

Doc. No.	LGETH -190401-021
Rev. No.	0
Date	1-Apr-2019

Rotary Compressor SPECIFICATION for APPROVAL

MODEL: QVS325PNA

PHU DAI HUNG

_

010419

Please return one copy on your approval. Please read this specification thoroughly before installation or operating.

Doc. No.	LGETH -190401-021	
Rev. No.	0	
Date	1–Apr–2019	

Rotary Compressor SPECIFICATION for APPROVAL

MODEL: QVS325PNA

LG Electronics

Designed	Approved
Sign	
Date	

PHU DAI HUNG

APPROVAL			
Sign			
Date			

Please return one copy on your approval. Please read this specification thoroughly before installation or operating.

Revision History

No	Date	Article	Description	Writer

Contents

- 1. Specification
 - 1.1 Compressor
 - 1.2 Motor
 - 1.3 Wire Diagram
 - 1.4 Electrical Component
 - 1.5 Performance
 - 1.6 Noise, Vibration
 - 1.7 Minimum Starting Voltage
 - 1.8 Voltage Range
 - 1.9 Others
- 2. Delivered Parts List
- 3. Operating Limit
- 4. Label
- 5. Attachment
 - 5.1 Compressor Drawing
 - 5.2 Accessory Fitting
 - 5.3 Part Drawings

1.Specification

1.1 Compressor

1	Model Name	QVS325PNA
2	Compressor Type	Hermetic Motor Compressor
3	Compression Type	Rotary Type (Rolling Piston Type)
4	Application	Refrigeration system (Cooling & Heating)
5	Refrigerant R-22	
6	Safety Approval	-
7	Oil / Oil Charging Amount	4GSI or NM56 / 630 ± 10 cc
8	Displacement	32.5 cm³ / rev
9	Painting	Black Color Paint
10	Net Weight (Including Oil)	16.7 kg
11	Suction Tube I.D	Φ 12.8 mm
12	Discharge Tube I.D	Φ 9.7 mm

1.2 Motor

Motor Type / Starting Type	Single Phase Induction Motor / PSC		
Pole / Rated Output	2 Pole / 1,463 Watts		
Power Source	1 Ph - 220/240 Volts - 50 Hz		
Rated Revolution	2,862/2,884 rpm		
Insulation Class	E Class		
Windings Resistance	Main	1.94 ± 5% Ohms	
(at 25°C)	Sub 3.89 ± 5% Ohms		
Locked Rotor Ampere	43 A (at 240 V)		

1.3 Wiring diagram

% Make Sure to connect right way same with the wiring diagram.

1.4 Electrical Component

Running Capacitor	50 MFD / 400 VAC	
Overload Protector	INTERNAL TYPE	

1.5 Performance

Voltage	At 220 V	At 240 V	
Cooling Capacity (-5% †)	[BTU/h]	19,200	19,300
	[W]	5,627	5,656
Power Input (+5%↓)	[Watts]	1,825	1,910
EER (-5%↑)	[BTU/w・hr]	10.5	10.1
	[W/W]	3.08	2.96
Running Current	[A]	8.5	8.2

Rated Conditions (ASHRAE-T Condition)

Cond. Temp.	:	54.4 °C(130 °F)	Return Gas Temp.	:	35.0 °C (95 °F)
Evap. Temp.	:	7.2 °C (45 °F)	Liquid Temp.	:	46.1 °C (115 °F)
		. ,	Ambient Temp.	:	35.0 °C (95 °F)

1.6 Noise & Vibration

Voltage	At 240 V	
Sound Level	[dB(A)]	72 Max
Vibration	[µm]	250 Max

1.7 Minimum Starting Voltage

Cold Start - Temp. Condition : 35°C Balanced pressure : Pd = Ps < 0.5 kaf/m²	187 Volts Max.
- Balanced pressure : Pd – Ps = 0 kgf/cm²	187 Volts Max.

1.8 Voltage Range

at Standard Condition	187 ~ 264 Volts
at Overload Condition	198 ~ 264 Volts

Test Conditions

	Standard Condition	Overload Condition
Con. Temp (°C)	54.4	63.8
Eva. Temp (°C)	7.2	10.4
Return Gas. Temp (°C)	35.0	25.0
Ambient Temp (°C)	35.0	43.0

1.9 Others

Look Tight Prossure	High Pressure Side	28 kgf / cm² G	
Leak fight Flessure	Low Pressure Side	-	
Hydrostatic trength High Pressure Side		155 kgf/ cm² G	
Pressure	Low Pressure Side	50.6 kgf / m² G	
Insulation Resistance (with 500V D.C Mega Tester)		50 MΩ Min.	
Withstand Voltage		At 2,200 V / 1 Sec. Leakage Current is less than 5 mA	
Residual Moisture (Karl Fisher Method)		80 mg Max.	
* Residual Impurities		70 mg Max	

*) Each part was measured separately

2.Delivered Parts List

Parte Namo	Parts Name Type (Model)		Parts Dwg. NO.	Supply	
Faits Name	rype (Model)	LA	LG	Sul	ріу
Compressor	QVS325PNA	1	-	YES	NO
O.L.P	INTERNAL TYPE	-	-	YES	NO
Cover, Terminal	-	1	3550U-L005D	YES	NO
Gasket	-	1	4986UHL004A	YES	NO
Nut, Common	-	1	FAD30241201	YES	NO
Washer, Customized	-	1	FAF30240201	YES	NO
Damper, Rubber	-	3	MCQ61847401	YES	NO
Sleeve, Damper	-	-	-	YES	NO
Washer, Plain	-	-	-	YES	NO
Nut, Hexagon	-	-	-	YES	
Bolt, Stud	-	-	-	YES	NO
Capacitor	-	-	-	YES	NO
Screw, Earth	M4*0.7 , Length : Max 6 mm.	-	-	YES	NO

%) Refer to Attachments (Accessory Parts Drawings.)

3.Operating Limit

3.1 Operation Range

Discharge Pressure	[kgf / cm² G]	28 Max.
Suction Pressure	[kgf / cm² G]	2.0 ~ 7.0
Discharge Temp.	[℃]	115 Max.
Motor Coil Temp.	[℃]	130 Max.

Area A : Normal Operating Zone

- Area B : High Density Flow Zone -During Starting within 3 minutes
- Area C : During defrosting & re-starting -Running time within 3 minutes

% This guide contains many important safety messages. Always read and obey all safety messages.

A WARNING You can be killed or seriously injured if you don't follow instructions.

3.2 Application Limit

Pefrigerant Charge Limit	[WRAC for Cooling Only] 1,745g Max (*K \ge 0.3, **OIL Dilution Rate=0.20) [WRAC for Heat Pump] 1,106g Max (*K \ge 0.4, **OIL Dilution Rate=0.22)
	[SRAC for Cooling Only] 1,106g Max (*K \ge 0.4, **OIL Dilution Rate=0.20) [SRAC for Heat Pump] 738g Max (*K \ge 0.6, **OIL Dilution Rate=0.22) (Charge limit depends on Oil Dilution Rate *note 1 & accumulator 'K')
	System should be designed not to allow the liquid to go
Liquid Refrigerant Back	increase or undesirable vibration.
Δ T : Temp. Difference°C	Δ T = Case Bottom Temp Condensing Temp. It must be kept Δ T \geq 5°C
Pressure Difference in Operating	The Pressure difference in operating shall be 5.0kgf/m ² or more, but 3 minutes starting excluded.
ON/OFF Operation	Each cycle should be at least 6 minutes (ON Time : at least 3 minute , OFF Time : at least 3 minutes)
Pressure Difference at Starting	When starting, discharge pressure is balanced with suction pressure. (Pd – Ps \leq 0.5 kgf/m ²)
Tilt in Operation	The allowable tilt of the compressor in operation shall be 5° or less.
	The Accumulator volume should be enough to cover 50% of maximum system refrigerant volume.
	Ratio coefficient 'K" should be over 0.6(heating system) or 0.4(cooling system)
System Accumulator	Effective Volume of Accum. × Specific gravity of Refrigerant * K =
	Charged Weight of Refrigerant
	 ※ Effective Volume of Accumulator = 354m³ ※ Specific Gravity of Refrigerant (R-22) = 1.25 g/cm³ (at 20°C)
	If coefficient "K" does not meet recommendation, refrigerant system must check liquid back phenomenon at accumulator.
Protecting Reverse Operation	The compressor must be operated by proper voltage in accordance with the frequency without reverse revolution condition. The reverse revolution condition can be avoided by just keeping right order of phase supplied power source.
Earth connection	Use compressor with grounded system only.

A WARNING

3.2 Application Limit

Frequency Range	Rated Frequency ±2%
Pipe Stress	Don't allow any force on discharge & suction pipe . The piping stress must be less than 300kgf/m ² at starting and stopping. And less than 153kgf/m ² at running.
Oil Level	It must be checked oil level by the compressor with sight glass we supply. And oil level must be kept over guide line level **note 2. at any condition.
Protection device	Refrigeration system must has the compressor protection device like over pressure, high temperature, sensing locked pump in the controller. When starting & running fail by abnormal overload, controller must be able to cut off power of compressor before motor burn out.
Pump down refrigerant	 If pump down time is too long, compressor can be damaged due to excessive temperature increase or poor lubrication. Guideline of pump down process. Time : less than 30 seconds Suction Pressure : It should not run under below 1kgf/cm²G. And before closing a service valve, compressor running for more than 5 minutes is recommended.

X If gas charge amount of refrigerant specified is exceeded, both parties should discuss the matter to determine compressor specification. (accumulator volume, lubricating oil amount) and system specifications (crank case heater, oil separator, additional accumulator, etc)

* Effective Period of This Document *

This document will be effective after LG's receipt with your authorized signature. When design modification is approved by the customer , the current document is unavailable.

A WARNING

3.3 Process Limit

Use defined Refrigerant and oil	Any process in where the HCFC's refrigerant or the different kind of oil against the defined. Compressor oil are mixed should be avoided.
Avoid Damage running	The running operation that inspection and the protector inspection that affect a damage to the function and durability of the compressor should be avoided
Running dummy indoor	When the outdoor unit is operated with the indoor dummy unit, the discharged oil should be recovered enough
Prevent oxidation in pipe	Always purge the system and the compressor with the dry nitrogen in order to prevent oxidation of the piping
Charging Refrigerant	When charging refrigerant into the cycle, make sure that refrigerant always be filled from the higher pressure side (condenser exit) of the cycle. If liquid refrigerant is sucked in to the compressor liquid compression occurs, The discharge valve is damaged, lubrication effectiveness degenerates and reliability drops noticeably
Avoid Vacuum running	Do not operate the compressor in a vacuum state. Furthermore do not apply high voltage to a vacuum state compressor. There is a danger that insulation could degenerate, causing electric shock
Avoid Air compression	Do not compress the air including the case of leakage in the refrigeration cycle. If compressors run with air mixed, inside the compressor is heated and pressurized, which may cause an explosion
Promptly Assemble compressor in line	After removing rubber plugs from compressor tubes, Promptly use the compressor. And do not leave in the atmosphere for 10 minutes over. If Air gets into the compressor, accelerating degeneration of the inside of the cycle or compressor
Wiring	Wires connected to the compressor, follow the compressor specification manual and instructions
Storage temperature	-10°C ~ 65°C
Earth connection	Use compressor with grounded system only.

4. LABEL

All safety messages will identify the hazard, tell you how to reduce the chance of injury, and tell you what can happen if the instructions are not followed. You are strongly advised to follow these safety instructions.

This is the Safety alert symbol. It indicates a hazardous situation which, if not avoided, could result in death or serious injury.

This is the Electric shock hazard symbol. It indicates a hazardous situation which, if not avoided, could result in the electric shock.

This is the Getting burnt symbol. It indicates a hazardous situation which, if not avoided, could cause fire.

This is the Explosion or Fire symbol. . It indicates a hazardous situation which, if not avoided, could cause explosion or fire.

*1. Effective Period of This Document *

This document will be effective after LG's receipt with your authorized signature. When design modification is approved by the customer , the current document is unavailable.

*2. Compressor operating range *

The Compressor can operate within the limits of the outlined area. Outside these operating fields, the system cause early defects in the compressor. The compressor defects caused by applications operating outside the outlined area will not be considered under the warranty. If the appliance be operated out of the operating range, it must be agreed with the supplier.

5. Attachment

			PAGE
5.1	Compressor Drawing	•	15
5.2	Accessory Fitting	•	16
5.3	Part Drawings	•	17 ~ 21

QVS325PNA

Gasket

Drawing No. 4986UHL004A

(UNIT:mm)

MATERIAL	REMARK
SILICONE	MARKS(C(W),R(U),S(V))

QVS325PNA

LG Electronics Inc.

Nut, Common

Drawing No. FAD30241201

(UNIT:mm)

* MATERIAL: STEEL (ELECTRIC PLATING OF ZINC)

LG Electronics Inc.

Page 21 / 21