Dimensions Math

Placement Test 5A

This test covers material taught in Dimensions Math 5A.
1 Use the number $357,014,296$ to answer the following questions.
(a) Write the number in words.
(b) The value of the digit in the one millions place is \qquad .
(c) The digit \qquad is in the hundred millions place.
(d) The digit 5 is in the \qquad place.

2 Find the values.
(a) $35,510 \times 100=\square$
(b) $1,000 \times 500,000=\square$
(c) $2,600 \times 20=\square$
(d) $2,000 \times 350=\square$
(3) Find the values.
(a) $317,000 \div 1,000=\square$
(b) $80,000 \div 10=\square$
(c) $21,000,000 \div 700=\square$
(d) $320,000,000 \div 4,000=$ \square

4 Fill in the blanks.
(a) $20,000,000+2,000,000+800,000+9,000+500=\square$
(b) $500,000,000+70,000,000+40,000+50+1=\square$
(c) $605,700,016=600,000,000+\square+16$
(d) $310,019,005=9,000+10,000,000+\square+5+10,000$
(5) Write $>,<$, or $=$ in each
(a) $30,000+100,000,000+20,000,000$
 $80,000+900,000+9,000,000$
(b) $514,189,043$
 514,819,430
(c) One hundred and five millions \square 10 hundred thousands
(d) $39,642,000+10,000,000$
 49,800,000 - 100,000

6 Find the values.
(a) $100-5 \times 9 \div 3=\square$
(b) $40+40 \div 8-10=\square$
(c) $35 \div 5+2 \times 7=\square$
(d) $24 \div 4 \times 3=\square$
(7) Find the values.
(a) $80 \div(5+5)-8=\square$
(b) $3 \times(18 \div 3)+(4 \div 2)=\square$
(c) $(60 \div 10)+(7-3) \div 2=\square$
(d) $3 \times(8-35 \div 7) \div 3+2 \times 2=\square$
(e) $8 \times(13+9)=8 \times \square+\square \times 9$

8 The admission price to a concert is $\$ 12$ for an adult and $\$ 5$ for a child. Aida bought 3 adult tickets and 3 child tickets. Write an expression with parenthesis to find the total amount she spent on tickets, and then find the value.

9 Find the values.
(a) $65 \times 39=\square$
(b) $98 \times 788=\square$
(c) $5,071 \times 36=\square$
(d) $13 \times 115 \times 4=$ \square
(10) Divide.
(a) $94 \div 17$
(b) $105 \div 38$
(c) $675 \div 20$
(d) $7,240 \div 51$

11 Brandon has $\$ 200$ less than Jordan. Grace has $\$ 500$ more than Jordan. Together they have $\$ 2,700$. How much does Brandon have?

12 Add. Express each answer in simplest form.
(a) $\frac{2}{5}+\frac{3}{10}=$ \qquad
(b) $\frac{5}{7}+\frac{5}{2}=$ \qquad
(c) $\frac{8}{3}+\frac{7}{5}=$ \qquad
(d) $\frac{1}{2}+\frac{2}{5}+\frac{3}{4}=$ \qquad

13 Subtract. Express each answer in simplest form.
(a) $\frac{5}{6}-\frac{1}{3}=$ \qquad
(b) $\frac{1}{2}-\frac{1}{5}=$ \qquad
(c) $\frac{7}{5}-\frac{9}{7}=$ \qquad
(d) $\frac{8}{9}-\frac{1}{6}-\frac{1}{3}=$ \qquad

14 Add. Express each answer in simplest form.
(a) $5 \frac{1}{4}+\frac{5}{8}=$ \qquad
(b) $\frac{3}{7}+2 \frac{1}{3}=$ \qquad
(c) $2 \frac{1}{5}+8 \frac{2}{15}=$ \qquad
(d) $1 \frac{1}{6}+3 \frac{1}{10}=$ \qquad

15 Subtract. Express each answer in simplest form.
(a) $6 \frac{7}{8}-2 \frac{3}{4}=$ \qquad
(b) $10-1 \frac{6}{13}=$ \qquad
(c) $4 \frac{2}{5}-3 \frac{1}{7}=$ \qquad
(d) $5 \frac{1}{9}-4 \frac{5}{6}=$ \qquad

16 Find the values. Express each answer in simplest form.
(a) $\frac{1}{4} \times 84=$ \qquad
(b) $\frac{1}{8} \times \frac{1}{3}=$ \qquad
(c) $\frac{8}{9} \times \frac{9}{10}=$ \qquad
(d) $\frac{7}{4} \times \frac{3}{4}=$ \qquad
(e) $\frac{5}{12} \times \frac{12}{10}=$ \qquad
(f) $\frac{6}{11} \times \frac{11}{6}=$ \qquad

17 Find the values. Express each answer in simplest form.
(a) $6 \times 1 \frac{3}{8}=$ \qquad
(b) $3 \frac{2}{3} \times \frac{4}{7}=$ \qquad
(c) $1 \frac{1}{4} \times 2 \frac{3}{5}=$ \qquad
(d) $1 \frac{1}{9} \times \frac{9}{10}=$ \qquad

18 Find the reciprocal of each number.
(a) $\frac{1}{9}$
(b) 30
(c) $\frac{14}{13}$
(d) $6 \frac{2}{5}$

19 Find the values. Express each answer in simplest form.
(a) $\frac{1}{12} \div 4=$ \qquad
(b) $\frac{5}{3} \div 3=$ \qquad
(c) $\frac{3}{7} \div 2=$ \qquad
(d) $9 \div \frac{4}{3}=$ \qquad

20 Find the values. Express each answer in simplest form.
(a) $20-\left(\frac{3}{10}-\frac{3}{20}\right)-5 \frac{1}{10}=$ \qquad
(b) $5-16 \times \frac{1}{4} \div 2=$ \qquad
(c) $\frac{1}{3} \times\left(10-9 \frac{1}{3}\right) \div \frac{1}{9}=$ \qquad
(d) $\left(\frac{1}{2} \times 7\right) \div\left(\frac{2}{5}+\frac{1}{10}\right)=$ \qquad

21 A baker made 120 cookies. She sold $\frac{2}{5}$ of them in the morning and $\frac{3}{4}$ of the remainder in the afternoon. How many cookies did she have left?
22. A ribbon $\frac{3}{5} \mathrm{~m}$ long was cut into several pieces of equal length. Each piece of ribbon is $\frac{1}{10} \mathrm{~m}$. How many pieces of ribbon are there?
$23 \frac{3}{4}$ of the rice in a sack weighs 6 lb . How much does $\frac{2}{3}$ of the rice in the sack weigh? Express the answer in simplest form.

24 Fill in the blanks.
(a) $7 \frac{9}{10} \mathrm{~cm}=\square \mathrm{cm} \square \mathrm{mm}$
(b) $8 \frac{1}{2} \min =\square \mathrm{min} \square \mathrm{s}$
(c) $5 \frac{1}{2} \mathrm{~kg}=\square \mathrm{g}$
(d) $2 \frac{2}{3} \mathrm{ft}=\square$ in
25) Find the area of the figure. Express the answer in simplest form.

$$
\frac{5}{6} \mathrm{~m}
$$

26 Find the area of the figure. Express the answer in simplest form.

27) Find the area of Triangle XYZ.

28 Find the area of Triangle $A B C$.

29 Find the area of Figure PQRST.

30 Find the volume of the cuboid.

31 Find the length of the missing edge.

Volume $=84 \mathrm{~m}^{3}$
Height $=$ \qquad m

32 Find the volume of the solid.

33 A rectangular tank with a length of 30 cm and a width of 20 cm was filled with water to a height of 6 cm . After a rock was placed in the tank, the height of the water rose to 9 cm . What is the volume of the rock?

1 (a) Three hundred fifty-seven million, fourteen thousand, two hundred ninety-six
(b) $7,000,000$
(c) 3
(d) ten millions

2 (a) 3,551,000
(b) $500,000,000$
(c) 52,000
(d) 700,000
(3) (a) 317
(b) 8,000
(c) 30,000
(d) 80,000
(4) (a) 22,809,500
(b) $570,040,051$
(c) $5,700,000$
(d) $300,000,000$
5 (a) $>$
(b) $<$
(c) $>$
(d) $<$
(6) (a) 85
(b) 35
(c) 21
(d) 18
7 (a) 0
(b) 20
(c) 8
(d) 7
(e) 13; 8
(8) $3 \times(12+5)=3 \times 17=51$
or
$(3 \times 12)+(3 \times 5)=36+15=51$ \$51
9 (a) 2,535
(b) 77,224
(c) 182,556
(d) 5,980
10
(a) 5 R 9
(b) 2 R 29
(c) 33 R 15
(d) 141 R 49
11) Solution may vary, bar model is optional. $\$ 200$

$\$ 500$
Jordan

Grace

3 units $\longrightarrow 2,700-200-200$
$-500=1,800$
1 unit $\longrightarrow \frac{1,800}{3}=600$
\$600
(12) (a) $\frac{4}{10}+\frac{3}{10}=\frac{7}{10}$
$\frac{7}{10}$
(b) $\frac{10}{14}+\frac{35}{14}=\frac{45}{14}=3 \frac{3}{14}$
$3 \frac{3}{14}$
(c) $\frac{40}{15}+\frac{21}{15}=\frac{61}{15}=4 \frac{1}{15}$
$4 \frac{1}{15}$
(d) $\frac{10}{20}+\frac{8}{20}+\frac{15}{20}=\frac{33}{20}=1 \frac{13}{20}$
$1 \frac{13}{20}$

13
(a) $\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$
$\frac{1}{2}$
(b) $\frac{5}{10}-\frac{2}{10}=\frac{3}{10}$
$\frac{3}{10}$
(c) $\frac{49}{35}-\frac{45}{35}=\frac{4}{35}$
$\frac{4}{35}$
(d) $\frac{16}{18}-\frac{3}{18}-\frac{6}{18}=\frac{7}{18}$
$\frac{7}{18}$
(14) (a) $5 \frac{2}{8}+\frac{5}{8}=5 \frac{7}{8}$
$5 \frac{7}{8}$
(b) $\frac{9}{21}+2 \frac{7}{21}=2 \frac{16}{21}$
$2 \frac{16}{21}$
(c) $2 \frac{3}{15}+8 \frac{2}{15}=10 \frac{5}{15}=10 \frac{1}{3}$
$10 \frac{1}{3}$
(d) $1 \frac{5}{30}+3 \frac{3}{30}=4 \frac{8}{30}=4 \frac{4}{15}$
$4 \frac{4}{15}$
(15) (a) $6 \frac{7}{8}-2 \frac{6}{8}=4 \frac{1}{8}$
$4 \frac{1}{8}$
(b) $9-\frac{6}{13}=8 \frac{7}{13}$
$8 \frac{7}{13}$
(c) $4 \frac{14}{35}-3 \frac{5}{35}=1 \frac{9}{35}$
$1 \frac{9}{35}$
(d) $5 \frac{2}{18}-4 \frac{15}{18}=4 \frac{20}{18}-4 \frac{15}{18}=\frac{5}{18}$
$\frac{5}{18}$
16 (a) 21
(b) $\frac{1}{24}$
(c) $\frac{8}{10}=\frac{2}{5}$
(d) $\frac{21}{16}=1 \frac{5}{16}$
$\frac{2}{5}$ $1 \frac{5}{16}$
(e) $\frac{1}{2}$
(f) 1
(17) (a) $6 \times \frac{11}{8}=3 \times \frac{11}{4}=\frac{33}{4}=8 \frac{1}{4}$ $8 \frac{1}{4}$
(b) $3 \frac{2}{3} \times \frac{4}{7}=\frac{11}{3} \times \frac{4}{7}=\frac{44}{21}=2 \frac{2}{21}$
$2 \frac{2}{21}$
(c) $1 \frac{1}{4} \times 2 \frac{3}{5}=\frac{5}{4} \times \frac{13}{5}=\frac{13}{4}=3 \frac{1}{4}$
$3 \frac{1}{4}$
(d) $1 \frac{1}{9} \times \frac{9}{10}=\frac{10}{9} \times \frac{9}{10}=1$ 1

18 (a) 9
(b) $\frac{1}{30}$
(c) $\frac{13}{14}$
(d) $6 \frac{2}{5}=\frac{32}{5}$
$\frac{5}{32}$
(19) (a) $\frac{1}{12} \div 4=\frac{1}{12} \times \frac{1}{4}=\frac{1}{48}$
(b) $\frac{5}{3} \div 3=\frac{5}{3} \times \frac{1}{3}=\frac{5}{9}$
(c) $\frac{3}{7} \div 2=\frac{3}{7} \times \frac{1}{2}=\frac{3}{14}$
(d) $9 \div \frac{4}{3}=9 \times \frac{3}{4}=\frac{27}{4}=6 \frac{3}{4}$

20 (a) $20-\left(\frac{3}{10}-\frac{3}{20}\right)-5 \frac{1}{10}$

$$
=20-\left(\frac{6}{20}-\frac{3}{20}\right)-5 \frac{2}{20}
$$

$$
=20-\frac{3}{20}-5 \frac{2}{20}
$$

$$
=19 \frac{17}{20}-5 \frac{2}{20}
$$

$$
=14 \frac{15}{20}=14 \frac{3}{4}
$$

(b) $5-16 \times \frac{1}{4} \div 2=5-4 \div 2=3$
(c) $\frac{1}{3} \times \frac{2}{3} \div \frac{1}{9}=\frac{1}{3} \times \frac{2}{3} \times 9=2$
(d) $\left(\frac{1}{2} \times 7\right) \div\left(\frac{2}{5}+\frac{1}{10}\right)=\frac{7}{2} \div \frac{5}{10}=$

$$
\frac{7}{2} \div \frac{1}{2}=\frac{7}{2} \times 2=7
$$

21 Cookies left to sell in the afternoon $\longrightarrow \frac{3}{5}$ of 120
Cookies left $\longrightarrow \frac{1}{4}$ of cookies left to sell in the afternoon
$\frac{1}{4} \times \frac{3}{5} \times 120=18$ 18
(22) $\frac{3}{5} \div \frac{1}{10}=6$
(23) $6 \div \frac{3}{4}=6 \times \frac{4}{3}=8$
$\frac{2}{3} \times 8=\frac{16}{3}=5 \frac{1}{3}$
$5 \frac{1}{3} \mathrm{lb}$

24 (a) 7; 9
(b) $8 ; 30$
(c) 5,500
(d) 32
(25) $\frac{5}{6} \times \frac{3}{4}=\frac{5}{8}$
$\frac{5}{8} \mathrm{~m}^{2}$
(26) $10 \times 4 \frac{4}{5}=48$
$3 \times 1 \frac{1}{5}=3 \times \frac{6}{5}=\frac{18}{5}=3 \frac{3}{5}$
$12-4 \frac{4}{5}-1 \frac{1}{5}=6$
$6 \times 6=36$
$48+3 \frac{3}{5}+36=87 \frac{3}{5}$
$87 \frac{3}{5} \mathrm{~cm}^{2}$
(27) $\frac{1}{2} \times 10 \times 12=60$ $60 \mathrm{in}^{2}$
(28) $8-3 \frac{1}{3}=4 \frac{2}{3}$
$\frac{1}{2} \times 4 \frac{2}{3} \times 15=\frac{1}{2} \times \frac{14}{3} \times 15$
$=7 \times 5=35$
$35 \mathrm{~cm}^{2}$
(29) $10 \times 6=60$
$9 \times 11=99$
$\frac{1}{2} \times 5 \times 11=\frac{55}{2}=27 \frac{1}{2}$
$60+99+27 \frac{1}{2}=186 \frac{1}{2}$
$186 \frac{1}{2} \mathrm{~cm}^{2}$
(30) $8 \times 10 \times 5=400$
$400 \mathrm{in}^{2}$
(31) $\frac{84}{7 \times 4}=3$

3 m
(32) $8 \times 2 \times 3=48$
$4 \times 3 \times 3=36$
$48+36=84$
$84 \mathrm{~cm}^{3}$
(33) $30 \times 20 \times 3=1,800$
$1,800 \mathrm{~cm}^{3}$

