ACTIVITY 1

Finding out how strong some shapes are can be useful when getting ready to build a structure. If you want to build a structure that is strong, it is a good idea to know which of the shapes is the strongest. Just as important though is how much material gets used to build a shape. Let's get ready to find out about three shapes: triangles, squares, and hexagons!

WMMAT YOO゚LL NEED NOT INCLUDED

WEIGHTS OR MASSES TO USE IN TESTING (coins, paper clips, washers, and other items)

RULER

CARDBOARD OR CHIPBOARD WITH A STRAIGHT EDGE

TRANSPARENT TAPE

Make two triangles. You will need a paper strip three inches long and one inch wide for each triangle. Fold the strip every inch to make the three sides. Use tape to join the two ends together to finish each shape.

TAPE

STEP 2

Make two squares. You will need a paper strip four inches long and one inch wide for each square. Fold the strip every inch to make the four sides. Use tape to join the two ends together to finish each shape.

\square

STEP 3

Make two hexagons. You will need a paper strip six inches long and one inch wide for each hexagon. Fold the strip every inch to make the six sides. Use tape to join the two ends together to finish each shape.

TAPE

Line up the two triangles and place a ruler or stiff piece of cardboard or chipboard across the two triangles. Stack your weights on the crosspiece one at a time. Continue to stack the weights until the triangles collapse. Record how much weight the triangles hold.

WEICHTS
\swarrow

WEIGHT

\square STEP 5

Line up the two squares and repeat the process to add weight. Record how much weight the two squares hold.

WEIGHT

\qquad

STIP 6

Line up the two hexagons and repeat the process to add weight. Record how much weight the two hexagons hold.

WEIGHT

THINK ABOUT IT

One of the things a builder has to do is use the least amount of materials possible. Which shape uses the least amount of materials?

Another thing a builder has to think about is making a structure strong enough. Of the shapes you built, which was the strongest? How could you tell?

Activity
Hydraulics and pneumatics are very similar. Hydraulics use liquids and pneumatics use air; both use cylinders to
Hydraulics is the science of the transfer of energy through
the effects of liquid in motion.
Pneumatics is the mechanics dealing with the mechanical properties of LETS MAKE gases.

 WHAT YOU゚LL NEED

NOT INCLUDED

WATER

INCLUDED

SYRINGES

TUBING

STEP 1

Connect one of the syringes to the tubing.
\square

STEP 2

Pull the other syringe's plunger until it is filled with air to the 6 cc mark on the side of the syringe.

$$
\text { PULL } \Rightarrow
$$

\square STEP 3

Connect that syringe to the other end of the tubing.

\square
 STEP 4

Press the plunger on the syringe filled with air, and note what happens.

\square STEP 5

Hold down the plunger on the syringe without air and press the plunger on the syringe with air at the same time. Note what happens.

STEP 6

Disconnect the plunger filled with air from the tubing, and make sure the other plunger is completely pressed down.

Fill the syringe that is disconnected with water to the 6 cc mark on the side of the syringe.

STIP 8

Reconnect that syringe to the tubing.

STEP 9

Press the plunger on the syringe filled with water, and note what happens. STEP 10 or

Hold down the plunger on the syringe without water and press the plunger on the syringe with water at the same time. Note what happens.

