Grade 1

Standards Edition, Primary Mathematics © 2008

correlated to the Common Core State Standards for Mathematics
*Key: TB = Textbook, WB = Workbook

Standards Descriptor		Page Citations
Operations and Algebraic Thinking		1.0A
Represent and solve problems involving addition and subtraction.		
1	Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	$\begin{aligned} & \text { TB-A: } 27-38,42-50, \\ & 70-74 \\ & \text { WB-A: } 25-32,34-36, \\ & 43-51,64-66, \\ & 101-113,120,127, \\ & 129-131,183,185-186 \\ & \text { TB-B: } 7-15 \\ & \text { WB-B: } 13-18,71, \\ & 197-199 \end{aligned}$
2	Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	$\begin{aligned} & \text { TB-B: } 44-45 \\ & \text { WB-B: } 63-64,66 \end{aligned}$
Understand and apply properties of operations and the relationship between addition and subtraction.		
3	Apply properties of operations as strategies to add and subtract. Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.)	$\begin{aligned} & \text { TB-A: } 32,50,70-74 \\ & \text { WB-A: } 32-33,40, \\ & 47-48,53-54, \\ & 102-106,108-113, \\ & 116-122 \\ & \text { TB-B: } 44-45 \\ & \text { WB-B: } 63-65 \end{aligned}$
4	Understand subtraction as an unknownaddend problem. For example, subtract 10 - 8 by finding the number that makes 10 when added to 8.	$\begin{aligned} & \text { TB-A: } 24-25,38,66 \\ & \text { WB-A: } 20-24,107, \\ & 110 \end{aligned}$
Add and subtract within 20.		
5	Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	$\begin{aligned} & \text { TB-A: } 35-37,51-53, \\ & 75 \\ & \text { WB-A: } 36-39,57-58, \\ & 114-115 \\ & \text { TB-B: } 46-47 \\ & \hline \end{aligned}$

Standards	Descriptor	Page Citations
6	Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10$ $+4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-$ $1=9)$; using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=$ $12+1=13$).	$\begin{aligned} & \text { TB-A: } 35-37,40, \\ & 50-52,55,70-78 \\ & \text { WB-A: } 36-39,53-55, \\ & 57-58,81,101-115, \\ & 120 \end{aligned}$
Work with addition and subtraction equations.		
7	Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 $=6,7=8-1,5+2=2+5,4+1=$ $5+2$.	$\begin{array}{\|l\|} \hline \text { TB-A: } 27 \\ \text { WB-A: } 86,119 \end{array}$
8	Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8+$? $=11$, $5=?-3,6+6=?$	$\begin{aligned} & \text { TB-A: } 38,66 \\ & \text { WB-A: } 107,110 \end{aligned}$
Number and Operations in Base Ten		1.NBT
Extend the counting sequence.		
1	Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.	$\begin{array}{\|l} \hline \text { TB-B: } 22,25,28, \\ 85-87,91-93 \\ \text { WB-B: } 30,37-38,68, \\ \text { 134-135, 142, 147-149 } \\ \text { (Numbers to } 100 \text { only) } \\ \hline \end{array}$
2	Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:	
a	10 can be thought of as a bundle of ten ones - called a "ten."	$\begin{aligned} & \text { TB-A: } 25,62-66 \\ & \text { WB-A: } 23-24,89-92 \end{aligned}$
b	The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.	$\begin{aligned} & \hline \text { TB-A: } 62-66,70-72 \\ & \text { WB-A: } 89-92,94-95, \\ & 189-190 \\ & \hline \end{aligned}$
C	The numbers $10,20,30,40,50,60,70$, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	$\begin{aligned} & \text { TB-A: } 63 \\ & \text { TB-B: } 22-23,25,35, \\ & 76-79,85 \\ & \text { WB-B: } 130-132 \\ & \hline \end{aligned}$
3	Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and $<$.	$\begin{aligned} & \text { TB-B: 29, 89-90 } \\ & \text { WB-B: } 39,150-152 \end{aligned}$

Standards	Descriptor	Page Citations
Use place value understanding and properties of operations to add and subtract.		
4	Add within 100 , including adding a twodigit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.	$\begin{aligned} & \text { TB-A: } 70-73,76 \\ & \text { WB-A: } 102-107 \\ & \text { TB-B: } 34-35,38-41, \\ & 82,85,87-88,92-99 \\ & \text { WB-B: } 42,44-57, \\ & 139-140,147,149, \\ & 153-166 \end{aligned}$
5	Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	$\begin{array}{\|l\|} \hline \text { TB-B: } 34-35,38,85, \\ 87-88 \\ \text { WB-B: } 42-44,47-48, \\ 144-149,217 \\ \hline \end{array}$
6	Subtract multiples of 10 in the range 1090 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	$\begin{aligned} & \text { TB-B: } 38 \\ & \text { WB-B: } 171-174 \end{aligned}$
Measurement and Data		1.MD
Measure lengths indirectly and by iterating length units.		
1	Order three objects by length; compare the lengths of two objects indirectly by using a third object.	$\begin{aligned} & \text { TB-A: } 91-94 \\ & \text { WB-A: } 151-153,195 \end{aligned}$
2	Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.	$\begin{aligned} & \text { TB-A: } 95-96 \\ & \text { WB-A: } 154-156,196 \end{aligned}$
Tell and write time.		
3	Tell and write time in hours and half-hours using analog and digital clocks.	$\begin{aligned} & \text { TB-B: } 68-72 \\ & \text { WB-B: } 115-122,225 \end{aligned}$
Represent and interpret data.		
4	Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	$\begin{aligned} & \text { TB-B: } 16-21 \\ & \text { WB-B: } 19-29 \end{aligned}$

Standards	Descriptor	Page Citations	
Geometry	1.G		
Reason with shapes and their attributes.			
$\mathbf{1}$	Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.	TB-A: 83-90 WB-A: 132-135, 137, 141-148, 193	
$\mathbf{2}$	Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three- dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.	TB-A: 89-90 WB-A: 149, 194 WB-B: 224	
$\mathbf{3}$	Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.	TB-B: 66-67 WB-B: 109-114, 223	

Standards Edition, Primary Mathematics © 2008

correlated to the Common Core State Standards for Mathematics
*Key: TB = Textbook, WB = Workbook

Standards Descriptor		Page Citations
Operations and Algebraic Thinking		2.0A
Represent and solve problems involving addition and subtraction.		
1	Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	$\begin{aligned} & \text { TB-A: } 24-31,43-46, \\ & 55-56,58,89,101-102 \\ & \text { WB-A: } 31-32,36-37, \\ & \text { 45, 81, } 86,174 \\ & \text { TB-B: } 8-12,100,137 \\ & \text { WB-B: } 114 \end{aligned}$
Add and subtract within 20.		
2	Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two onedigit numbers.	$\begin{aligned} & \text { TB-A: } 24-27 \\ & \text { WB-A: } 31-33 \\ & \text { TB-B: } 8-9 \end{aligned}$
Work with equal groups of objects to gain foundations for multiplication.		
3	Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	$\begin{aligned} & \text { TB-A: } 105-107 \\ & \text { WB-A: } 115-116 \\ & \text { WB-B: } 143 \end{aligned}$ See Grade 3: $\text { TB-A: } 97$
4	Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	$\begin{aligned} & \text { TB-A: } 90,92 \\ & \text { WB-A: } 96,99 \end{aligned}$
Number and Operations in Base Ten		2.NBT
Understand place value.		
1	Understand that the three digits of a three-d amounts of hundreds, tens, and ones; e.g., 0 tens, and 6 ones. Understand the following	git number represent 706 equals 7 hundreds, as special cases:
a	100 can be thought of as a bundle of ten tens - called a "hundred."	$\begin{aligned} & \text { TB-A: } 13-15 \\ & \text { WB-A: } 15,17,24 \end{aligned}$
b	The numbers $100,200,300,400,500$, $600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	TB-A: 13, 15
2	Count within 1000; skip-count by 5 s, 10s, and 100 s .	$\begin{aligned} & \text { TB-A: } 9,13-16 \\ & \text { WB-A: } 7-8,12,15,17 \\ & \text { TB-B: } 30-31,34 \\ & \text { WB-B: } 43,49,143 \end{aligned}$

Standards	Descriptor	Page Citations
3	Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	$\begin{aligned} & \text { TB-A: } 8-19,23 \\ & \text { WB-A: } 9-11,15-23, \\ & 25,28-29,87 \\ & \hline \end{aligned}$
4	Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, $=$, and $<$ symbols to record the results of comparisons.	$\begin{aligned} & \text { TB-A: } 20-21,23 \\ & \text { WB-A: } 24-25,29 \end{aligned}$
Use place value understanding and properties of operations to add and subtract.		
5	Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	$\begin{aligned} & \text { TB-A: } 24-31 \\ & \text { WB-A: } 31-37 \\ & \text { TB-B: } 8-13 \\ & \text { WB-B: } 7-12,18-19 \\ & \hline \end{aligned}$
6	Add up to four two-digit numbers using strategies based on place value and properties of operations.	$\begin{aligned} & \text { TB-A: } 24-26,28-29 \text {, } \\ & 31,33 \\ & \text { WB-A: } 9,14,31,34 \text {, } \\ & 36-38,47 \\ & \text { TB-B: } 8,10-16 \\ & \text { WB-B: 7-9, 12, 15-16, } \\ & 23 \\ & \text { (Adding up to } \\ & 3 \text { numbers, including } \\ & \text { 3-digit numbers) } \\ & \hline \end{aligned}$
7	Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	$\begin{aligned} & \text { TB-A: } 24-57 \\ & \text { WB-A: } 31-67 \\ & \text { TB-B: } 8-20 \\ & \text { WB-B: } 7-25 \end{aligned}$
8	Mentally add 10 or 100 to a given number $100-900$, and mentally subtract 10 or 100 from a given number 100-900.	$\begin{aligned} & \text { TB-A: } 12,22-23, \\ & 74-75,126 \\ & \text { WB-A: } 12-14,26-27, \\ & 30 \\ & \text { TB-B: } 14-19 \\ & \text { WB-B: } 15-25 \end{aligned}$
9	Explain why addition and subtraction strategies work, using place value and the properties of operations (explanations may be supported by drawings or objects.)	$\begin{aligned} & \text { TB-A: } 24-37,39-45 \text {, } \\ & 47-54 \\ & \text { WB-A: } 32,36,38,42 \\ & \text { TB-B: } 8-20 \\ & \text { WB-B: } 7 \end{aligned}$

Standards Descriptor		Page Citations
Measurement and Data 2.MD		
Measure and estimate lengths in standard units.		
1	Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.	$\begin{aligned} & \text { TB-A: } 61-62,65-75 \\ & \text { WB-A: } 73-75,78,80 \end{aligned}$
2	Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	$\begin{aligned} & \text { TB-A: } 59-60,71,73, \\ & 126 \\ & \text { WB-A: } 72,186 \end{aligned}$
3	Estimate lengths using units of inches, feet, centimeters, and meters.	$\begin{array}{\|l\|} \hline \text { TB-A: } 63,67 \\ \text { WB-A: } 75-78 \\ \hline \end{array}$
4	Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	$\begin{aligned} & \text { TB-A: } 64-65,68,72 \\ & \text { WB-A: } 74,76,78 \end{aligned}$
Relate addition and subtraction to length.		
5	Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	$\begin{aligned} & \text { TB-A: } 64-65,68, \\ & 74-75,101,125-126 \\ & \text { WB-A: } 88,91,174 \\ & \text { WB-B: } 90 \end{aligned}$
6	Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent wholenumber sums and differences within 100 on a number line diagram.	$\begin{aligned} & \text { TB-B: } 108-110 \\ & \text { WB-A: } 157,159-160 \end{aligned}$ See Grade 1: TB-A: 16-17, 51-53
Work with time and money.		
7	Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m	$\begin{aligned} & \text { TB-B: } 76-79 \\ & \text { WB-B: } 115-121 \end{aligned}$
8	Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and $\$$ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?	$\begin{array}{\|l\|} \hline \text { TB-B: } 45-48 \\ \text { WB-B: } 67,72-74 \end{array}$
Represent and interpret data.		
9	Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.	TB-A: 60, 63, 67, 69

Standards	Descriptor	Page Citations	
$\mathbf{1 0}$	Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	TB-B: 101-102 WB-B: 149	
See Grade 1: TB-B: 16-21 WB-B: 19-29			
Geometry			
Reason with shapes and their attributes.	2.G		
$\mathbf{1}$	Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces (Sizes are compared directly or visually, not compared by measuring.) Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	TB-B: 116-119, 125- WB-B: 168-173, 181- WB2	
$\mathbf{2}$	Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.	See Grade 3: TB-B: 139-144 WB-B: 163-166	
$\mathbf{3}$	Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.	TB-B: 62-64 WB-B: 92-93	

Grade 3

Standards Edition, Primary Mathematics © 2008

 correlated to the Common Core State Standards for Mathematics*Key: TB = Textbook, WB = Workbook

Standards	Descriptor	Page Citations
Operations and Algebraic Thinking		3.0A
Represent and solve problems involving multiplication and division.		
1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.	$\begin{aligned} & \text { TB-A: } 69-71,75,111- \\ & 112,117-119,124- \\ & 125,128 \\ & \text { WB-A: } 66-71,111 \end{aligned}$
2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.	$\begin{aligned} & \text { TB-A: } 72-73,76,78 \\ & \text { WB-A: } 72-73 \end{aligned}$
3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	$\begin{aligned} & \text { TB-A: 69-71, 75-81 } \\ & \text { WB-A: } 67-68,79-81, \\ & \text { 181 } \\ & \text { TB-B: } 57,62,64,110, \\ & 126 \\ & \text { WB-B: } 27,45 \end{aligned}$
4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\ldots \div 3,6 \times 6=$?.	$\begin{array}{\|l\|} \hline \text { TB-A: } 69-73,76, \\ 78-79,112-113,116, \\ 118-120,124,126, \\ 128-129 \\ \text { WB-A: } 71-77,95, \\ 113-115,122-124, \\ 132-134,141-142 \\ \hline \end{array}$

Standards	Descriptor	Page Citations
Understand properties of multiplication and the relationship between multiplication and division.		
5	Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4=24$ is known, then 4 $\times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times$ 5) $+(8 \times 2)=40+16=56$. (Distributive property.)	$\begin{aligned} & \text { TB-A: } 70,72-73,84, \\ & 108-109,111-113, \\ & 118-120,124, \\ & 128-130,133-134 \\ & \text { WB-A: } 67,69,73,111, \\ & 150-151 \end{aligned}$
6	Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .	$\begin{aligned} & \text { TB-A: } 72-73,113 \\ & \text { WB-A: } 72-77 \end{aligned}$
Multiply and divide within 100.		
7	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div$ $5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	$\begin{aligned} & \text { TB-A: } 68-81,108-113, \\ & 117-120,124-125, \\ & 128-130 \\ & \text { WB-A: } 66-67,73-77, \\ & 104,111-114,117, \\ & 122-124,127, \\ & 132-133,141-142 \end{aligned}$
Solve problems involving the four operations, and identify and explain patterns in arithmetic.		
8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	$\begin{array}{\|l\|} \hline \text { TB-A: } 62-64,67, \\ \text { 79-81 } \\ \text { WB-A: } 59-61,64-65, \\ \text { 82-85, 131, 140, 149 } \\ \text { TB-B: } 45,63,126,137 \\ \text { WB-B: } 45-46 \end{array}$
9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	$\begin{aligned} & \text { TB-A: } 15-17,111-112, \\ & \text { 118-119, 124, 128-130 } \\ & \text { WB-A: } 14-16,68,71, \\ & 104,156 \end{aligned}$
Number and Operations in Base Ten Use place value understanding and properties of operations to perform multi-digit arithmetic.		
1	Use place value understanding to round whole numbers to the nearest 10 or 100.	$\begin{aligned} & \text { TB-A: } 18-23 \\ & \text { WB-A: } 17-20 \\ & \hline \end{aligned}$

Standards	Descriptor	Page Citations
2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	$\begin{aligned} & \text { TB-A: } 27-40,45-49, \\ & 62-63 \\ & \text { WB-A: } 26-38,42-47, \\ & \text { TB-B: } 27 \\ & \text { WB-B: } 44 \\ & \hline \end{aligned}$
3	Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 $\times 80,5 \times 60$) using strategies based on place value and properties of operations.	$\begin{aligned} & \text { TB-A: } 82-84,92,109 \\ & \text { WB-A: } 86,88,150 \end{aligned}$
Number and Operations-Fractions		3.NF
Develop understanding of fractions as numbers.		
1	Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	$\begin{aligned} & \text { TB-B: } 85-87 \\ & \text { WB-B: } 90-95 \end{aligned}$
2	Understand a fraction as a number on the number line; represent fractions on a number line diagram.	
a	Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.	$\begin{aligned} & \text { See Grade 4: } \\ & \text { TB-A: } 79 \\ & \text { WB-A: } 70 \end{aligned}$
b	Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	$\begin{aligned} & \text { See Grade 4: } \\ & \text { TB-A: } 79 \\ & \text { WB-A: } 70 \end{aligned}$
3	Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.	
a	Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	$\begin{aligned} & \text { TB-B: } 91-96 \\ & \text { WB-B: } 104-107 \end{aligned}$
b	Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.	$\begin{aligned} & \text { TB-B: } 91-96 \\ & \text { WB-B: } 100-107 \end{aligned}$
c	Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate 4/4 and 1 at the same point of a number line diagram.	$\begin{aligned} & \text { TB-B: } 85-86,93 \\ & \text { WB-B: } 90-93, \\ & 101-102 \end{aligned}$ See Grade 4: TB-A: 90-93 WB-A: 79, 82-83, 86

Standards	Descriptor	Page Citations
d	Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.	$\begin{aligned} & \text { TB-B: } 88-89 \\ & \text { WB-B: } 96-97 \end{aligned}$
Measurement and Data		3.MD
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.		
1	Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	$\begin{aligned} & \hline \text { TB-B: } 112-115 \\ & \text { WB-B: } 123-126 \end{aligned}$
2	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.	$\begin{aligned} & \text { TB-B: } 30-31,48-50 \\ & \text { WB-B: } 28-29,49-50 \end{aligned}$ See Grade 2: TB-B: 90-94 WB-B: 139-140
Represent and interpret data.		
3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	$\begin{aligned} & \text { TB-A: } 140-143 \\ & \text { WB-A: } 162-167 \end{aligned}$ See Grade 2: TB-B: 101-113 WB-B: 148-161
4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate unitswhole numbers, halves, or quarters.	$\begin{aligned} & \text { See Grade 2: } \\ & \text { TB-B: } 72-73 \end{aligned}$
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.		
5	Recognize area as an attribute of plane figures and understand concepts of area measurement.	
a	A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	$\begin{aligned} & \text { TB-B: } 139-143 \\ & \text { WB-B: } 159-166 \end{aligned}$

Standards	Descriptor	Page Citations
b	A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	$\begin{aligned} & \text { TB-B: } 139-146 \\ & \text { WB-B: } 159-169 \end{aligned}$
6	Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).	$\begin{aligned} & \text { TB-B: } 139-146 \\ & \text { WB-B: } 159-169 \end{aligned}$
7	Relate area to the operations of multiplication and addition.	
a	Find the area of a rectangle with wholenumber side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.	$\begin{aligned} & \text { See Grade 4: } \\ & \text { TB-A: } 141-144 \\ & \text { WB-A: } 162-163 \end{aligned}$
b	Multiply side lengths to find areas of rectangles with whole- number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	$\begin{aligned} & \text { See Grade 4: } \\ & \text { TB-A: } 141-144 \\ & \text { WB-A: } 162-164 \end{aligned}$
c	Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning.	$\begin{array}{\|l\|} \hline \text { TB-A: } 111-112,118- \\ 119,124,128,130 \end{array}$
d	Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.	$\begin{aligned} & \hline \text { See Grade 4: } \\ & \text { TB-A: } 151-155 \\ & \text { WB-A: } 172-174 \end{aligned}$
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.		
8	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	$\begin{aligned} & \text { TB-B: } 147-150 \\ & \text { WB-B: } 170-172 \end{aligned}$

Standards	Descriptor	Page Citations
Geometry	3.G	
Reason with shapes and their attributes.		
$\mathbf{1}$	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	TB-B: 129, 132-133 WB-B: 146-152
$\mathbf{2}$	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.	TB-B: 86-87 WB-B: 90,92-95

Grade 4

Standards Edition, Primary Mathematics © 2008

 correlated to the Common Core State Standards for Mathematics*Key: TB = Textbook, WB = Workbook

Standards Descriptor		Page Citations
Operations and Algebraic Thinking		4.0A
Use the four operations with whole numbers to solve problems.		
1	Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.	$\text { TB-A: 59, } 64,67$ See Grade 3: $\begin{aligned} & \text { TB-A: } 77-79,84,91 \\ & \text { WB-A: } 84-85 \end{aligned}$
2	Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.	$\begin{aligned} & \text { TB-A: } 59-60,64-67, \\ & 73 \\ & \text { WB-A: } 54,66,114, \\ & 160 \\ & \text { TB-B: } 32,92 \\ & \text { WB-B: } 40 \end{aligned}$
3	Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	```TB-A: 51, 57-60, 64-67 WB-A: 49-50, 54-55, 66, 112-114, 116 WB-B: 40, 103,117```
Gain familiarity with factors and multiples.		
4	Find all factor pairs for a whole number in the range $1-100$. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.	$\begin{aligned} & \text { TB-A: } 26-37 \\ & \text { WB-A: } 21-27 \end{aligned}$

Standards	Descriptor	Page Citations
Number and	Operations-Fractions	4.NF
Extend understanding of fraction equivalence and ordering.		
1	Explain why a fraction a / b is equivalent to a fraction $(\mathrm{n} \times \mathrm{a}) /(\mathrm{n} \times \mathrm{b})$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	$\begin{aligned} & \text { TB-A: } 77-80 \\ & \text { WB-A: } 67-70 \end{aligned}$
2	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.	$\begin{aligned} & \text { TB-A: } 79-80 \\ & \text { WB-A: } 70,87 \\ & \\ & \text { See Grade 3: } \\ & \text { TB-B: } 95-96 \\ & \text { WB-B: } 108 \end{aligned}$
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.		
3	Understand a fraction a / b with a > 1 as a sum of fractions $1 / b$.	
a	Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.	$\begin{array}{\|l\|} \hline \text { TB-A: } 81-87 \\ \text { WB-A: } 71-76 \end{array}$ See Grade 3: TB-B: 97-101 WB-B: 109-114
b	Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $\begin{aligned} & 3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; \\ & 21 / 8=1+1+1 / 8=8 / 8+8 / 8+1 / 8 \end{aligned}$	TB-A: 88-92 WB-A: 77-85 See Grade 2: TB-B: 67 See Grade 3: TB-B: 85, 97
c	Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.	$\begin{array}{\|l\|} \hline \text { TB-A: } 88-89,92-93 \\ \text { WB-A: } 77-78,83-85 \end{array}$
d	Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.	$\begin{array}{\|l} \hline \text { TB-A: } 81-82,87 \\ \text { WB-A: } 75-76 \end{array}$ See Grade 3: $\text { TВ-B: 97, 99, } 101$

Standards	Descriptor	Page Citations
4	Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.	
a	Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent 5/4 as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.	$\begin{aligned} & \text { See Grade 5: } \\ & \text { TB-A: 64-66 } \\ & \text { WB-A: } 60-63 \end{aligned}$
b	Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)	$\begin{aligned} & \text { TB-A: 98-100 } \\ & \text { WB-A: } 91-97 \\ & \text { See Grade 5: } \\ & \text { TB-A: 69-70 } \\ & \text { WB-A: } 62-63 \end{aligned}$
c	Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?	$\begin{aligned} & \text { TB-A: } 101-105 \\ & \text { WB-A: } 98-109 \end{aligned}$
Understand decimal notation for fractions, and compare decimal fractions.		
5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.	$\begin{aligned} & \text { TB-B: } 17-18 \\ & \text { WB-B: } 19-20 \end{aligned}$
6	Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.	$\begin{aligned} & \text { TB-B: } 8-10,12,14-19 \\ & \text { WB-B: } 7-9,12.19-70 \end{aligned}$
7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual model.	$\begin{aligned} & \text { TB-B: } 21-22 \\ & \text { WB-B: } 25-26 \end{aligned}$

Standards Descriptor			Page Citations
Measurement and Data			
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.			
1	1	Know relative sizes of measurement units within one system of units including km , $\mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz}$; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two- column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs $(1,12),(2,24),(3,36)$,	$\begin{aligned} & \text { TB-B: } 129 \\ & \text { WB-B: } 144-145 \end{aligned}$ See Grade 2: $\begin{aligned} & \text { TB-A: 61-69, 76-87 } \\ & \text { TB-B: } 90-94 \end{aligned}$ See Grade 3: $\begin{aligned} & \text { TB-B: } 8-10,13-15 \text {, } \\ & 20-22,26,30-32, \\ & 41-42,49-54,57-60, \\ & 62 \end{aligned}$
	2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	$\begin{aligned} & \text { TB-A: } 40,56,58,65, \\ & 67,80,97,102, \\ & 104-105,109,140, \\ & 159,161 \\ & \text { WB-A: } 49-50,55,66, \\ & 75,78,98-99, \\ & 101-103,105-109, \\ & 112-113,115-116, \\ & 158-159,161,179,183 \\ & \text { TB-B: } 10-11,14, \\ & 28-30,34-35,45-49, \\ & 58,73,90,92,104, \\ & 124,128,130-136, \\ & 147-148,151 \\ & \text { WB-B: } 11,39-40,80, \\ & 103-104,117-118, \\ & 120,142-143,156-160 \\ & \hline \end{aligned}$
	3	Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.	$\begin{aligned} & \text { TB-A: } 141-156 \\ & \text { WB-A: } 162-171 \end{aligned}$
Represent and interpret data.			
	4	Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4,1 / 8)$. Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.	$\begin{aligned} & \text { TB-B: } 107-108,111, \\ & 113 \\ & \text { WB-B: } 122-123,126 \end{aligned}$

Standards	Descriptor	Page Citations
Geometric measurement: understand concepts of angle and measure angles.		
5	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:	
a	An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.	TB-A: 110-111, 114
b	An angle that turns through n one-degree angles is said to have an angle measure of n degrees.	$\begin{aligned} & \text { TB-A: } 112-115 \\ & \text { WB-A: } 123-131 \end{aligned}$
6	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.	$\begin{aligned} & \text { TB-A: } 112-115 \\ & \text { WB-A: } 121-131 \end{aligned}$
7	Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.	$\begin{aligned} & \text { TB-A: } 114-115 \\ & \text { WB-A: } 128-131 \end{aligned}$
Geometry		4.G
Draw and identify lines and angles, and classify shapes by properties of their lines and angles.		
1	Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.	$\begin{array}{\|l\|} \hline \text { TB-A: } 111-124 \\ \text { WB-A: } 117-124 \end{array}$
2	Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.	$\begin{aligned} & \text { TB-A: } 122-124,126 \\ & \text { WB-A: } 133,140-141, \\ & 143 \end{aligned}$
3	Recognize a line of symmetry for a twodimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.	$\begin{aligned} & \text { TB-B: } 81-86 \\ & \text { WB-B: } 95-100 \end{aligned}$

Grade 5

Standards Edition, Primary Mathematics © 2008

correlated to the Common Core State Standards for Mathematics
*Key: TB = Textbook, WB = Workbook

Standards	Descriptor	Page Citations
Operations and Algebraic Thinking		5.0A
Write and interpret numerical expressions.		
1	Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	$\begin{aligned} & \text { TB-A: } 29-33 \\ & \text { WB-A: } 22-24 \end{aligned}$
2	Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$ without having to calculate the indicated sum or product.	$\begin{aligned} & \text { TB-A: 29-32 } \\ & \text { WB-A: } 14,22-24,103 \\ & \text { See Grade 4: } \\ & \text { TB-A: } 41 \\ & \text { WB-A: } 32 \end{aligned}$
Analyze patterns and relationships.		
3	Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	$\begin{aligned} & \text { TB-B: } 162 \\ & \text { WB-B: } 153 \end{aligned}$ See Grade 4: TB-B: 97-99 WB-B: 111-112
Number and Operations in Base Ten		5.NBT
Understand the place value system.		
1	Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	$\begin{aligned} & \text { TB-A: 8 } \\ & \text { TB-B: 9, 23-24 } \\ & \\ & \text { See Grade 4: } \\ & \text { TB-A: 8-12 } \\ & \text { WB-A: } 7 \end{aligned}$
2	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .	$\begin{aligned} & \text { TB-A: } 23-26 \\ & \text { WB-A: } 16-19 \\ & \text { TB-B: } 23-30 \\ & \text { WB-B: } 14,16-17 \end{aligned}$

Standards	Descriptor	Page Citations
3	Read, write, and compare decimals to thousandths.	
a	Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times$ $100+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times$ $(1 / 100)+2 \times(1 / 1000)$.	$\begin{aligned} & \text { TB-B: 8, } 10 \\ & \text { WB-B: } 5 \end{aligned}$ See Grade 4: $\text { TB-B: 12-15, } 26$ $\text { WB-B: } 15,21,29$
b	Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	$\begin{aligned} & \text { TB-B: } 11-12 \\ & \text { WB-B: } 6 \end{aligned}$ See Grade 4: $\begin{aligned} & \text { TB-B: } 21-22,24-25 \\ & \text { WB-B: } 25-26,31 \end{aligned}$
4	Use place value understanding to round decimals to any place.	$\begin{aligned} & \text { TB-B: } 13-15 \\ & \text { WB-B: } 7 \\ & \\ & \text { See Grade 4: } \\ & \text { TB-B: } 28-30 \\ & \text { WB-B: } 34-36 \\ & \hline \end{aligned}$
Perform operations with multi-digit whole numbers and with decimals to hundredths.		
5	Fluently multiply multi-digit whole numbers using the standard algorithm.	$\begin{aligned} & \hline \text { TB-A: } 23-28,35-36, \\ & 42-43,48-49 \\ & \text { WB-A: } 16-17,27-28, \\ & 35-36,76 \\ & \hline \end{aligned}$
6	Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	$\begin{aligned} & \text { TB-A: } 44-48,50 \\ & \text { WB-A: } 37-40 \end{aligned}$
7	Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	$\begin{aligned} & \text { TB-B: } 16-41 \\ & \text { WB-B: } 8-29 \\ & \text { See Grade 4: } \\ & \text { TB-B: } 35-67 \\ & \text { WB-B: } 42-76 \end{aligned}$
Use equivalent fractions as a strategy to add and subtract fractions.		
1	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 $+5 / 4=8 / 12+15 / 12=23 / 12 \text {. } \text { In }$ general, $a / b+c / d=(a d+b c) / b d$.	$\begin{aligned} & \text { TB-A: } 58-63,106 \\ & \text { WB-A: } 52-59,77,102 \end{aligned}$

Standards	Descriptor	Page Citations
2	Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.	TB-A: 60, 63, 79
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.		
3	Interpret a fraction as division of the numerator by the denominator ($\mathrm{a} / \mathrm{b}=\mathrm{a} \div$ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	$\begin{aligned} & \text { TB-A: } 54-57 \\ & \text { WB-A: } 50-51 \end{aligned}$
4	Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.	
a	Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a $\times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=a c / b d$.	$\begin{aligned} & \text { TB-A: } 67-75,80-87 \\ & \text { WB-A: } 64-75,81-86 \end{aligned}$
b	Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	$\begin{aligned} & \text { TB-A: } 81,83 \\ & \text { WB-A: } 80 \end{aligned}$

Standards	Descriptor	Page Citations
5	Interpret multiplication as scaling (resizing), by:	
a	Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	$\begin{aligned} & \text { TB-A: } 80-87 \\ & \text { WB-A: } 79-87 \end{aligned}$
b	Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .	$\begin{aligned} & \text { TB-A: } 80-83 \\ & \text { WB-A: } 79-82 \end{aligned}$
6	Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.	$\begin{aligned} & \text { TB-A: } 80-87 \\ & \text { WB-A: } 80,83-86 \end{aligned}$
7	Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.	
a	Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.	$\begin{aligned} & \text { TB-A: } 88-89 \\ & \text { WB-A: } 87 \end{aligned}$
b	Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times$ $(1 / 5)=4$.	$\begin{aligned} & \hline \text { TB-A: } 91-92 \\ & \text { WB-A: } 91-92 \end{aligned}$
c	Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?	$\begin{aligned} & \text { TB-A: } 91-92,98,106 \\ & \text { WB-A: } 90 \end{aligned}$

Standards	Descriptor	Page Citations
Measurement and Data		5.MD
Convert like measurement units within a given measurement system.		
1	Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.	$\begin{aligned} & \text { TB-A: } 71-72 \\ & \text { WB-A: } 66-69 \\ & \text { TB-B: } 44-47 \\ & \text { WB-B: } 34-36 \end{aligned}$
Represent and interpret data.		
2	Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	$\begin{aligned} & \text { TB-A: 64, } 99 \\ & \text { TB-B: } 123 \\ & \text { See Grade 3: } \\ & \text { TB-A: } 145 \\ & \text { See Grade 4: } \\ & \text { TB-B: } 107-108,111, \\ & \text { 113 } \\ & \text { See Grade 6: } \\ & \text { TB-B: 89, } 93 \\ & \hline \end{aligned}$
Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.		
3	Recognize volume as an attribute of solid fig concepts of volume measurement.	ures and understand
a	A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.	TB-B: 48 See Grade 3: TB-B: 151-156 WB-B: 173-179 See Grade 4: TB-B: 137 WB-B: 150
b	A solid figure, which can be packed without gaps or overlaps using n unit cubes, is said to have a volume of n cubic units.	$\begin{aligned} & \text { TB-B: } 49-53 \\ & \text { See Grade 3: } \\ & \text { TB-B: } 155-156 \\ & \text { WB-B: } 179 \\ & \text { See Grade 4: } \\ & \text { TB-B: } 137 \\ & \text { WB-B: } 150 \\ & \hline \end{aligned}$
4	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.	TB-B: 48-49 See Grade 4: $\begin{aligned} & \text { TB-B: } 137-138,142 \\ & \text { WB-B: } 150-151 \end{aligned}$

Standards	Descriptor	Page Citations
5	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.	
a	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.	$\begin{aligned} & \text { TB-B: } 50-52 \\ & \text { See Grade 4: } \\ & \text { TB-B: } 140-143 \\ & \text { WB-B: } 151-152 \end{aligned}$
b	Apply the formulas $V=I \times w \times h$ and $V=$ $b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole- number edge lengths in the context of solving real world and mathematical problems.	$\begin{aligned} & \text { TB-B: } 51-52 \\ & \text { WB-B: } 37 \end{aligned}$ See Grade 4: $\begin{aligned} & \text { TB-B: } 140-143,145 \\ & \text { WB-B: } 150-152 \end{aligned}$
c	Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve real world problems.	$\text { TB-B: } 49$ See Grade 4: $\begin{aligned} & \text { TB-B: } 137-139,145 \\ & \text { WB-B: } 150 \end{aligned}$
Geometry		5.6
Graph points on the coordinate plane to solve real-world and mathematical problems.		
1	Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x axis and x-coordinate, y-axis and y coordinate).	$\begin{aligned} & \text { TB-B: } 156-163 \\ & \text { WB-B: } 151-154 \end{aligned}$ See Grade 4: TB-B: 93-96 WB-B: 107-110
2	Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	$\begin{aligned} & \text { TB-B: } 128-130 \\ & \text { WB-B: } 122 \end{aligned}$ See Grade 4: TB-B: 93-96 WB-B: 107-110

Standards	Descriptor	Page Citations
Classify two-dimensional figures into categories based on their properties.		
$\mathbf{3}$	Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	TB-B: 95-98 See Grade 3: TB-B: 127-134 WB-B: 146-152 See Grade 4: TB-A: 122-127 WB-A: 140-143
$\mathbf{4}$	Classify two-dimensional figures in a hierarchy based on properties.	See Grade 3: TB-B: 132-134
		WB-B: 146-152 See Grade 4:

Grade 6

Standards Edition, Primary Mathematics © 2008

 correlated to the Common Core State Standards for Mathematics*Key: TB = Textbook, WB = Workbook

Standards	Descriptor	Page Citations
Ratios and Proportional Relationships	6.RP	
Understand ratio concepts and use ratio reasoning to solve problems.		
$\mathbf{1}$	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	TB-A: 90-95 WB-A: 75-76
See Grade 5:		
TB-A: 135-138		
WB-A: 129-138		

Standards Descriptor		Page Citations
The Number System		6.NS
Apply and extend previous understandings of multiplication and division to divide fractions by fractions.		
1	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) $\div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div$ $(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?	$\begin{aligned} & \text { TB-A: } 64-70 \\ & \text { WB-A: } 54-55,57-58, \\ & 62 \\ & \\ & \text { See Grade 5: } \\ & \text { TB-A: } 93,96-97 \\ & \text { WB-A: } 93,95 \end{aligned}$
Compute fluently with multi-digit numbers and find common factors and multiples.		
2	Fluently divide multi-digit numbers using the standard algorithm.	$\begin{aligned} & \text { See Grade 5: } \\ & \text { TB-A: } 25-26,44-48 \\ & \text { WB-A: } 18,37-40 \\ & \text { TB-B: } 18-21,27-30 \text {, } \\ & 33-34,38-40 \\ & \text { WB-B: } 9-10,16-18, \\ & 22-23,27-29 \end{aligned}$
3	Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	$\begin{aligned} & \text { See Grade 5: } \\ & \text { TB-B: } 16-41 \\ & \text { WB-B: } 8-29 \\ & \hline \end{aligned}$
4	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.	$\begin{aligned} & \text { See Grade 5: } \\ & \text { TB-A: } 17-18,31-32 \\ & \text { WB-A: } 12-13,24 \end{aligned}$

Standa	Descriptor	Citations
Apply and extend previous understandings of numbers to the system of rational numbers.		
5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in realworld contexts, explaining the meaning of 0 in each situation.	TB-A: 39-42 See Grade 4: TB-A: 42-47 WB-A: 34-37 See Grade 5: TB-B: 149-151 WB-B: 146-147
6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	
a	Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.	TB-A: 40-41 See Grade 5: TB-B: 149-151 $\text { WB-B: } 146-147$
b	Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	$\begin{aligned} & \text { TB-B: } 185-186 \\ & \\ & \text { See Grade 5: } \\ & \text { TB-B: } 156-157 \\ & \text { WB-B: } 151 \end{aligned}$
c	Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	$\begin{aligned} & \text { TB-A: } 40-42 \\ & \text { WB-A: } 21,37-40 \\ & \\ & \text { See Grade 4: } \\ & \text { TB-A: } 42-44,47 \\ & \text { WB-A: } 34-35 \\ & \text { See Grade 5: } \\ & \text { TB-B: } 149-151 \text {, } \\ & \text { 156-157 } \\ & \text { WB-B: } 151 \end{aligned}$
7	Understand ordering and absolute value of rational numbers.	
a	Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.	$\begin{aligned} & \text { TB-A: } 39-46 \\ & \text { WB-A: } 37-44 \\ & \\ & \text { See Grade 4: } \\ & \text { TB-A: } 42-45 \\ & \text { WB-A: } 36 \\ & \text { See Grade 5: } \\ & \text { TB-B: } 149-151 \\ & \text { WB-B: } 147 \end{aligned}$

Standards	Descriptor	Page Citations
b	Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { TB-A: } 39,43 \\ & \text { WB-A: } 42 \\ & \\ & \text { See Grade 4: } \\ & \text { TB-A: } 42-43 \\ & \text { WB-A: } 34-35 \\ & \\ & \text { See Grade 5: } \\ & \text { TB-B: } 149-150 \\ & \text { WB-B: } 146 \end{aligned}$
c	Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars.	$\begin{aligned} & \text { TB-A: } 40-44 \\ & \\ & \text { See Grade 5: } \\ & \text { TB-B: } 151 \\ & \text { WB-B: } 147 \end{aligned}$
d	Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.	$\begin{aligned} & \text { See Grade 4: } \\ & \text { TB-A: } 42-43 \\ & \text { WB-A: } 36-37 \\ & \text { See Grade 5: } \\ & \text { TB-B: } 149-151 \\ & \text { WB-B: } 146 \\ & \hline \end{aligned}$
8	Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	$\begin{aligned} & \text { TB-A: } 26-30 \\ & \text { WB-A: } 21-28 \\ & \text { TB-B: } 185-192 \\ & \text { WB-B: } 155-161 \end{aligned}$ See Grade 5: TB-B: 156-157 WB-B: 151
Expressions and Equations 6.EE Apply and extend previous understandings of arithmetic to algebraic expressions. 1		
1	Write and evaluate numerical expressions involving whole-number exponents.	$\begin{aligned} & \text { TB-B: } 179-180 \\ & \text { WB-B: } 151,153-154 \end{aligned}$ See Grade 5: $\text { TB-A: } 21$ $\text { WB-A: } 15$
2	Write, read, and evaluate expressions in which letters stand for numbers.	
a	Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y.	$\begin{aligned} & \text { TB-A: } 10-13,19-25 \\ & \text { WB-A: } 5-10,15-20 \end{aligned}$ See Grade 5: TB-B: 140-144 $\text { WB-B: } 139-140$

Standards	Descriptor	Page Citations
b	Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.	TB-A: 8-11 See Grade 5: $\begin{aligned} & \text { TB-A: } 17-21,29-33 \\ & \text { TB-B: } 140-148 \end{aligned}$
c	Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	$\begin{aligned} & \text { TB-A: } 19-25 \\ & \text { WB-A: } 15-20,61 \end{aligned}$ See Grade 5: TB-B: 140-148 WB-B: 139-143
3	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x$ $+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	$\begin{aligned} & \text { See Grade 5: } \\ & \text { TB-B: } 140-148 \\ & \text { WB-B: } 144-145 \end{aligned}$
4	Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.	TB-A: 8-11 See Grade 5: $\text { TB-B: } 140-148$
Reason about and solve one-variable equations and inequalities.		
5	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	$\begin{aligned} & \text { TB-A: } 14-18 \\ & \text { WB-A: } 11-14 \end{aligned}$
6	Use variables to represent numbers and write expressions when solving a realworld or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	$\begin{aligned} & \text { TB-A: } 10-13,19-25 \\ & \text { WB-A: } 5-10,15-20, \\ & 90 \end{aligned}$

Standards	Descriptor	Page Citations
7	Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.	$\begin{aligned} & \text { TB-A: } 14-18 \\ & \text { WB-A: } 11-13 \end{aligned}$
8	Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	
Represent and analyze quantitative relationships between dependent and independent variables.		
9	Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the	$\begin{aligned} & \hline \text { TB-A: } 26 \\ & \text { WB-A: } 22 \end{aligned}$
Geometry		6.G
Solve real-world and mathematical problems involving area, surface area, and volume.		
1	Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	$\begin{array}{\|l} \hline \text { See Grade 5: } \\ \text { TB-A: 108-126, } \\ \text { 133-134, 149 } \\ \text { WB-A: } 106-120,125- \\ 127,141 \\ \text { TB-B: } 43,59-60, \\ 104-105,120,137 \\ \text { WB-B: } 32,45,114, \\ 137 \end{array}$

Standards	Descriptor	Page Citations
2	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	$\begin{aligned} & \text { TB-B: } 29-33 \\ & \text { WB-B: } 24-32 \end{aligned}$ See Grade 4: TB-B: 140-146 WB-B: 151-152 See Grade 5: $\begin{aligned} & \text { TB-B: } 50-53,60,121 \\ & \text { WB-B: } 37 \end{aligned}$
3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	$\begin{aligned} & \text { See Grade 4: } \\ & \text { TB-B: } 96 \\ & \text { WB-B: } 109-110 \end{aligned}$
4	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	See Grade 4: TB-A: 132-136 WB-A: 148-155 See Grade 5: TB-A: 127-130 WB-A: 121-122
Statistics and Probability 6.SP		
Develop understanding of statistical variability.		
1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	$\begin{aligned} & \text { TB-B: } 88-119 \\ & \text { WB-B: } 92-116 \end{aligned}$
2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	$\begin{array}{\|l\|} \hline \text { TB-B: } 88-119 \\ \text { WB-B: } 92-116 \end{array}$
3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	$\begin{array}{\|l\|} \hline \text { TB-B: } 88-119 \\ \text { WB-B: } 92-116 \end{array}$
Summarize and describe distributions.		
4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	
a	Reporting the number of observations.	$\begin{aligned} & \text { TB-B: } 89,90-91, \\ & 96-98,103-104,106- \\ & 107,110-116,120-127 \\ & \text { WB-B: } 105-108,111- \\ & 114,116 \end{aligned}$

Standards	Descriptor	Page Citations
\mathbf{b}	Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	TB-B: 88-119 WB-B: 92-116
\mathbf{c}	Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	TB-B: 88-94, 97-99, $105,107-110,114-117$ WB-B: 92-95, 100, $103-108,114-116$
\mathbf{d}	Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	TB-B: 90-92, 109-113, 117

