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Abstract: Despite the popularity of the ginseng (Panax) root in health research and on the market, the
ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations
and designing berry-derived products could improve the accessibility to mental health-promoting
nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antide-
pressant compounds than the root, which has already been the subject of research demonstrating
its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s
application in supporting mental health via the gut–brain axis is compiled and discussed.
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1. Introduction

Mental illness is debilitating and compromises the individual’s quality of life, as
well as it has surprisingly far-reaching economic effects, costing the Canadian economy
an estimated 51 billion dollars annually [1]. Globally, mental illness has been estimated
to be responsible for 32.4% of years lived with disability, surpassing all other forms of
diseases [2]. Mood and anxiety disorders are the most common mental illnesses globally
and in Canada [3], where their estimated prevalence is 4.7% annually [4]. Unfortunately,
many standard pharmaceutical treatments, such as antidepressants, have significant side
effects that could affect adherence to the treatment, as well as mixed results with regards
to efficacy [5]. Furthermore, it has recently been shown that antidepressant use could
negatively impact the intestinal microbiota diversity and be detrimental to certain types
of beneficial bacteria [6,7]. With the concept and applications of the microbiota–gut–brain
axis gaining traction among the scientific community, complementary treatments targeting
this axis to promote mental health are needed.

Ginseng, one of the most important herbs of traditional Chinese medicine, has an
impressive track record of positive effects in both in vitro and in vivo models of mental
health [8], while also displaying efficacy in clinical research [9–11]. However, in traditional
Chinese medicine and even in modern research, the root has been the primary focus of
health allegations and, by extension, the focus of ginseng culture. The berries, which
are largely regarded as by-products of the ginseng root culture, have great potential for
applications in health due to their pharmacological properties and distinct composition
with respect to the root [12]. Despite the rationale strongly supporting the pharmacological
properties of the berries [12], they remain underutilized and are frequently discarded
in agriculture, while the root is marketed. As ginseng is a slowly growing crop, root
cultures take multiple years to harvest. Furthermore, significant crop mortality following
the replanting of new ginseng is an issue plaguing agriculture; thus, bioremedial efforts
have been undertaken to mitigate this effect [13]. The berry culture, on the other hand,
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presents numerous advantages. For instance, berries can be harvested from the same
ginseng plant annually starting on the second year of growth, without any detriment to
the crop. The root culture, in contrast, takes 4 to 10 years to achieve a minimal marketable
maturity. Finally, the berry culture can be implemented without impacting the current root
harvesting practices.

Here, we evaluate the potential of the ginseng berry as a promising source of bioactive
compounds with mental health-promoting effects. This review also discusses the pharma-
cological mechanisms through the gut–brain axis in which ginseng could promote mental
health, as shown in Figure 1.
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Figure 1. An overview of the reported studies highlighting the interplay of ginseng berry compounds
with the microbiome–gut–brain axis. Green upward arrows represent a significant increase, whereas
red downward arrows represent a significant decrease. Green arrow: increase; red arrow: decrease.

2. The Berry Is a Highly Concentrated Source of Ginseng’s Therapeutic Compounds

The main bioactive compounds in the berry are of the same classes as those found in
the root. Ginsenosides, usually denoted by a capital R followed by a lowercase letter and a
number, if required (e.g., Rg1), are saponins present in an impressive diversity within the
same type of ginseng and even in the same part of the plant. Their structural diversity is
naturally accompanied by a diverse range of pharmacological functions and efficacy. Gin-
seng root polysaccharide extracts have also been researched in various contexts. As shown
in Table 1, the berry could contain higher levels of neuroprotective and antidepressant
bioactive compounds than the root.
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Table 1. A review of American ginseng berry bioactive compounds—(*B>) content is significantly
higher in the berry than root, (*B<) content is significantly less than the root, (B~) content is not
statistically different from the root, (nil) was not detected in the berry, (ND) not determined in the
study. Significance was determined using a two-tailed t-test with p < 0.05. When multiple harvest
times were available in a study, the harvest date closest to August 30th was chosen.

Compounds Pharmacological Effects Content
(Berry vs. Root, mg/g Dry Weight)

G
in

se
no

si
de

s

Rb1 Neuroprotective [14], anti-diabetic [15],
mitochondrial antioxidant [16]

*B< [12,17]
0.86 ± 0.09 vs. 25.36 ± 1.67 [17]

9.03 ± 0.60 vs. ND [18]
ND vs. 48.51 ± 1.79 [19]
ND vs. 47.96 ± 1.04 [19]

Rb2 Anti-diabetic, anti-viral, cardioprotective,
neuroprotective [20]

*B> [12,17,21]
1.54 ± 0.95 vs. 0.3 ± 0.02 [17]

Rb3 Anti-diabetic, anticonvulsant, antitumor,
cardioprotective, antidepressant [22] *B> [12,21]

Rc Antiallergic [23], antioxidant [24],
anti-inflammatory [25], SIRT1 activation [26]

*B> [12] *B< [17]
1.51 ± 0.11 vs. 7.03 ± 2.15 [17]

Rd Neuroprotective, antioxidant, anti-inflammatory,
neuroprotective [27], antidepressant [28]

B~ [12] *B< [17]
0.48 ± 0.1 vs. 3.16 ± 0.98 [17]

Re Cardioprotective [29], Neuroprotective [30,31],
antidepressant [32]

*B> [12] *B< [17]
5.30 ± 0.54 vs. 17.45 ± 1.6 [17]

8.42 ± 0.19 vs. ND [18]

Rg1 Stem cell regulation [33,34], anti-inflammatory
[35], antidepressant [36]

*B< [12,17]
0.53 ± 0.09 vs. 2.39 ± 1.01 [17]

0.390 ± 0.010 vs. ND [18]
ND vs. 3.15 ± 0.23 [19]
ND vs. 2.49 ± 0.04 [19]

Rg2 Cardioprotective [37–40], neuroprotective [41] *B> [12]
20(R)-Rg2 Insufficient data nil [12,42]

Rg3 Anticancer [43,44], neuroprotective [45] *B> [12]

Rh1 Anti-inflammatory, antioxidant,
immunomodulatory, neuroprotective [46] B~ [12]

Rh2 Anti-cancer [47] nil [12,42]

Polysaccharides Anti-cancer [48,49]

It is reported that the total ginsenoside content could be higher in the berry than in the
root by as much as 60% [12], though this is not consistent throughout the studies, perhaps
due to varying harvest times and differences in the way that ginsenosides are measured
in each study (e.g., measuring the root’s main ginsenosides but not the berry’s biases the
total ginsenoside count). Rb3, Re, Rb2, Rd, and Rc, in descending order of abundance
(with occasional variation between Re and Rb2), are the ginsenosides that are the most
abundant in the American ginseng berry, and this is consistent throughout the studies
assessing its composition via high-performance liquid chromatography [12,42,50,51]. Of
note, the berry ginsenoside content can be different depending on the variety of ginseng
selected. For instance, ginsenoside Re is the most abundant in Korean ginseng berries
and is approximately 8 times more concentrated than Rb2 [52], whereas in the American
ginseng, Re is at most 1.2 times as concentrated as Rb2 [12]. The harvest time has also
been shown to cause significant variance in ginsenoside content; American ginseng berries
were shown to lose over half of their Rb1, Re, and Rg1 content during the season, strongly
suggesting that the ginsenoside content may be at its peak before the berries are ripe [18].
Post-harvest treatment should also be considered, as steaming has been shown to cause
a sharp decrease in the total content, consistently causing a loss of about 50% after 2 h of
steaming at 120 ◦C [42,50]. Conversely, ginsenosides Rh1, Rg2, (20)R-Rg2, Rg3, and Rh2
sharply increased in content after a 2 h steaming treatment [42,50].
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Given the berry’s high concentration of Rb3, Re, Rb2, and Rd, the ginsenosides
with demonstrated antidepressant and neuroprotective effects [20,22,27,30,31], it could be
expected that the berry has even a superior potential for mental health applications than
the root. Still, root extracts and specific ginsenosides have been the subject of most research
and have consistently demonstrated efficacy in vitro and in vivo models in the context of
central nervous system diseases and depression [53,54]. Another aspect to consider when
evaluating the berry’s antidepressant and neuroprotective potential is that the microbial
community of the intestine metabolizes the ginsenosides into alternate forms with varying
effects and degrees of bioactivity. For instance, Rb3, the berry’s main ginsenoside, and
its deglycosylated metabolites Rg3, Rh2, compound K, and 20(S)-protopanaxadiol have
had their antidepressant potential assessed, and it was shown that Rg3 and compound K
have more powerful antidepressant effects which are brought upon by the modulation of
corticosterone, adrenocorticotropic hormone, and noradrenaline levels [55]. Thus, the fact
that the berry has an inherently higher concentration of Rg3 than the root and a higher
concentration of Rb3, which can, in turn, be deglycosylated into Rg3 [12,55], is a fine
example of the berry’s untapped potential as a mental health-promoting nutraceutical.

3. Pharmacological Effects in The Context of Mental Health

Most of the mental health-promoting effects attributed to the berry come from extrap-
olation of data from single ginsenoside or total ginsenoside extract experiments. Data from
experiments directly involving the berry or its distinct ginsenoside composition are scarce
in the context of mental health. The berry saponin extract was shown to regulate 5-HT
and rescue depressive-like behaviour in a mouse model of myocardial infarction, though
this was fruit from the Panax notoginseng [56]. In fact, ginseng berry experiments with
application to mental health seem to be limited to the examination of serotonin regulation
in comorbid myocardial infarction models [57,58] and one additional study involving
scopolamine-induced memory impairment, where the berry extract was shown to have
antioxidant effects and to preserve acetylcholine and brain-derived neurotrophic factor
(BDNF) mRNA levels [59]. This section illustrates the current mental health-related findings
for the predominant ginsenosides in the American ginseng berry.

3.1. Ginsenoside Rb3

Rb3, the berry’s most abundant ginsenoside, exerts pharmacological effects that benefit
mental health through multiple mechanisms. Such neuroprotective mechanisms occur
through varied antioxidant effects, such as suppressing inducible nitric oxide synthase in
hypoxic hippocampal neurons [60], preserving superoxide dismutase (SOD) and catalase
(CAT) levels [61], and inducing Nrf2 transcription activity [62], which is downregulated in
neurological conditions, such as depression [63]. Likewise, ginsenoside Rb3 was shown
to interact with multiple neurotransmitters and receptors, leading to neuroprotective
effects through inhibiting the NMDA receptor [64,65], activating the GABA(A) recep-
tor [66], or acting beneficially on the noradrenergic pathway to relieve depression in rodent
models [55,67].

3.2. Ginsenoside Re

Ginsenoside Re also demonstrates neuroprotective effects. It could be effective at
reducing neuroinflammation by inhibiting the CAMK/MAPK/NF-κB signaling, as demon-
strated by Madhi et al. [30], as well as by attenuating NLRP3 activation, as reported by
Wang et al. [31]. In the same study, ginsenoside Re was also able to counter the loss of
the antioxidant enzymes SOD, CAT, and glutathione (GSH) and the loss of Nrf2 expres-
sion following chronic restraint stress [31]. The compound also induced the expression of
genes involved in acetylcholine neurotransmission, elevated acetylcholine levels, and en-
hanced the differentiation of Neuro-2a cells, which could translate to benefit in Alzheimer’s
disease [68]. The neuronal effects also extend to reversing the depression- and anxiety-
associated behavioural changes in rat models of repeated immobilization [32] and the
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learning and memory decline caused by chronic restraint in mice [31], while exerting
BDNF-protecting effects in both studies.

3.3. Ginsenoside Rb2

Research evaluating the efficacy of ginsenoside Rb2 is scarce in the context of mental
health, though it has been shown to protect against glutamate-mediated neurotoxicity in
HT22 hippocampal cells [69]. Miao et al. have recently written a review compiling the
pharmacological effects of Rb2, which include inhibition of oxidative stress, inflammation,
and apoptosis through multiple pathways [20]. Although these effects were not tested in
neurological models, some described pathways (SIRT1, AMPK, MAPK, and NF-κB) are
relevant for many neurological conditions.

3.4. Ginsenoside Rd

Chen et al. have written a comprehensive review thoroughly describing the neuropro-
tective mechanisms of ginsenoside Rd, which was published a few months prior to this
paper [27]. Some key reported data include anti-inflammatory effects via the regulation of
iNOS, COX-2, MAPK, and NF-κB, antioxidant effects through increasing the SOD, GSH,
and CAT, and antiapoptotic effects in several models of neuron stress [27]. Ginsenoside
Rd was more recently shown to exert a significant antidepressant effect in the chronic
unpredictable mild stress and behavioural despair mouse models via the hypoxia-inducible
factor-1α and to increase the expression of SYN1 and PSD 95, two synaptic plasticity-related
proteins [28]. Also of note, ginsenoside Rd alleviated both Escherichia coli K1-induced colitis
and depression/anxiety in mice as measured by light/dark transition, forced swimming,
and tail suspension tests, while significantly countering induced IL-6 expression in plasma
and NF-κB activation (both colonic and hippocampal) [70]. In the same study, ginsenoside
also protected the hippocampal BDNF levels and even reversed some changes in intestinal
microbiota, brought upon by the administration of Escherichia coli K1 [70].

Ginsenosides could also exert neuroprotective effects through the modulation of mi-
croRNA, and Rd modulating miR-144-5p in a glioblastoma model is one such example [71].
In this study, Rd upregulated miR-144-5p, which decreased both TLR2 and the proliferation
of the glioblastoma cells [71]. Although it remains to be confirmed that ginsenoside Rd
could systemically upregulate miR-144-5p in vivo at a significant level, by extrapolating
this microRNA’s targets to other models, it could be hypothesized that ginsenoside Rd has
the potential to act therapeutically where TLR2 antagonism has shown benefit. For instance,
anti-TLR2 has proven beneficial in decreasing α-synuclein accumulation in neuronal and
astroglia cells in Parkinson’s and dementia with Lewy bodies mouse models, accompanied
by decreased neuroinflammation and behavioural deficits [72]. Notably, miR-144-5p has
been downregulated in depression and anxiety relative to healthy controls and inversely
correlated with depression scores [73]. Similarly, a psychological treatment that decreased
depression scores decreased specific inflammation-associated proteins and increased miR-
144-5p in another cohort of depression, anxiety, and stress-related disorder patients [74].
Recently, Hyun compiled research demonstrating the microRNA modulating effects of
various ginsenosides [75], but it may be too early to further extend these findings to the
context of mental health. As microRNAs continue to gain traction as therapeutic targets,
more research evaluating ginseng’s ability to modulate microRNAs would be of benefit to
the scientific community.

In summary, the American ginseng berry’s main ginsenosides are promising men-
tal health-promoting compounds through multiple neuroprotective and anti-depressive
mechanisms. As illustrated by a previously mentioned study involving E. coli K1 adminis-
tration [70], the ginseng berry’s bioactive components can additionally exert mental health
benefits by modulating microbiota and other intestinal health parameters.
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4. The Ginseng Berry and The Gut–Brain Axis

Beyond direct pharmacological action on the nervous system, another mechanism
through which ginseng could promote mental health is through the gut–brain axis. This
axis, relating the concepts of the intestinal microbiome, intestinal barrier function, endocrine
and neurological factors, and mental health, is of great importance as new implications
for a wide range of disease states have been emerging. For instance, links have been
established between the gut–brain axis and neurological conditions, such as Alzheimer’s
disease, Parkinson’s disease, amyotrophic lateral sclerosis, stroke, and major depressive
disorder [76,77], highlighting the need for more research evaluating strategies to target the
gut–brain axis in these contexts effectively. Given the close link between host nutrition and
the intestinal microbiome, nutritional and nutraceutical strategies are promising avenues
to explore in helping treat these conditions. Potential therapeutic targets along the axis
include the positive modulation of the intestinal microbiota composition or the reversal
of dysbiosis, the reduced permeability of the intestinal epithelium to inflammatory food-
derived antigens and inflammatory microbial products, and even the mitigation of the
negative impact that psychotropic drugs could exert on the gut microbiome [78].

4.1. Intestinal Permeability

It is well known that with increased intestinal permeability, inflammatory microbial
products, such as lipopolysaccharides (LPS), are present in higher quantities in the systemic
circulation [79]. This endotoxemia results in metabolic dysfunction and neuroinflammation,
potentially leading to overt depressive and anxious behaviour [80,81]. Indeed, serum
LPS has been shown to dose-dependently depress mood in humans [81]. Further, the
translocation of bacterial LPS into the systemic circulation is a major driver in the “leaky
gut” model of depression [82]. There are currently insufficient data to determine the effect of
the ginseng berry on the intestinal barrier function, though there is room for extrapolation.
The effects of different ginseng extracts on relevant intestinal barrier function parameters,
such as the tight junction proteins Claudin-1, Occludin, and Zonula Occludens-1 (ZO-1),
colonic inflammatory markers, and serum markers of permeability, such as LPS and D-
lactate, are reported in Table 2.

Table 2. Direct effects of ginseng on the intestinal barrier function.

Compounds Models Mechanism(s) Significant Effects (p < 0.05)

American Ginseng Root
Polysaccharides

Antibiotic-associated Diarrhea
in Rats (Lincomycin

Hydrochloride)
MAPK Signaling

Reduces colonic IL-1β, IL-6,
IL-17A and TNF-α and
increases IL-4 and IL-10.
Increases Claudin-1 and
Occludin expression [83]

Korean Ginseng Root
Polysaccharides DSS-induced Colitis in Rats

TLR4/MyD88/NF-κB-
signaling pathway

inhibition

Alleviates colitis symptoms,
downregulates IL-1β, IL-2,
IL-6, IL-17A, upregulates
ZO-1 and Occludin [84]

Fermented Korean Ginseng
Root Ginsenosides

Intraperitoneal LPS Injection
in Mice TLR4/MAPK

Attenuates LPS-induced
increases in IL-6, TNF-α and

IL-1β. Attenuates
LPS-induced increases in ALT

and AST, increases
LPS-induced expression of

Claudin-1 [85]

American Ginseng
Ginsenosides

Cisplatin-induced intestinal
injury in Mice Decreased NF-κB activity

Attenuates cisplatin-induced
increases in TNF-α and IL-1β.
Attenuates cisplatin-induced

decreases in ZO-1 and
Occludin [86]
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Table 2. Cont.

Compounds Models Mechanism(s) Significant Effects (p < 0.05)

Korean Red Ginseng Root MPTP-induced Intestinal
Permeability in Mice -

Prevents MPTP-induced
decrease in Occludin and
ZO-1, and MPTP-induced

colonic increase in TNF-α and
IL-1β [87]

Ginseng Polysaccharides
(Unspecified Variety)

Intraperitoneal LPS Injection
in Piglets

Decreased LPS-induced
NF-κB activity

Increases jejunal villus height
and expression of Occludin

and Claudin in both
LPS-treated and control

groups. Alleviates
LPS-induced increases in ALT,

AST, TNF-α, and IL-1β [88]

Korean Ginseng Root
Oligopeptides

Irradiation induced intestinal
injury in mice -

Decreases serum LPS levels
and decreases plasma

FITC-dextran. Pretreatment
prevented plasma IL-6

decrease and TNF-α increase.
Treatment dose-dependently
increases ZO-1 and Occludin

post-radiation injury [89]

Ginsenoside Rb1 Peritoneal air exposure
intestinal damage in Rats -

Dose-dependently reduces
serum D-lactate and intestinal
clearance of FITC-dextran [90]

Fermented and Unfermented
Korean Red Ginseng Root

Ovalbumin-induced allergy in
sensitized mice

Th1/Th2 balance, IgE
suppression

Both treatments decrease IL-4
and TNF-α mRNA expression.
Both treatments prevented an

allergy-induced increase in
serum beta-lactoglobulin after

gastric administration [91]

Fermented Wild Ginseng Root DSS-induced colitis Mouse
Model

Decreased DSS-induced
NF-κB activity

Alleviates colitis, prevents
DSS-induced loss of ZO-1,

downregulates DSS-induced
IL-1β, IL-6, TNF-α, and IFN-γ
mRNA expression. Decreases
colonic levels of TNF-α [92]

Korean Ginseng Healthy Mouse Model - Increased Muc2
expression [93]

Ginsenoside Rk3 High-fat diet Mouse Model TLR4/NF-κB signaling
pathway inhibition

Reduced colonic
inflammatory cytokines and

oxidative stress. Increases
ZO-1, Occludin, and Claudin

expression [94]

Ginsenoside Rh2 T-cell acute lymphoblastic
leukemia mouse model

Decreased TLR4/MyD88
expression

Decreased IL-1β, IL-6, and
TNF-α. Increased IL-10 and

TGF-β. Increased mRNA
expression of ZO-1, Claudin,

and Occludin [95]

Ginsenosides Rb3 and Rd ApcMin/+ mice (colon cancer
model) - Increased Goblet and Paneth

cell count [96]

Ginsenoside Rk3
DEN- and CCl4-induced
Hepatocellular carcinoma

mouse model
TLR4 pathway inhibition

Visual restoration of the
intestinal barrier, increased

expression of ZO-1, Occludin,
and Claudin [97]
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Table 2. Cont.

Compounds Models Mechanism(s) Significant Effects (p < 0.05)

Ginsenoside Rk3 Lincomycin-treated mice -

Increased expression of ZO-1,
Occludin, and Claudin-1, and
reversed structural changes to

the epithelium. Prevented
increased IL-1β, IL-6, IL-17,

IFN- γ and TNF-α and
prevented decreased

IL-10 [98]

Ginsenoside Rg5 db/db diabetes mouse model TLR4/NF-κB signaling
pathway inhibition

Increased Occludin and ZO-1
protein expression, decreased

serum LPS [99]

Panax Notoginseng saponins Lepob mice on a high-fat diet TLR4 pathway inhibition Increased expression of ZO-1
and Claudin-1 [100]

Ginsenoside Rh4 Antibiotic intestinal
inflammation mouse model

Decreased TLR4/NF-κB
/MyD88 expression

Increased expression of ZO-1
and Claudin-1. Decreased

IL-1β, IL-6, IL-17, IFN- γ and
TNF-α. Prevented increase in

IL-10. Reduced serum
LPS [101]

American ginseng
polysaccharides and

ginsenosides

Cyclophosphamide-Induced
Intestinal Damage in Mice -

Both ginsenosides and
polysaccharides

independently increased
mucin area, goblet cell count,
and increased expression of
ZO-1 and Occludin, but the

combination had higher
effect [102]

Ginsenoside Rg1 DSS-induced colitis mouse
model -

Decreased levels of IL-6, IL-33,
TNF-α and increased IL-4 and

IL-10 [103]

Korean Ginseng Ginsenosides Mice on a high-fat diet -

Increased expression of ZO-1
and Occludin mRNA

expression. Decreased serum
LPS [104]

MAPK = mitogen-activated protein kinase, IL = interleukin, ALT = alanine aminotransferase, AST = aspartate
aminotransferase, TNF-α = tumour necrosis factor alpha, MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,
FITC-dextran = fluorescein isothiocyanate-dextran, IFN- γ = interferon gamma.

Overall, ginsenosides have remarkable potential as therapeutic products for preserv-
ing the intestinal barrier function in various stress situations through anti-inflammatory
and transcriptional effects, favourably modulating tight junction protein expression. For
instance, Seong et al.’s study involving a fermented ginseng root in a dextran sodium
sulfate-induced murine colitis model has shown that the extract prevents the loss of the
tight junction protein Zonula Occludens-1 while inhibiting the NF-κB inflammatory path-
way [92]. The ginsenosides’ effects appear to go beyond mitigating the loss of tight junction
proteins amidst inflammatory insult; ginsenosides have also been shown to upregulate
the expression of tight junction protein expression and mRNA expression [97,99–101,104].
Ginseng has also been shown to increase Muc2 expression [93], though it is unclear if this
is a direct upregulation or due to the increase in goblet cell count that ginsenosides have
also been shown to induce [96]. The effects discussed so far are complemented by im-
provements in histological parameters, such as the mucin barrier area or the thickness and
reversal of epithelial damage from an impressive range of causes. Functional experiments
of intestinal permeability have also demonstrated efficacy with decreases in serum LPS,
replicated in a few different studies [99,101,104]. The ginseng root has also been shown
to decrease serum beta-lactoglobulin following gastric administration in a mouse model
of allergy [91] and decrease serum D-lactate and FITC-translocation across the intestinal
epithelium in a rat model of intestinal injury by peritoneal air exposure [90]. However,
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research examining the impact of whole ginseng berries specifically on the intestinal barrier
function is lacking. Furthermore, it is unknown whether berry polysaccharides or other
non-saponin compounds could also exert a protective effect on the intestinal barrier, as root
polysaccharides and oligopeptides have been shown to do.

4.2. Prebiotic Effects and Modulation of The Intestinal Microbiota

Another way the ginseng can act on the gut–brain axis is through modulation of
the intestinal microbiome. This type of benefit to the axis contrasts with the previously
discussed pharmacological effects, as they are indirect. Microbiome modulation is a
multifaceted phenomenon whose results on the gut–brain axis depend on the initial host
microbiome, diet, immunological factors, etc. Table 3 provides several examples of ginseng
components reversing induced dysbiosis. However, it should be noted that ginseng also
induces positive microbiome changes in healthy models, as well as improved intestinal
metabolism and immunity, as shown by Sun et al. [105].

Table 3. Direct effects of ginseng on the intestinal microbiome.

Compounds Models Significant Effects (p < 0.05)

American Ginseng Root
Polysaccharides

Antibiotic-associated Diarrhea
in Rats (Lincomycin

Hydrochloride)

Increased production of acetate and propionate, improved
the relative richness of Lactobacillus and Bacteroides, and

reduced the relative richness of Blautia and Coprococcus [83]
Korean Ginseng Healthy Mouse Model Increased total bacterial count and Lactobacillus count [93]

Ginsenoside Rk3 High-fat diet Mouse Model Increased abundance of Bacteroides and Bifidobacteria,
decreased abundance of Firmicutes [94]

25-hydroxyl-protopanaxatriol High-fat diet Mouse Model with
streptozotocin

Partly reversed an increase in Firmicutes/Bacteroides ratio,
increased relative abundance of Lachnospiraceae [106]

Fermented Wild Ginseng root Antibiotic-associated diarrhea
mouse model

Increased recovery of total bacteria counts after antibiotic
treatment. Increased recovery of Lactobacillus murinus,

Bifidobacterium, Enterobacteriaceae bacterium, and Enterococcus
faecium [107]

Ginsenoside Rh2 T-cell acute lymphoblastic
leukemia mouse model

Increased abundance of Bacteroides and Verrucomicrobia,
decreased abundance of Firmicutes and Proteobacteria.

Increased relative abundance of Akkermansia, Lactobacillus,
and Lachnospiraceae [95]

Korean red ginseng root
insoluble fiber

In vitro colon-simulated
fermentation using swine fecal

bacteria

Increased production of short-chain fatty acids, decreased
alpha-diversity, and increased relative abundance of

Bifidobacterium and Prevotella compared to control
fermentation with cellulose [108]

Fermented Korean Ginseng
Root

Alcoholic injury mice (ethanol
diet)

Prevented relative abundance loss of Akkermansia and
Allobaculum. Decreased relative abundance of

Parabacteroides [109]
Ginseng Root Polysaccharides

(Unspecified variety)
Healthy Piglets with
supplemented diet

Increased colonic acetic acid, isobutyric acid, and butyrate.
Decreased abundance of Malainabacteria [110]

Water Soluble Neutral Ginseng
Polysaccharides

Antibiotic-associated Diarrhea
in Mice (Lincomycin

Hydrochloride)

Increased abundance of Lactobacillus, decreased abundance
of Bacteroides, Streptococcus, Ochrobactrum, and

Pseudomonas [111]

Unspecified Ginseng Extracts
(Article in Chinese) Healthy Rats

Increased abundance of Bifidobacterium, Lactobacillus,
Allobaculum, and Clostridium. Decreased abundance of

Butyricimonas, Parabacteroides, Alistipes, and Helicobacter [112]

Korean Red Ginseng Root
Polysaccharides and

Ginsenoside Rb1

Streptozotocin-Induced
Diabetes Mouse Model

Polysaccharide treatment reversed the dysbiosis caused by
the treatment, as evidenced by reversal of loss of relative
abundance of Firmicutes and reversal of increase of the

relative abundance of Bacteroides [113]
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Table 3. Cont.

Compounds Models Significant Effects (p < 0.05)

Ginseng Root Polysaccharides DSS-induced Colitis
Mouse Model

Reverses DSS-induced changes; increases abundance of
Bifidobacterium, Lactobacillus, and the bacteria Clostridium
leptum and Clostridium coccoides. Reduces abundance of

Enterobacteriaceae and the bacterium Bacteroides
fragilis [114]

Ginsenosides Rb3 and Rd ApcMin/+ mice (colon
cancer model)

Decreased abundance of Dysgonomonas, Porphyromonas, and
Parabacteroides. Increased abundance of Prevotella and
Paraprevotella (Rd only). Increased richness of family

Bacteroidaceae; promoted growth of Bacteroides vulgatus,
Bacteroides xylanisolvens, Bacteroides gallinarum, and

Bacteroides acidifiaciens [96]

American Ginseng Root
AOM/DSS intestinal

inflammation and
tumorigenesis mouse model

Gradual reversal of loss of alpha-diversity and
beta-diversity following DSS treatment. Reversed increase
in Bacteroidaceae, Porphyromonadaceae, Enterobacteriaceae, and

Verrucomicrobiaceae, and reversed the decrease in
Clostridiaceae, Catabacteriaceae, Lachnospiraceae, and

Ruminococcaceae [115]

Ginsenoside Rk3
DEN- and CCl4-induced
Hepatocellular carcinoma

mouse model

Reversed decrease in Bacteroidetes and increase in
Firmicutes. Reversed decrease in Lachnospiraceae and

Bifidobacteriaceae. Reversed increase in Ruminococcaceae.
Reversed increase in Helicobacter and reversed the decrease

in Akkermansia, Lactobacillus, Oscillibacter, and
Bifidobacterium [97]

Korean Ginseng Root
Polysaccharides DSS-induced colitis in Mice

Restored loss of alpha diversity (Shannon Index). Reversed
relative increase in Bacteroidetes, Verrucomicrobia,

Proteobacteria, Tenericutes, Cyanobacteria, Prevotella and
Deferribacteres and reversed loss of Firmicutes and

Akkermansia [116]

Ginsenoside Rk3 Lincomycin-treated mice

Preserved Simpson, Shannon, ACE and Chao1 index at
levels of control. Increased levels Bacillaceae,

Bacteroidaceae and Prevotellaceae. Increased levels of
Anaerostipes, Alloprevotella, Lachnoclostridium and

Blautia. Decreased loss of acetic acid production, prevented
decrease of propionic acid, butyric acid, isobutyric acid, and

valeric acid production [98]

Ginseng Root Water-Soluble
Extract (Unspecified Variety) Exercise-Fatigue Mouse Model

Reversed relative loss of Bacteroidetes and reversed relative
increase of Firmicutes. Increased Lactobacillus and

Bacteroides, decreased Anaerotruncus. Reversed loss of
Bifidobacterium, Streptococcus, Coprpcoccus, and

Clostridium [117]

Protopanaxadiol-type
Ginsenosides Extracted from

Korean Ginseng Root

Human Fecal Microbiota In
Vitro Fermentation

Increased relative abundance of Escherichia-Shigella, decreased
relative abundance of Dorea, Prevotella, and Megasphaera.

Increased abundance of Lachnospiraceae, Streptococcaceae . . .
(Abridged) [118]

Korean Ginseng Root Middle-Aged Korean Women
with Obesity Decreased relative abundance of Anaerostipes [119]

Korean Red Ginseng Root Patients with non-alcoholic
steatohepatitis

Increased Lactobacillus in subgroup who experienced
improvements in ALT [120]

Ginsenoside Rg5 db/db diabetes mouse model

Reversed decrease in abundance of Alloprevotella, Barnesiella,
Coprobacter, Lactobacillus, Lactococcus, and Parasutterella,

reversed increase in abundance of Oscillibacter, Clostridium,
Helicobacter, and Dorea (abridged) [99]

Panax notoginseng saponins Diet-induced obesity mice Increased abundance of Akkermansia muciniphila and
Parabacteroides distasonis [121]

Ginsenoside Rb1 Diet-induced obesity mice
Decreased Helicobacteraceae and Ruminococcaceae, and
enriched Rikenellaceae. Decreased abundance of Dorea,

Helicobacter and Oscillospira [122]
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Table 3. Cont.

Compounds Models Significant Effects (p < 0.05)

Panax Notoginseng saponins Lepob mice on High-fat diet
Increased fecal acetic acid, butyric acid, propionic acid,

isobutyric acid, valeric acid and isovaleric acid [100]

Ginsenoside Rh4 Antibiotic intestinal
inflammation mouse model

Decreased Firmicutes/Bacteroidetes ratio. Increased fecal
acetic acid, butyric acid, propionic acid, isobutyric acid,

valeric acid and isovaleric acid [101]

American ginseng
polysaccharides and

ginsenosides

Cyclophosphamide-Induced
Intestinal Damage in Mice

The combination increased abundance of Clostridiales,
Bifidobacterium, and Lachnospiraceae, and decreased

abundance of Escherichia-Shigella and Peptococcaceae
(reversing detrimental changes in microbiota).

Polysaccharides and ginsenosides had different and
synergistic effects [102]

Korean Ginseng
polysaccharides and

ginsenosides

Exhaustion by forced swimming
and human hepatoma HepG2

cells xenograft

The combination reversed the changes in microbiota.
Polysaccharides and ginsenosides had different and

synergistic effects [123]

Ginsenosides Human Fecal Microbiota In
Vitro Fermentation

Increased relative abundance of Firmicutes and
Proteobacteria and decreased relative abundance of
Bacteroidetes. Increased abundance of Escherichia,

Streptococcus and Ruminococcus. Decreased abundance of
Dorea, Sutterella, Prevotella and Megasphaera [124]

Ginsenoside Rg1 DSS-induced colitis
mouse model

Increased relative abundance of Lachnospiraceae and
decrease of Staphylococcus, Bacteroide and

Ruminococcaceae [103]

Korean Ginseng Ginsenosides Mice on High-fat diet
Increased abundance of Parabacteroides, Muribaculaceae,

Akkermansia, and Ruminococcus. Decreased abundance of
Lachnospiraceae and Helicobacter [104]

Korean Ginseng Healthy Rats Increased abundance of Bifidobacterium and
Lactobacillus [105]

Ginseng and ginseng extracts have shown remarkable microbiome modulatory ef-
fects in an incredible amount of disease states and experimental diets. The reversal of
deleterious microbiome changes is a persistent observation. For instance, the ginseng
extracts have either increased or decreased the Firmicutes/Bacteroidetes ratio at the phy-
lum level, whichever would reverse the changes brought upon by metabolic or intestinal
dysfunction [94,97,101,106,113,116,117]. Based on the available literature, there appears
to be a distinction between the effects of the root polysaccharides and the ginsenosides
that can be made with regard to this ratio. Indeed, the ginsenosides appear to decrease
the Firmicutes/Bacteroidetes ratio [94,97,101,106,117], whereas the root polysaccharides
appear to increase it [113,116]. However, this distinction may be an oversimplification.
It should be noted that the disease models in the experiments using ginsenosides were
characterized by an increase in the Firmicutes/Bacteroidetes ratio, which the ginsenosides
effectively reversed. In contrast, the models in the experiments using polysaccharides
were characterized by a decrease in this ratio, which the polysaccharides also effectively
reversed. It is unclear if the ginsenosides could also have acted to therapeutically increase
the ratio if they had been used in a context where the increase would have acted as a
reversal of dysbiosis, though it remains plausible. In supporting this idea, in vitro human
microbiota-simulated fermentation with ginsenosides increased this ratio [124]. Together,
these findings portend evidence that ginseng’s effects on the gut microbiome could be
contextually adaptable to exert benefits.

As shown in Figure 2, the ginseng extracts are relatively consistent in their effects on
beneficial and detrimental bacteria from various genera. Indeed, ginseng’s prebiotic effect
on beneficial bacteria of the genera Akkermansia, Bifidobacterium, and Lactobacillus is consis-
tent throughout studies. The increase of Akkermansia, particularly Akkermansia muciniphila,
is a beneficial characteristic associated with intestinal barrier functions [125,126]. The posi-
tive effects of Bifidobacterium and Lactobacillus are well known; these bacteria are associated
with increased barrier function [127,128], which extends to metabolic benefits [129]. Of
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note, Bifidobacterium and Lactobacillus could have antidepressant effects [130,131] in their
own right. Furthermore, consistent increases in short-chain fatty acid (SCFA) production
following supplementation of extracted ginsenosides suggest that the saponins preferen-
tially support the growth of SCFA-producing bacteria [98,100,101]. Increased production
of luminal butyrate is of great benefit to the intestinal barrier function, as it has been
shown to promote mucosal healing and production of protective mucus along the intestinal
epithelium, and to the decrease in intestinal permeability by modulating epigenetic and
transcriptional activity in the cells of the intestinal epithelium [132–136]. Another important
piece of information to be extracted from this compilation of data is that despite ginseng’s
prebiotic effects on beneficial bacteria, there is a homogenous observation that it exerts
selective antibacterial effects on bacteria that are considered detrimental, such as those
from the genera Dorea and Helicobacter. Of importance in this context is Dorea’s association
with major depressive disorder [137].
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Figure 2. Reported prebiotic and antibacterial effects of ginseng and ginsenosides on microbial genera.

4.3. Improved Health Functionality through Bioconversion

Most ginsenosides have inherently low bioavailability, therefore, ginseng biocon-
version by the gut microbiome is critical for absorption by the host. Through microbial
bioconversion processes, such as deglycosylation, the ginsenosides can achieve higher
absorption rates and pharmacological activity [138,139]. Examples of metabolized gin-
senosides include the most bioactive compound K and ginsenoside Rg3 [140]. Since this
is a microbial process, the host’s microbiome significantly impacts the outcome of an ad-
ministered dose of ginseng extract; thus, the bioconversion has varying effects between
individuals [138]. Another aspect to consider in preparing extracts to improve health
parameters is the apparent synergy between different plant components. For example,
ginseng root polysaccharides have been shown to promote the microbial metabolism of
co-administered ginsenoside Rb1 by a prebiotic effect in vivo while upregulating the in-
testinal uptake of Rb1 in vitro [114]. The observations of synergy have also been echoed in
the context of efficacy for reversing cyclophosphamide-induced intestinal damage, where
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American ginseng ginsenosides and root polysaccharides were shown to have slightly
different effects on inflammation, but were synergistic when co-administered [102]. To date,
it remains unknown if berry polysaccharides and ginsenosides share the same synergistic
relationship as root polysaccharides and ginsenosides.

5. Safety

In 2021, a systematic review aiming to include all clinical trials involving all forms of
ginseng was published [141]. Of the 121 retained studies that evaluated safety, 41.6% reported
no adverse events, 31.6% reported no significant difference between groups in adverse
events, and 26.6% reported no serious adverse events [141]. Mild adverse events included
dizziness, headaches, diarrhea, insomnia, hypoglycemia, and nausea [141]. Due to the
scarcity of human research involving the ginseng berry and its extracts, establishing clinical
safety remains essential. A literature search yields two clinical studies involving the ginseng
berry; the first is a 12-week study examining the efficacy and safety of a berry extract on a
glycemic control [142]. The extract-treated group of 34 patients did not have any statistical
difference in measured safety parameters except for a decrease in diastolic blood pressure
compared to the placebo group of 38 [142]. There was also no statistically significant
difference in the occurrence or type of adverse events in this study [142]. The second
clinical trial, which lasted 8 weeks, similarly did not report any adverse events related
to the use of the berries in the 59 volunteers, nor any changes in blood biochemistry and
hormone and lipid panels relative to the placebo [143]. It should be noted that both studies
used Korean ginseng berries. In summary, the safety can be extrapolated from clinical
research involving different parts of the American ginseng (i.e., the root) or from clinical
research using Korean ginseng berries. Both perspectives suggest a good safety profile, but
confirmation of the American ginseng berry’s safety through human trials remains undone.

6. Conclusions

By examining the American ginseng berry’s saponin profile and extrapolating from
ginseng extract research, it can be determined that it has promising potential as a mental
health-promoting nutraceutical. Indeed, through its neuroprotective and antidepressant
effects that are amplified through microbial bioconversion, its microbiota-modulating ef-
fects that reverse deleterious alterations in composition, as well as promote the growth of
beneficial bacteria, and finally, its positive effects on intestinal epithelium inflammation
and tight junction protein expression, ginseng could broadly impact the gut–brain axis.
However, research evaluating the berry’s efficacy is in short supply and limited to preclini-
cal studies. Some questions remain regarding the berry’s non-saponin compounds, such
as polysaccharides and their bioactivity, as research is scarce in this area. Considering the
berry’s numerous advantages at the agricultural level, as well as potential advantages in
terms of ginsenoside composition, the implementation of the ginseng berry culture and the
increase in research evaluating the berry’s clinical efficacy are strongly encouraged.
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