D) 16 each of his paintings. If he started with Smiley \#1 and has painted through Smiley \#111, how many times has he used the digit 1 in his numbering?
A) 12
B) 22
C) 24
D) 36
27. How many whole numbers have squares that are between 2 and 200?
A) 12
B) 13
C) 24
D) 26
28. A baker cuts circular cookies out of a flat rectangle of cookie dough. If the rectangle is 2 m by 1 m , and the cookies have radius 10 cm , at most how many cookies can the baker cut from the sheet of dough?
A) 50
B) 63
C) 64
D) 200
29. 0.02% of 20% of $+=200 \%$ of 2000

A) 1000	B) 100000	C) 1000000	D) 100000000

30. A miner combines 1200 kg of ore that is on average 3% gold with 2400 kg of ore that is on average 6% gold. If the 100 kg containing the most gold of the 3600 kg is 40% gold, the remaining ore will be ? gold.
A) 2%
B) 3%
C) 4%
D) 5%
31. Including face diagonals, the total number of diagonals of a cube is

Sample 8th Grade Contest

Tuesday, February 19 (alternate date: February 26), 2019

Instructions

- Time Do not open this booklet until told by your teacher to begin. You might be unable to finish all 35 questions in the 30 minutes allowed.
- Scores Remember that this is a contest, not a test-there is no "passing" or "failing" score. Few students score 28 points (80% correct). Students with half that, 14 points, should be commended! High-scoring students may be invited to our "Math Camp" in July.
- Results Posted Online High-scoring contest results, both overall and regional, will be posted at www.mathleague.com no later than April 15.
- Format, Point Value, \& Eligibility Every answer is an A, B, C, or D. Write answers in the Answers column. A correct answer is worth 1 point. Unanswered questions get no credit. You may use a calculator. You're eligible for this contest only if you are in grade 8 or below and only if you don't also take this year's Annual 6th or Annual 7th Grade Contest.

Please Print (To the student: You must complete all items below)
Last Name \qquad First Name \qquad
School \qquad Teacher \qquad Grade Level \qquad
Time at Start of Contest \qquad Today's Date \qquad

Do Not Write In The Space Below

To the Teacher:
Please enter the score at the right before you return this paper to the student. Papers with scores of 30 or higher must be held until June 1.

Student's Score:

Twenty-one books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \mathcal{\&} 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7) are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

2018-2019 8TH GRADE CONTEST
Answers

1. $(4 \times 6 \times 8 \times 10) \div(6 \times 8 \times 10)=$
A) 3
B) 4
C) 12
D) $3 \times 6 \times 8 \times 10$
2. $(2 \div 3)$ rounded to the nearest hundredth is
A) 0.33
B) 0.66
C) 0.67
D) 0.70
3. Baby Amy is one day older than Baby Barry. The product
 of their ages measured in days could be
A) 33
B) 132
C) 245
D) 246
4. (The largest even divisor of 200) \div (the largest odd divisor of 200) $=$
A) 4
B) 8
C) 20
D) 200
5. An equilateral triangle with integer side-lengths has a perimeter that is numerically equal to the area of a square. Which of the following could be the length of a side of the square?
A) 12
B) 10
C) 8
D) 4
6. I have only nickels, dimes, and quarters to pay for my dinner, which costs $\$ 12.60$. The smallest number of coins I can use to pay is
A) 51
B) 52
C) 54
D) 55
7. The smallest prime factor of 2019 is
A) 1
B) 3
C) 19
D) 673
8. The product of four consecutive integers must be divisible by each of the following except
A) 4
B) 6
C) 10
D) 12
9. There are ? hours in 4 weeks.
A) 48
B) 96
C) 336
D) 672
10. If I divide my favorite number by its reciprocal, the quotient is 10 times as large as my favorite number. My favorite number is
A) $\frac{1}{10}$
B) $\frac{1}{5}$
C) $\frac{1}{2}$
D) 10
11. The height of the smoke from my barbecue is 100000 cm , which is the same as ? km .
A) 1
B) 10
C) 100
D) 1000
12. If the degree measures of the angles of a triangle are in a $4: 5: 6$ ratio, what is the difference between the measures of the largest and the smallest angles?
A) 12°
B) 24°
C) 30°
D) 36°
13.
14.
15.
16.
17.
18.
19.
20.
21.

2018-2019 8TH GRADE CONTEST
13. The population of a town started at 1000, then went up 10%, then
down 20%, then back up 10%. The population of the town ended at
A) 968 B) 972 C) 1000 D) 1024
14. In my orchard, there are 60 more apples
than oranges, and 5 times as many apples
as oranges. How many apples are there?
A) 50 B) 75 C) 100 D) 125

Answers
15. A polygon in which every pair of angles is supplementary must be a
A) triangle
B) square
C) rectangle
D) hexagon
16. Which of the following is smallest in value?
A) 2^{600}
B) 3^{500}
C) 4^{400}
D) 5^{300}
17. $\left(2^{100} \times 4^{50}\right) \div 2=$
A) 2^{75}
B) 2^{100}
C) 2^{149}
D) 2^{199}
18. What is the remainder when 3^{333} is divided by 10 ?
18.
A) 1
B) 3
C) 7
D) 9
19. On a series of tests, Gus got 100 once, 90 twice, and 80 five times. What was his average score for all of the tests?
A) 80
B) 85
C) 90
D) 92
20. The product of the thousands and tenths digits of 1234.5678 is
A) 5
B) 10
C) 35
D) 40
21. The probability of heads then tails then heads on 3 tosses of a coin is
A) 0.125
B) 0.25
C) 0.375
D) 0.5
22. On January 1 last year, Rui got a jar of jellybeans. On each day he ate the same number of jellybeans. He counted 560 on January 31 before eating any and he counted 380 on March 17 before eating any. There were ? jellybeans in the jar when Rui got it.
A) 600
B) 650
C) 680
D) 740
23. Jake used 120 boxes of tissues in 3 days! There are 144 tissues per box. That's ? tissues per minute!
A) 2
B) 3
C) 4
D) 5
24. The number 5184 has ? positive odd divisors.
A) 1
B) 2
C) 4
D) 5
25. The sum of 5 consecutive even integers could be

A) 120
B) 125
C) 164
D) 212 100 to 109 is 11 s, and from 110 to 111 is 51 s . All together, we have $(1+11+8+11+5) 1 \mathrm{~s}$. That is a total of 361 s .
A) 12
B) 22
C) 24
D) 36
27. The whole numbers with squares between 2 and 200 are $2,3,4,5, \ldots, 13$, and 14 . There are 13.
A) 12
B) 13
C) 24
D) 26

28. A baker is cutting circular cookies out of a flat rectangle of cookie dough. If the rectangle is 200 cm by 100 cm and the cookies have diameter 20 cm , the baker can cut 10 rows, with 5 cookies in each row.
A) 50
B) 63
C) 64
D) 200
29. 0.02% of $20 \%=0.00004 ; 200 \%$ of $2000=4000=0.00004 \times 100000000$.
A) 1000
B) 100000
C) 1000000
D) 100000000
30. Since 3% of 1200 kg plus 6% of 2400 kg is 180 kg , and 40% of 100 kg is 40 kg , the remaining 3500 kg of ore has 140 kg of gold. Since 140 divided by $3500=0.04$, the remaining ore will be 4% gold.
A) 2%
B) 3%
C) 4%
D) 5%
31. There are 12 face diagonals and 4 diagonals passing through the interior.
A) 12
B) 14
C) 16
D) 24
31. C
32. Pick the hundreds digit, then the ones digit, then the tens digit. Based on the hundreds digit being even or odd, the count is $3 \times 4 \times 7+2 \times 5 \times 7$.
A) 154
B) 175
C) 185
D) 200
33. The whole-number factors of 36 are 1 and 36,2 and 18, 3 and 12, 4 and 9 , and 6 . The product of their squares is 36^{9}.
33.

D
A) 36^{2}
B) 36^{4}
C) 36^{8}
D) 36^{9}
34. When the four members of the
Beaverton family carry a log Beaverton family carry a log, each has a probability of not tripping of 0.98 , The probability of none of them tripping is $0.98 \times 0.98 \times 0.98 \times 0.98=(0.98)^{4}$.

A) $1-(0.02)^{4}$
B) $(0.98)^{4}$
C) $(0.02)^{4}$
D) $1-(0.98)^{4}$
35. The largest prime factor of the product of all even numbers from 2 to 200 is the largest prime less than $200 \div 2=100$, which is 97 .
A) 47
B) 97

Information
 Solutions

Tuesday, February 19 (alternate date: February 26), 2019

Directions for Grading

- Security and Solutions Do not look at these solutions until after the contest. Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Urgent Questions? For appeals or answers to urgent questions, write to comments@mathleague.com or call 1-201-568-6328.
- Scores Please remember that this is a contest, and not a test - there is no "passing" or "failing" score. Few students score as high as 28 points (80% correct). Students with half that, 14 points, should be commended.
- Awards \& Results The original contest package contained 5 Certificates of Merit-1 each for the 3 highest scoring students on the contest, plus extras for ties. Do you need more Certificates of Merit? If so, include your name, school, and school mailing address in a letter to: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (three 1st Class stamps req'd.) large enough to hold certificates. Only scores submitted to our Internet Score Report Center by Fri., March 9, 2018 can be used in our Summary of Contest Results newsletter, which will be posted online no later than Fri., April 12, 2019.
- Return of Student Papers Originals of contest papers with scores of 30 or more must be held until June 1. Copies of these papers, and originals of all other papers, should be returned to students after grading. Students scoring 30 points or more must confirm an understanding of the contest rules by signing the Selected Math League Rules (on the colored sheet of information and rules that accompanied the contests). Keep this signed sheet with the original contests until June 1. Please do not mail these to the League unless we ask you to do so.

Twenty-one books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7) are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

Visit our Web site at http://www.mathleague.com

Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

2018-2019 8TH GRADE SOLUTIONS
Answers

1. $(4 \times 6 \times 8 \times 10) \div(6 \times 8 \times 10)=4 \times 1 \times 1 \times 1=4$.
A) 3
B) 4
C) 12
D) $3 \times 6 \times 8 \times 10$
2. $2 \div 3=0.666 .$. ; this rounds to 0.67 .
A) 0.33
B) 0.66
C) 0.67
D) 0.70
3. Their ages in days are consecutive integers. Since $132=11 \times 12$, the product of their ages in days could be 132 .
A) 33
B) 132
C) 245
D) 246
4. The largest even divisor of 200 is 200 , and the largest odd divisor of 200 is $25 ; 200 \div 25=8$.
A) 4
B) 8
C) 20
D) 200
5. An equilateral triangle with integer side-lengths has a perimeter that is a multiple of 3 . The area of the square must also be a multiple of 3 . If the length of a side of the square is 12 , its area is 144 .
A) 12
B) 10
C) 8
D) 4
6. We can pay $\$ 12.50$ using 50 quarters. That leaves $\$ 0.10$, which I can pay using one dime. The smallest number of coins is 51 .
A) 51
B) 52
C) 54
D) 55
7. Since the sum of the digits of 2019 is divisible by 3,2019 is also.
A) 1
B) 3
C) 19
D) 673
8. Since it is possible that the four integers do not include a multiple of 5 , their product might not be divisible by a multiple of 5 .
A) 4
B) 6
C) 10
D) 12
9. There are 28 days in 4 weeks. There are 24×28 hours in 28 days.
A) 48
B) 96
C) 336
D) 672
10. Try each choice and find the correct one. Since 10 divided by $1 / 10$ is 100 , choice D is correct.
A) $\frac{1}{10}$
B) $\frac{1}{5}$
C) $\frac{1}{2}$
D) 10
11. The height of the smoke is 100000 cm . To convert to km , divide by $10^{2} \times 10^{3}=10^{5}$.
A) 1
B) 10
C) 100
D) 1000
12. Since $180^{\circ} \div(4+5+6)=180^{\circ} \div(15)=12^{\circ}$, the measures are $4 \times 12^{\circ}=48^{\circ}, 5 \times 12^{\circ}=60^{\circ}$, and $6 \times 12^{\circ}=72^{\circ}$. Finally, $72^{\circ}-48^{\circ}=24^{\circ}$.
A) 12°
B) 24°
C) 30°
D) 36°

2018-2019 8TH GRADE SOLUTIONS
Answers
13. The population of a town started at 1000, then went up to 1100, then 13. down to 880, then up to 968 .
A) 968
B) 972
C) 1000
D) 1024
14. Divide each choice by 5 . The quotients are $10,15,20$, and 25 . Since $15+60$ is 75 , choice B is correct.
A) 50
B) 75
C) 100
D) 125

15. Each pair of angles in any rectangle is supplementary.
A) triangle
B) square
C) rectangle
D) hexagon

C

| 16. Drop the zeroes and evaluate: choices become $64,243,256$, and 125. | 16. |
| :--- | :--- | :--- |

A) 2^{600}	B) 3^{500}	C) 4^{400}	D) 5^{300}	A
17. $\left(2^{100} \times 4^{50}\right) \div 2=\left(2^{100} \times 2^{100}\right) \div 2=2^{200} \div 2^{1}=2^{199}$	17.			
A) 2^{75} B) 2^{100} C) 2^{149} D) 2^{199}	D			

18. The pattern for the ones digits of powers of 3 is $39713971 \ldots$, and the 18. 333rd digit is 3 .
C) 7
D) 9
19. On a series of tests, Gus got 100 once, 90 twice, and 80 five times. The total of these 8 tests is 680 , and the average is 85 .
A) 80
B) 85
C) 90
D) 92
20. The product of 1 and 5 is 5 .

A) 5	B) 10	C) 35	D) 40	A
21. The probability of heads then tails then heads is $0.5 \times 0.5 \times 0.5=0.125$.	21.			

A
A) 600
B) 650
C) 680
D) 740
23. Jake used 40 boxes of tissues a day or 5760 tissues. Since $5760 \div 24=$ 240 , he used 240 per hour or 4 per minute.
A) 2
B) 3
C) 4
D) 5
24. $5184=64 \times 81$; its odd divisors are $1,3,9,27$, and 81 .
A) 1
B) 2
C) 4
D) 5
25. Only choice A is an even multiple of 5 .
A) 120
B) 125
C) 164
D) 212
2004-2005 ALGEBRA COURSE 1 CONTEST

Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

ALGEBRA COURSE 1 CONTEST

Sample Algebra I Contest

Spring, 2005

Instructions

- Time Do not open this booklet until you are told by your teacher to begin. You will have only 30 minutes working time for this contest. You might be unable to finish all 30 questions in the time allowed.
- Scores Please remember that this is a contest, not a test-and there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct). Students with half that, 12 points, should be commended!
- Format and Point Value This is a multiple-choice contest. Each answer will be one of the capital letters A, B, C, or D. Write each answer in the Answer Column to the right of each question. We suggest (but do not require) that you use a pencil. Each question you answer correctly is worth 1 point. Unanswered questions receive no credit. You may use a calculator unless your school does not allow you to use one.

Please Print

Last Name \qquad First Name \qquad

School \qquad Teacher \qquad Grade Level \qquad

Do Not Write In The Space Below
To the Teacher:
Please enter the student's score at the right
before you return this paper to the student. Student's Score: \qquad
The school's top scorer will receive the book Math Contests-High School (Vol. 3). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.
Fifteen books of past contests, Grades 4,5, $\mathcal{E} 6$ (Vols. 1, 2, 3, 4, 5), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3, 4 ,5), are available, for $\$ 12.95$ per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.
2004-2005 ALGEBRA COURSE 1 CONTEST
$\begin{array}{ll}\text { A) } 1^{4010} & \text { B) } 2^{1}\end{array}$
C) 2^{2005}
D) 2^{4010}

From n piles of 12 coconuts able make ? piles of 3 coconuts each

$$
\begin{array}{llll}
\text { A) } n+3 & \text { B) } n+4 & \text { C) } 3 n & \text { D) } 4 n
\end{array}
$$

3. $x^{400} \div x^{100}=$
A) x^{500}
B) x^{300}
C) x^{4}
D) 4
C) -1
C) 10
D) -10

The total value of $2 x$ nickels and x dimes is $60 ¢$ when $x=$
6.
A) 6
B) 4
C) 3
7.
A) 2
B) 8
C) 16
A) $2 x+y=3$
B) $2 x+4 y=6$
C) $2 x-y=3$

$$
\text { D) } x+2 y=-3
$$

Of 5 consecutive integers whose average is x, the smallest is
2004-2005 ALGEBRA COURSE 1 CONTEST
12. Of 5 consecutive even integers whose average is x, the smallest is

A) $x-2$	B) $x-3$	C) $x-4$	D) $x-5$

13. The greatest common factor of 2^{2004} and 2^{2005} is

| A) 1 | B) 2 | C) 2^{2004} | D) 2^{2005} |
| :--- | :--- | :--- | :--- | :--- |

14. I ran away with a big prize when
I was the 7th caller to know that
the slope of every horizontal line is

A) 0	B) 1	C) -1	D) nonexistent

15. If 10% of a is b, then $a=$	D) $10 b$	B) b	C) $9 b$

Answer Column
12. 13.
16. For which of the following is n^{n} the square of an integer?
A) $n=3$
B) $n=5$
C) $n=6$
D) $n=7$
17. If $k=$? then the two roots of $x^{2}+4 x+k=0$ are equal.
A) 1
B) 2
C) 3
D) 4
18. Jesse has worn the same hat for d years. If he wears it for 12 more years, he will have worn this hat for d^{2} years. For how many years has Jesse worn this hat?
A) 4
B) 6
C) 8
D) 12
19. $|x|+|-x|=$
A) 0
B) $|x|$
C) $|-x|$
D) $2|x|$
20. Circle C's center is $(0,0)$, and the length of C^{\prime} s radius is 5 . Which of the following are the coordinates of a point on C ?
A) $(0,5)$
B) $(-5,-5)$
C) $(-10,0)$
D) $(5,5)$
21. For primes a and b, if $a>b$, then $a b$ has ? unequal positive factors.
A) 4
B) 3
C) 2
D) 1
22. The product of ? and x^{100} has the same value as $(-x)^{100}$.
A) 100
B) 1
C) -1
D) -100

\begin{tabular}{|c|c|}
\hline 2004-2005 ALGEBRA COURSE 1 CONTEST SOLUTIONS \& Answers \\
\hline \begin{tabular}{l}
23. \(\sqrt{16^{16}}=\sqrt{\left(16^{8}\right)^{2}}=16^{8}\). \\
A) \(16^{8}\) \\
B) \(16^{4}\) \\
C) \(4^{8}\) \\
D) \(4^{4}\)
\end{tabular} \& 23. A \\
\hline \begin{tabular}{l}
24. \(A=\pi r^{2}=3600 \pi\), so \(r^{2}=3600\), or \(r=60\). \(C=2 \pi r\), so \(C=120 \pi\). \\
A) 60 \\
B) \(60 \pi\) \\
C) 120 \\
D) \(120 \pi\)
\end{tabular} \& \begin{tabular}{l}
24. \\
D
\end{tabular} \\
\hline \begin{tabular}{l}
25. If \(\left(n^{2}-1\right)\left(n^{2}-2\right)\left(n^{2}-3\right)=0\), then \(n^{2}-1=0\), or \(n^{2}-2=0\), or \(n^{2}-3=\) 0 . Therefore, \(n^{2}=1\), or \(n^{2}=2\), or \(n^{2}=3\). The only integers which satisfy any of these equations are 1 and -1 . The number of times I moved by mail is 2 . \\
A) 1 \\
B) 2 \\
C) 3 \\
D) 6
\end{tabular} \& 25.

B

\hline | 26. $\frac{y}{x y}+\frac{x}{x y}+\frac{1}{x y}=\frac{x+y+1}{x y}$. |
| :--- |
| A) 2 |
| B) 3 |
| C) $x+y+1$ |
| D) $x+y$ | \& \[

$$
\begin{aligned}
& 26 . \\
& \text { C }
\end{aligned}
$$
\]

\hline | 27. If $x^{2}+y^{2}=(x+y)^{2}$, then $x^{2}+y^{2}=x^{2}+2 x y+y^{2}$. Thus, $2 x y=0$, so $x y=0$. |
| :--- |
| A) 0 |
| B) 1 |
| C) 4 |
| D) 16 | \& | 27. |
| :--- |
| A |

\hline | 28. $\left(x^{2}+2 x+1\right)+\left(x^{2}+4 x+4\right)+\left(x^{2}+6 x+9\right)-\left[\left(x^{2}+1\right)+\left(x^{2}+4\right)+\left(x^{2}+9\right)\right]=12 x$. |
| :--- |
| A) 0 |
| B) $6 x$ |
| C) $9 x$ |
| D) $12 x$ | \& \[

$$
\begin{array}{r}
28 . \\
\mathrm{D}
\end{array}
$$
\]

\hline | 29. Using $x>0, \frac{x}{x+1}<\frac{2004}{2005} \Leftrightarrow$ $x<2004$. The largest integral solution is $x=2003$. The sum of the digits of 2003 is 5 , so I swam with 5 fish. |
| :--- |
| A) 4 |
| B) 5 |
| C) 6 |
| D) 7 | \& 29.8

\hline | 30. There are 5 ways to factor -16 into 2 integral factors (-16×1, $-8 \times 2,-4 \times 4,-2 \times 8$, and -1×16). Their sum is the value of b. |
| :--- |
| A) 3 |
| B) 4 |
| C) 5 |
| D) 6 | \& 30.

C

\hline
\end{tabular} The end of the contest Visit our Web site at http://www.mathleague.com Steven R. Conrad, Daniel Flegler, and Jeannine Kolbush, contest authors

Information \mathcal{E} Solutions

Spring, 2005

Directions for Grading

- Date You may give this contest anytime after April 15. The Algebra Course 1 Contest is for use in your own school or district. We've enclosed a registration form for next year. Since results are not used for interschool comparisons, we do not enclose a score report form
- Urgent questions? Call 1-201-568-6328.
- Scores Remind students that this is a contest, not a test-and there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct); students with half that, 12 points, should be commended!
- Solutions Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Awards The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 Certificates of Merit-1 each for the runner-up on each grade level, plus extras for ties.
- Additional Book Awards \& Additional Certificates To give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017, and include a self-addressed, stamped envelope (2 stamps required) large enough to hold certificates.

The school's top scorer will receive the book Math Contests_High School (Vol. 3). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Fifteen books of past contests, Grades $4,5, \mathcal{E} 6$ (Vols. 1, 2, 3, 4, 5), Grades $7 \& 8$ (Vols. 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3, 4,5), are available, for $\$ 12.95$ per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

Copyright © 2005 by Mathematics Leagues Inc.

\begin{tabular}{|c|c|}
\hline 2004-2005 ALGEBRA COURSE 1 CONTEST SOLUTIONS \& Answers \\
\hline \begin{tabular}{l}
1. \(1^{2005}+1^{2005}=1+1=2=2^{1}\). \\
A) \(1^{4010}\) \\
B) \(2^{1}\) \\
C) \(2^{2005}\) \\
D) \(2^{4010}\)
\end{tabular} \& 1. B \\
\hline \begin{tabular}{l}
2. \(n\) piles of 12 coconuts each \(=\) \((12 n)\) coconuts \(=(3 \times 4 n)\) coconuts \(=\) \(4 n\) piles of 3 coconuts each. \\
A) \(n+3\) \\
B) \(n+4\) \\
C) \(3 n\) \\
D) \(4 n\)
\end{tabular} \& 2.
D \\
\hline \begin{tabular}{l}
3. \(x^{400} \div x^{100}=x^{(400-100)}=x^{300}\). \\
A) \(x^{500}\) \\
B) \(x^{300}\) \\
C) \(x^{4}\) \\
D) 4
\end{tabular} \& 3.
B \\
\hline \begin{tabular}{l}
4. \((-1)^{1}+(-1)^{2}+\ldots+(-1)^{99}=(-1)+(1)+\ldots+(-1)=0+\ldots+(-1)=-1\). \\
A) 1 \\
B) 0 \\
C) -1 \\
D) -99
\end{tabular} \& 4. C \\
\hline \begin{tabular}{l}
5. Since \(x^{2}-y^{2}=(x+y)(x-y)=10(x-y)=10\), we see that \(x-y=1\). \\
A) 1 \\
B) -1 \\
C) 10 \\
D) -10
\end{tabular} \& \begin{tabular}{l}
5. \\
A
\end{tabular} \\
\hline \begin{tabular}{l}
6. Since \((2 x)(5 q)+(x)(10 q)=60 \not \subset\), add to get \(20 x \notin=60 \notin\), so \(x=3\). \\
A) 6 \\
B) 4 \\
C) 3 \\
D) 2
\end{tabular} \& 6. C \\
\hline \begin{tabular}{l}
7. Since 8 is divisible by both 2 and 4 , the l.c.m. of all three is 8 . \\
A) 2 \\
B) 8 \\
C) 16 \\
D) 64
\end{tabular} \& 7.
B \\
\hline \begin{tabular}{l}
8. \(2=\sqrt{4}=\sqrt{8 / 2}=\sqrt{8} \div \sqrt{2}\). \\
A) 4 \\
B) \(\sqrt{6}\) \\
C) \(\sqrt{4}\) \\
D) \(\sqrt{2}\)
\end{tabular} \& 8. D \\
\hline \begin{tabular}{l}
9. If \(h=\#\) of light helmets, then \(2 h=\#\) of dark helmets. There are 6 more dark helmets than light ones, so \(2 h-h=6\), or \(h=6\). The number of light helmets is 6 . \\
A) 2 \\
B) 3 \\
C) 6 \\
D) 12
\end{tabular} \& 9.

C

\hline | 10. Any 2 lines of the form $2 x+y=k$, with unequal k 's, are parallel. |
| :--- |
| A) $2 x+y=3$ |
| B) $2 x+4 y=6$ |
| C) $2 x-y=3$ |
| D) $x+2 y=-3$ | \& \[

{ }^{10 .}
\]

\hline | 11. The average is x, so the integers are $x-2, x-1, x, x+1$, and $x+2$. |
| :--- |
| A) $x-2$ |
| B) $x-3$ |
| C) $x-4$ |
| D) $x-5$ | \& \[

11 .
\]

A

\hline \multicolumn{2}{|l|}{Go on to the next page IIIL}

\hline
\end{tabular}

2004-2005 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers
12. The average is x, so the integers are $x-4, x-2, x, x+2$, and $x+4$. A) $x-2$ B) $x-3$ C) $x-4$ D) $x-5$	12.
13. 2^{2004} is a factor of 2^{2005}, so 2^{2004} is the g.c.f. A) 1 B) 2 C) 2^{2004} D) 2^{2005}	13. C
14. A horizontal line is parallel to the x-axis. I was the 7 th caller to know that the slope of any such line is 0 . A) 0 B) 1 C) -1 D) nonexistent	14.
15. $a=100 \%$ of $a=10 \times 10 \%$ of $a=10 b$. A) $0.1 b$ B) b C) $9 b$ D) $10 b$	15. D
16. When $n=6, n^{n}=6^{6}=\left(6^{6 / 2}\right)^{2}=\left(6^{3}\right)^{2}$, which is the square of 6^{3}. A) 3 B) 5 C) 6 D) 7	16. C
17. If $k=4$, then $x^{2}+4 x+4=(x+2)(x+2)=0$ and $x=-2$ or -2 . A) 1 B) 2 C) 3 D) 4	17. D
18. Jesse has worn the same hat for d years. If he wears it for 12 more years, he will have worn this hat for d^{2} years. So, $d+12=d^{2}$, or $(d+3)(d-4)=0$. Since $d>0, d=4$. A) 4 B) 6 C) 8 D) 12	18. A
19. $\|x\|+\|-x\|=\|x\|+\|x\|=2\|x\|$. A) 0 B) $\|x\|$ C) $\|-x\|$ D) $2\|x\|$	$19 .$
20. Sketch circle C. Of the choices, only choice $A,(0,5)$, is on circle C. A) $(0,5)$ B) $(-5,-5)$ C) $(-10,0)$ D) $(5,5)$	$20 .$ A
21. The 4 positive factors of $a b$ are $1, a, b$, and $a b$. A) 4 B) 3 C) 2 D) 1	$21 .$ A
22. Since $(-x)^{100}=(-1)^{100}\left(x^{100}\right)=1 \times x^{100}$, choice B is correct. A) 100 B) 1 C) -1 D) -100	22.

Sample Algebra I Contest

Spring, 2013

Instructions

- Time Do not open this booklet until you are told by your teacher to begin. You will have only 30 minutes working time for this contest. You might be unable to finish all 30 questions in the time allowed.
- Scores Please remember that this is a contest, and not a test-there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct). Students with half that, 12 points, should be commended!
- Format and Point Value This is a multiple-choice contest. Each answer will be one of the capital letters A, B, C, or D. Write each answer in the Answer Column to the right of each question. We suggest (but do not require) that you use a pencil. Each question you answer correctly is worth 1 point. Unanswered questions receive no credit. You may use a calculator unless your school does not allow you to use one.

Please Print

Last Name \qquad First Name \qquad
School \qquad Teacher \qquad Grade Level \qquad

Do Not Write In The Space Below

To the Teacher:

Please enter the student's score at the right before you return this paper to the student.

Student's Score: \qquad

Eighteen books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017

2012-2013 ALGEBRA COURSE 1 CONTEST	Answers
1. If $x=2013$, then $(x-2012)^{(x-2013)}=$ A) 0 B) 1 C) 2 D) 10	1.
2. If $a=5$, then $4 a^{3}-3 a^{2}+2 a-1=$ A) 39 B) 125 C) 434 D) 586	2.
3. Fred and Ginger danced for $\frac{2013}{x}$ hours last year. If they danced for a whole number of hours, then x cannot be A) 3 B) 11 C) 13 D) 61	3.
4. Which of the following is a factor of $x^{2}-4 x-12$? A) $x+2$ B) $x-2$ C) x D) $x-8$	4.
5. $2^{400}+2^{400}=$ A) 2^{401} B) 2^{800} C) 4^{400} D) 4^{800}	5.
6. If $\frac{p}{q}=\frac{2}{3}$, then $\frac{-p}{-q}=$ A) $-\frac{2}{3}$ B) $\frac{-2}{3}$ C) $\frac{2}{-3}$ D) $\frac{2}{3}$	6.
7. The number of 5 kg weights and 10 kg weights I have is $4 w$ and $2 w$, respectively. If my weights all together weigh 200 kg , then $w=$ A) 4 B) 5 C) 10 D) 20	7.
8. $\left(3 x^{3}-4 x^{2}\right)+\left(2 x^{2}-3 x\right)-\left(3 x^{3}-4\right)=$ A) $2 x^{2}-3 x-4$ B) $2 x^{2}-3 x+4$ C) $-2 x^{2}-3 x-4$ D) $-2 x^{2}-3 x+4$	8.
9. If $3 x-4$ is odd, then $3 x+10$ must be A) positive B) prime C) odd D) even	9.
10. Telly the dog grabs the phone when it rings. Yesterday it rang at 4 PM or later 80% of the time it rang, and it rang 50 times before 4 PM . The phone rang ? times yesterday. A) 200 B) 250 C) 300 D) 400	10.
11. The ages of 5 sequoia trees in a forest are consecutive even integers. If the total of the trees' ages is 4440 years, the oldest tree is ? old. A) 884 years B) 888 years C) 890 years D) 892 years	11.

2012-2013 ALGEBRA COURSE 1 CONTEST
12. A straight line that passes through the points (p, q) and $(2 p, 3 q)$
must also pass through the point

A) $(3 p, 4 q)$	B) $(3 p, 5 q)$	C) $(4 p, 6 q)$

13. What is the product of all multiples of 3 between -9 and $12 ?$

| A) -314928 | B) -2916 |
| :--- | :--- |\quad C) 0

. If $(x-2)^{2}=1600, x-2= \pm 40$. Thus $x=42$ or -38 , and $x-4-38$ or -42.22.

Since the prime factorization of 260 is (2)(2)(5)(13), the least possible 24. value of x is 13

Avg. speed $=$ (total dist./total time), so Don Q's avg. speed is $(60+60) /[60 /(3 r)+60 /(6 r)]=$ $120 /(30 / r)=4 r$.
26. If the integer is $10 t+u$, then the difference bebetween this integer and the integer with the digits reversed is $(10 t+u)-(10 u+t)=9 t-9 u=$ 36. Dividing by $9, t-u=4$.
A) 4
B) 6
C) 8
D) 9

My sister has s dollars, and I have d dollars more than she has. If together we have a total of t dollars, then $s+(s+d)=t$, so $2 s=t-d$ and $s=(t-d) / 2$.
A) $t-2 d$
B) $\frac{t}{2}-d$
C) $t-\frac{d}{2}$
D) $\frac{t-d}{2}$
28. Choice D is the product of 3 consecutive integers, so it's divisible by 3 .

1) $(x-1)$

The expression $\frac{2 x+1}{3 x-3}$ becomes $\frac{2\left(\frac{4}{x}\right)+1}{3\left(\frac{4}{x}\right)-3}=\frac{\frac{8}{x}+1}{\frac{12}{x}-3}=\frac{8+x}{12-3 x}$.

Information \mathcal{E} Solutions

Spring, 2013

Directions for Grading

- Date You may give this contest any time after April 15. The Algebra Course 1 Contest is for use in your own school or district. We've enclosed a registration form for next year. Instructions for optionally submitting results are included on a separate sheet entitled "Using the Score Report Center."
- Urgent questions? Write to comments@mathleague.com, or call 1-201-568-6328 or 1-516-365-5656.
- Scores Remind students that this is a contest, and not a test-there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct); students with half that, 12 points, should be commended!
- Solutions Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Awards The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 Certificates of Merit-1 each for the run-ner-up on each grade level, plus extras for ties.
- Additional Book Awards \& Additional Certificates If you want to give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017. Include a self-addressed, stamped envelope ($\mathbf{2}$ stamps required) large enough to hold certificates.

The school's top scorer will receive the book Math Contests-High School (Vol. 4). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

Eighteen books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6), and High School (Vols. 1, 2, 3, 4, 5, 6), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

2012-2013 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers	
1. If $x=2013$, then $(x-2012)^{(x-2013)}=(2013-2012)^{(2013-2013)}=1^{0}=1$. A) 0 B) 1 C) 2 D) 10	1. B	
2. If $a=5$, then $4 a^{3}-3 a^{2}+2 a-1=4(5)^{3}-3(5)^{2}+2(5)-1=500-75+10-1$. A) 39 B) 125 C) 434 D) 586	$2 .$ C	
3. Fred and Ginger danced for $\frac{2013}{x}$ hours last year. Since 2013 is not divisible by 13, x cannot be 13 . A) 3 B) 11 C) 13 D) 61	3. C	
4. We may rewrite $x^{2}-4 x-12$ as $(x-6)(x+2)$, so $x+2$ is a factor. A) $x+2$ B) $x-2$ C) x D) $x-8$	4. A	
5. $2^{400}+2^{400}=2\left(2^{400}\right)=\left(2^{1}\right)\left(2^{400}\right)=2^{400+1}=2^{401}$. A) 2^{401} B) 2^{800} C) 4^{400} D) 4^{800}	5. A	
6. If $\frac{p}{q}=\frac{2}{3}$, then $\frac{-p}{-q}=\frac{-2}{-3}=\frac{2}{3}$. A) $-\frac{2}{3}$ B) $\frac{-2}{3}$ C) $\frac{2}{-3}$ D) $\frac{2}{3}$	6. D	
7. The number of 5 kg weights and 10 kg weights I have is $4 w$ and $2 w$, respectively. Hence, $5(4 w)+10(2 w)=200$, so $40 w=200$ and $w=5$. A) 4 B) 5 C) 10 D) 20	7. B	
8. $\left(3 x^{3}-4 x^{2}\right)+\left(2 x^{2}-3 x\right)-\left(3 x^{3}-4\right)=3 x^{3}-4 x^{2}+2 x^{2}-3 x-3 x^{3}+4=-2 x^{2}-3 x+4$. A) $2 x^{2}-3 x-4$ B) $2 x^{2}-3 x+4$ C) $-2 x^{2}-3 x-4$ D) $-2 x^{2}-3 x+4$	8. D	
9. Since $3 x+10=(3 x-4)+14,3 x+10$ is odd. (Odd \#+14 = odd \#.) A) positive B) prime C) odd D) even	9. 9.	
10. Yesterday the phone rang at 4 PM or later 80% of the time it rang, and it rang 50 times before 4 PM . Those 50 rings are 20% of all the rings. Thus, the phone rang 250 times yesterday. A) 200 B) 250 C) 300 D) 400	10. B	
11. Let the ages of the 5 trees be $t, t-2, t-4, t-6, t-8$. Then $t+(t-2)+$ $(t-4)+(t-6)+(t-8)=4440$. Thus, $5 t-20=4440$, and $t=892$. A) 884 B) 888 C) 890 D) 892	$11 .$ D	
Go on to the next page $1 \\|$		

2012-2013 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers
12. A line that passes through the points (p, q) and $(2 p, 3 q)$ has slope $(3 q-q) /(2 p-p)=2 q / p$. The slope between (p, q) and $(3 p, 5 q)$ is also $2 q / p$. A) $(3 p, 4 q)$ B) $(3 p, 5 q)$ C) $(4 p, 6 q)$ D) $(4 p, 8 q)$	$\begin{gathered} 12 . \\ \text { B } \end{gathered}$
13. The multiples of 3 between -9 and 12 include 0 , so their product is 0 . A) -314928 B) -2916 C) 0 D) 2916	$\begin{aligned} & 13 . \\ & \mathrm{C} \end{aligned}$
14. Of children born at the maternity ward yesterday, the ratio of boys to girls was $3 x: 4 y=5: 6$. Thus, $18 x=20 y$ or $9 x=10 y$. Hence, $x: y=10: 9$. A) $10: 9$ B) $24: 15$ C) $15: 24$ D) $4: 5$	14. A
15. $\frac{\left(x^{200}\right)^{400}}{\left(x^{100}\right)^{200}}=\frac{x^{80000}}{x^{20000}}=x^{60000}$. A) x^{4} B) x^{6} C) x^{40000} D) x^{60000}	15. D
16. If the average of x, y, and z is 16 , their sum is $3(16)=48$. If the average of x and y is 12 , their sum is $2(12)=24$. Hence $z=48-24=24$. A) 4 B) 14 C) 20 D) 24	D
17. Both $6 n^{8}$ and $10 n^{12}$ are factors of $30 n^{12}$, the lcm. A) $2 n^{8}$ B) $30 n^{12}$ C) $30 n^{24}$ D) $60 n^{96}$	17. B
18. If the perim. is 64 , each side has length 16 . By Pythag. Th., a diameter is $16 \sqrt{2}$. The area is $(8 \sqrt{2})^{2} \pi=128 \pi$. A) 16π B) 32π C) 64π D) 128π	18. D
19. Since $(x-y)^{2}=3^{2}, x^{2}+y^{2}-2 x y=9$. Hence $485-2 x y=9$, and $x y=238$. A) 162 B) 238 C) 482 D) 3880	19. B
20. The roots of $(x-1)(x+2)(x-3) \times \ldots \times$ $(x-19)(x+20)(x-21)=0$ are $1,-2,3,-4, \ldots, 19$, -20 , and 21 . Their sum is $(1-2)+(3-4)+\ldots$ $+(19-20)+21=-10+21=11$. A) 10 B) 11 C) 21 D) 31	20. B
21. $\|4 x\|+4\|-x\|=4\|x\|+4\|x\|=8\|x\|$. A) 0 B) 8 C) $8\|x\|$ D) $4\|4 x\|$	$21 .$ C
22. $\sqrt{36^{64}}=\sqrt{\left(36^{32}\right)\left(36^{32}\right)}=36^{32}$. A) 6^{8} B) 6^{32} C) 36^{8} D) 3632	$22 .$

Visit our Web site at http://www.mathleague.com
Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

2018-2019 Annual Algebra Course 1 Contest

Spring, 2019

Instructions

A

- Time Do not open this booklet until you are told by your teacher to begin. You will have only 30 minutes working time for this contest. You might be unable to finish all 30 questions in the time allowed.
- Scores Please remember that this is a contest, and not a test-there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct). Students with half that, 12 points, should be commended!
- Format and Point Value This is a multiple-choice contest. Each answer will be one of the capital letters A, B, C, or D. Write each answer in the Answer Column to the right of each question. We suggest (but do not require) that you use a pencil. Each question you answer correctly is worth 1 point. Unanswered questions receive no credit. You may use a calculator unless your school does not allow you to use one.

Please Print

Last Name \qquad First Name \qquad
School \qquad Teacher \qquad Grade Level \qquad

Do Not Write In The Space Below

To the Teacher:

Please enter the student's score at the right before you return this paper to the student. Student's Score: \qquad

The school's top scorer will receive the book Math Contests - High School (Vol. 4). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.

[^3]1. If $a=2, r=0, t=1$, and $s=9$, then $s+t+a+r+t=$
A) 0
B) 12
C) 13
D) 21
2. There were a ants in my ant farm, but then 3 ants escaped! If each ant has 6 legs, the ants remaining have a combined total of ? legs.
A) $6 a-3$
B) $6(a-3)$ C) $6 a-3 a$
D) $a^{6}-3$
3. $6 x^{2}-5+4 x-3+2 x^{2}-1+2 x-3+4 x^{2}-5+6 x=$

A) $36 x-17$
B) $24 x-9$
C) $12 x^{2}+12 x-12$
D) $12 x^{2}+12 x-17$
4. $(x-y)(x+y)=$
A) $x^{2}-y^{2}$
B) $x^{2}-2 x y+y^{2}$
C) $x^{2}+2 x y+y^{2}$
D) $x^{2}+y^{2}$
5. $(x-y)(x+y)(x-y)=$
A) $x^{3}-y^{3}$
B) $x^{3}-x^{2} y-x y^{2}+y^{3}$
C) $x^{3}+y^{3}$
D) $x^{3}+x^{2} y+x y^{2}+y^{3}$
6. Which of the following is negative for all real values of s ?
A) $-s^{3}-1$
B) $(-s)^{3}-1$
C) $-s^{2}-1$
D) $(-s)^{2}-1$
7. $\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-4\right)=0$ has how many integer solutions?
A) 2
B) 4
C) 6
D) 8
8. If x, y, and z are distinct prime numbers, which of the following is the least common multiple of $x^{2} y^{3} z^{4}$ and $x^{4} y^{3} z^{2}$?
A) $x^{8} y^{9} z^{8}$
B) $x^{6} y^{6} z^{6}$
C) $x^{4} y^{3} z^{4}$
D) $x^{2} y^{3} z^{2}$
9. $\left(\left(x^{3}+x^{3}\right) \times x^{3}\right)^{3}=$
$\begin{array}{ll}\text { A) } 2 x^{18} & \text { B) } 8 x^{18}\end{array}$
C) $8 x^{27}$
D) x^{54}
10. In my big jar of jellybeans there are exactly $3 b$ red beans, $5 b$ green beans, and $6 b$ orange beans, and no others. There could be a total of ? beans.
A) 35
B) 42
C) 60
D) 90
11. What is the sum of all solutions to $|2 x-2.5|=4$?

A) 2
B) 2.5
C) 3.75
D) 4
12. The positive difference between the two roots of $x^{2}-3 x-28=0$ is
A) 3
B) 4
C) 7
D) 11
13.
14. Today Li turned 42 and Mae turned 8 . How old will Mae be when 13. Li is exactly three times Mae's age?
A) 9
B) 17
C) 26
D) 51

| 14. If a crate of lightbulbs contains b boxes, and each box contains p pack- | 14. |
| :--- | :--- | :--- | ages, how many bulbs are in 3 crates if each package holds 4 bulbs?

A) $12 b p$
B) $\frac{3 b p}{4}$
C) $\frac{4 b p}{3}$
D) $\frac{b p}{12}$
15. Avi and Bea were building sand castles all day.

Avi had built three times as many castles as Bea, but then a wave destroyed 3 of Avi's castles while Bea built 1 more. At that point the ratio of Avi's castles to Bea's was 5:2. Avi had built ? castles before the wave hit.
A) 11
B) 12
C) 30
D) 33
16. If $135 \times 46=a$, then $135 \times 48=$

$$
\begin{array}{llll}
\text { A) } a+2 & \text { B) } a+92 & \text { C) } a+94 & \text { D) } a+270 \\
\hline
\end{array}
$$

17. If $3 x+8 y=21$ and $8 x+3 y=23$, then $x+y=$
A) 2
B) 4
C) 11
D) 22
18. If the hands on a circular clock start at midnight, what number will the hour hand point to 1000 hours later?
A) 2
B) 4
C) 8
D) 12
19. If x is an integer, what is the least possible value of $|20-7 x|$?
A) 1
B) 2
C) 3
D) 6
20. If Sy can shovel snow from half of a driveway in 2 hours, and Ty can shovel snow from one quarter of the driveway in 2 hours, how many minutes would it take them to shovel the whole driveway working together at their respective constant rates?
A) 120
B) 160
C) 180
D) 360
21. Of the bottles that Viola collects, 80% are green. Of the green bottles, 30% held perfume and 45% held spices. If the remaining 25 green bottles held pills, How many bottles are in Viola's collection?
A) 75
B) 100
C) 120
D) 125
22. If $x \neq 0$ and $2 x-\frac{y-3 x^{2}}{x}=\frac{4}{x}$, then $y=$

A) $4-x^{2}$
B) $4+x^{2}$
C) $5 x^{2}-4$
D) $4-5 x^{2}$

Information \mathcal{E} Solutions

Spring, 2019
A

Directions for Grading

- Date You may give this contest any time after April 15. The Algebra Course 1 Contest is for use in your own school or district. We've enclosed a registration form for next year. Instructions for optionally submitting results are included on a separate sheet entitled "Using the Score Report Center."
- Urgent questions? Write to comments@mathleague.com, or call 1-201-568-6328 or 1-516-365-5656.
- Scores Remind students that this is a contest, and not a test - there is no "passing" or "failing" score. Few students score as high as 24 points (80% correct); students with half that, 12 points, should be commended!
- Solutions Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Awards The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 Certificates of Merit-1 each for the run-ner-up on each grade level, plus extras for ties.
- Additional Book Awards \& Additional Certificates If you want to give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017. Include a self-addressed, stamped envelope ($\mathbf{2}$ stamps required) large enough to hold certificates.

> The school's top scorer will receive the book Math Contests - High School (Vol. 4). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.
Twenty-one books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

2018-2019 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers
1. If $a=2, r=0, t=1$, and $s=9$, then $s+t+a+r+t=9+1+2+0+1=13$. A) 0 B) 12 C) 13 D) 21	1. C
2. There were a ants in my ant farm. They have $6 a$ legs. After 3 ants leave, the remaining ants have $6 a-18=6(a-3)$ legs. A) $6 a-3$ B) $6(a-3)$ C) $6 a-3 a$ D) $a^{6}-3$	2. B
3. Regroup: $\left(6 x^{2}+2 x^{2}+4 x^{2}\right)+(4 x+2 x+6 x)-(5+3+1+3+5)$. A) $36 x-17$ B) $24 x-9$ C) $12 x^{2}+12 x-12$ D) $12 x^{2}+12 x-17$	3. D
4. $(x-y)(x+y)=x^{2}+x y-x y-y^{2}=x^{2}-y^{2}$. A) $x^{2}-y^{2}$ B) $x^{2}-2 x y+y^{2}$ C) $x^{2}+2 x y+y^{2}$ D) $x^{2}+y^{2}$	4. A
5. $(x-y)(x+y)(x-y)=\left(x^{2}-y^{2}\right)(x-y)=x^{3}-x^{2} y-x y^{2}+y^{3}$. A) $x^{3}-y^{3}$ B) $x^{3}-x^{2} y-x y^{2}+y^{3}$ C) $x^{3}+y^{3}$ D) $x^{3}+x^{2} y+x y^{2}+y^{3}$	5. B
6. Since $-s^{2} \leq 0$ for all real values of $s,-s^{2}-1<0$ for all real values of s. A) $-s^{3}-1$ B) $(-s)^{3}-1$ C) $-s^{2}-1$ D) $(-s)^{2}-1$	$6 .$ C
7. The integer solutions of $\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-4\right)=0$ are $\pm 1, \pm 2$. A) 2 B) 4 C) 6 D) 8	$\begin{aligned} & 7 . \\ & \text { B } \end{aligned}$
8. If x, y, and z are distinct prime numbers, the least common multiple of $x^{2} y^{3} z^{4}$ and $x^{4} y^{3} z^{2}$ must contain the highest power of each prime. A) $x^{8} y^{9} z^{8}$ B) $x^{6} y^{6} z^{6}$ C) $x^{4} y^{3} z^{4}$ D) $x^{2} y^{3} z^{2}$	8. C
9. $\left(\left(x^{3}+x^{3}\right) \times x^{3}\right)^{3}=\left(2 x^{3} \times x^{3}\right)^{3}=\left(2 x^{6}\right)^{3}=2^{3} x^{18}=8 x^{18}$. A) $2 x^{18}$ B) $8 x^{18}$ C) $8 x^{27}$ D) x^{54}	$\begin{aligned} & 9 . \\ & \text { B } \end{aligned}$
10. In my jar, there are $3 b$ red beans, 5 b green beans, $6 b$ orange beans, for a total of $14 b$ beans. If $b=3$, the total number of beans would be 42 . A) 35 B) 42 C) 60 D) 90	10.8
11. $2 x-2.5= \pm 4$, so $x=3.25$ or -0.75 . The sum of the solutions is 2.5 . A) 2 B) 2.5 C) 3.75 D) 4	11. B
12. The roots of $(x-7)(x+4)=0$ are 7 and -4 . Their difference is 11 . A) 3 B) 4 C) 7 D) 11	$\begin{aligned} & 12 . \\ & \text { D } \end{aligned}$
Go on to the next page וIIII \boldsymbol{A}	

2018-2019 ALGEBRA COURSE 1 CONTEST SOLUTIONS Answers

[^0]: Copyright $\odot 2005$ by Mathematics Leagues Inc.

[^1]: Fifteen books of past contests, Grades $4,5, \mathcal{E} 6$ (Vols. 1, 2, 3, 4, 5), Grades $7 \& 8$ (Vols. 1, 2, 3, 4, 5), and High School (Vols. 1, 2, 3, 4 ,5), are available, for $\$ 12.95$ per volume (\$15.95 Canadian), from Math League Press, P.O. Box 17, Tenafly, N.J. 07670-0017.

[^2]: Copyright © 2019 by Mathematics Leagues Inc.

[^3]: Twenty-one books of past contests, Grades 4, 5, \& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \mathcal{E} 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

