

Revision History

Revision	Content	Date	Edited by
1.0	初版发行	2020-11-26	PD
1.1	2.1.2.1节增加XYZ坐标运算公式 增加附录A RSView 增加附录B Driver&SDK 增加附录C MEMS Tool的使用 修订部分表述错误	2020-12-02	PD
1.2	更新产品参数规格表	2021-02-23	PD
1.3	更新MSOP和DIFOP内容 更新图2 增加附录D结构图纸	2021-03-11	PD
1.4	通信协议增加数据传输速率要求说明 更新垂直FOV脚注及MSOP数据说明 增加3.1 Interface Box种类说明 增加3.2节 LiDAR状态机说明 增加章节4 时间同步 更新附录D结构图纸 修订部分表述问题	2021-06-07	PD
1.5	修订工作电压范围	2021-07-16	PD

-	
- 1-1	
- 1-1	1
- 1-1	~1

1 产品规格1
2 通信协议
2.1 主数据流输出协议(MSOP)3
2.2 设备信息输出协议(DIFOP)9
3 LiDAR 接线及工作说明11
3.1 Interface box 接线方式11
3.2 LiDAR 状态机说明12
4 时间同步
4.1 精准时间同步协议(PTP)13
4.2 使用 Linuxptp 工具简单验证时间同步14
4.3 GPS 时间同步16
附录 A RSView17
A.1 软件功能17
A.2 安装 RSView17
A.3 设置网路17
A.4 可视化数据18
A.5 保存 RS-LiDAR- M1(B3 样件)数据为 PCAP 格式19
A.6 回放 pcap 数据22
附录 B Driver & SDK
B.1 rs_driver 的编译与安装26
B.2 rlidar_sdk 的编译与安装28
附录 C MEMS Tool 的使用
C.1 使用 MEMS Tool 与雷达建立通信35
C.2 修改雷达 IP 及端口号
C.3 固件升级
附录 D 结构图纸

1 产品规格

RS-LiDAR-M1(B3 样件)采用 MEMS 固态激光雷达方式,测量距离高达 200 米(150m @ 10%),出点数高达 750,000 点/秒(单回波模式)及 1,500,000 点/秒(双回波模式),水平测角 120°(-60.0°~+60.0°),垂直测角 25°(-12.5°~+12.5°)。

		· _ · _ ·		
耒	1.	立只知权主	(B3	(#444)
12			100	1+ IT /

	● TOF 法测距,包含反射强度信息
	● 测距:0.5m ~200m (150m@10% NIST)¹
	● 精度: ± 3cm@1 sigma ²
什咸明	● 视角(垂直): 25°(-12.5°~+12.5°) ³
化改进	● 角分辨率(垂直):平均0.2°4
	● 视角(水平): 120°(-60.0°~+60.0°)
	● 角分辨率(水平):平均 0.2° ⁴
	● 帧率: 10Hz
<u> いた、</u> 」	Class 1 eye safe
微尤	● 波长: 905nm
	● ~750,000 点/秒(单回波模式)
	~1,500,000 点/秒(双回波模式)
输出	● 1000Base-T1 千兆以太网
	● UDP 包中包含
	三维空间坐标、反射强度信息、时间戳等
	● 功耗: 15w ⁵
· · · · · · · · · · · · · · · ·	● 工作电压 : 9~32VDC
₩₩/电丁探性	● 重量:约 0.73kg(不包含数据线)
	● 尺寸: 长 110mm * 宽 108mm * 高 45mm

¹ 测距能力 150 米以 10% NIST 漫反射板作为目标,测试结果会受到环境影响,包括但不限于环境温度、 光照强度等因素;

2 测距精度以 50% NIST 漫反射板为目标在 10m~100m 范围内测试,测试结果会受到环境影响,包括但不限于环境温度、目标物距离等因素,且精度值适用于大部分通道,部分通道之间存在差异;

3 RS-LiDAR-M1 整机 5 个通道水平排列,在垂直方向上会有一定位置上的错开;单个视场最大包络垂直 FoV为25.2°;5个视场拼接后呈现非规则排列,按照最大包络计算则垂直 FoV为35.79°;

⁴ 水平&垂直分辨率在整个 FOV 区域内并非均匀分布,角分辨率的均值为 0.2°;

⁵ 设备功耗测试在稳定工作时测试,结果会受到外部环境影响,包括但不限于环境温度、目标物的距离、 目标物反射率等因素;

● 防护安全级别: IP67, IP6K9K
● 工作温度范围: -40℃~85℃ (要求长时间工作需强制对流) 6
● 存储温度范围: -40℃~105℃

•

⁶ 设备运行温度可能会受到外部环境影响,包括但不限于太阳辐射、气流变化等因素;

2 通信协议

RS-LiDAR-M1(B3 样件)与电脑之间的通信采用以太网介质,使用 UDP 协议,输出包 有两种类型: MSOP 包和 DIFOP 包。文中所有涉及 MSOP 协议包均为 1210 Bytes 定长; DIFOP 协议包均为 256 Bytes 定长。单回波模式下,每秒发射 6300 个 MSOP 包和 1 个 DIFOP 包,数据传输速率要求不低于 58.2 Mbps。双回波模式下,要求不低于 116.4 Mbps。 RS-LiDAR-M1(B3 样件)网络参数可配置,出厂默认采用固定 IP 和端口号模式,按照如下 表格。

表 2: 出厂默认网络配置表

	IP 地址	MSOP 包端口号	DIFOP 包端口号
RS-LiDAR-M1	192.168.1.200	6600	7700
电脑	192.168.1.102	0099	1100

设备默认 MAC 地址是在工厂初始设置的,每台设备 MAC 地址唯一。

使用设备的时候,需要把电脑的 IP 设置为与设备同一网段上,例如 192.168.1.x(x 的 取值范围为 1~254),子网掩码为 255.255.255.0。若不知设备网络配置信息,请将主机子 网掩码设置为 0.0.0.0 后连接设备并使用 Wireshark 抓取设备输出包进行分析。

RS-LiDAR-M1 和电脑之间的通信协议主要分两类,一览表见下表格。

- ▶ 主数据流输出协议 MSOP,将激光雷达扫描出来的距离,角度,反射率等信息封装成 包输出给电脑;
- ▶ 设备信息输出协议 DIFOP,将激光雷达当前状态的各种配置信息输出给电脑。

(协议/包)名称	简写	功能	类型	包大小
Main Data Stream Output Protocol	MSOP	扫描数据输出	UDP	1210 Bytes
Device Information Output Protocol	DIFOP	设备信息输出	UDP	256 Bytes

表 3: 设备协议一览表

注: 下面章节皆为对协议中的有效载荷 (MSOP 包 1210 Bytes 和 DIFOP 包 256Bytes) 部分进行描

述和定义。

2.1 主数据流输出协议(MSOP)

主数据流输出协议: Main data Stream Output Protocol,简称: MSOP。

I/O 类型: 设备输出, 电脑解析。

默认端口号为6699。

MSOP 包完成三维测量相关数据输出,包括激光测距值、回波的反射强度值、垂直角度、水平角度和时间戳。MSOP 包的有效载荷长度为 1210 字节,其中 32 Bytes 的同步帧

头 Header, 1175 Bytes 的数据块区间(共 25 个 47 Bytes 的 data block), 3 Bytes 为帧

尾。

基本结构如下图所示:

MSOP Packet (1210 Bytes)

图 1: MSOP Packet 数据包定义示意图

2.1.1 帧头

帧头 Header 共 32 Bytes,用于识别出数据的开始位置,包计数,UDP 通信预留以及存储时间戳。详细定义如下:

表 4: MSOP 包头定义

	Header (32 Bytes)					
pkt_header	pkt_psn	protocol version	wave_mode	time_sync_mode		
4 Bytes	2 Bytes	2 Bytes	1 Byte	1 Byte		
timestamp	reserved	lidar_type	mems_tmp			
10 Bytes	10 Bytes	1 Byte	1 Byte			

pkt_header: 可作为包的检查序列, 识别头为 0x55, 0xaa,, 0x5a, 0xa5。

pkt_psn:包序列号,表示包计数,循环计数,从每帧数据的起点的包计数为1,每帧数据的最后一个点的包计数为最大值。

protocol version: 表示 UDP 通信协议的版本号。

wave_mode: 回波模式标志位, 0-双回波, 1-N/A, 2-N/A, 3-N/A, 4-最强回波, 5-最后回波, 6-第一回波。

time_sync_mode:时间同步模式:

0x00 表示当前使用雷达内部自己计时

0x01 表示当前使用 1PPS 进行亚秒在整秒复位模式

0x02 表示当前使用 PTP 时间同步模式

timestamp:用于存储时间戳,定义的时间戳用来记录系统的时间,高 6 Bytes 为秒 位,低 4 Bytes 为微秒位。

reserved: 预留位

lidar_type: 雷达类型标志位, 默认值 0x10。

mems_tmp: mems 温度, Temp=mems_tmp-80;即原始值 0 代表-80 度; 255 代表 175 度。

2.1.2 数据块区域

数据块区间是 MSOP 包中传感器的测量值部分,共 1175 Bytes。它由 25 个 data block 组成,每个 data block 长度为 47 Bytes。

对于单回波模式,代表一组 5 个通道一次测量完整的测距数据。每一个 Data Block 就储存单次发射回波的数据。

对于双回波模式,单数个 MSOP Packet 为第一回波的数据,包含 25 个 Data Block。 偶数个 MSOP Packet 为第二回波的数据,包含 25 个 Data Block。依次交替出现,可以根 据 return_seq 标志位来判定该 Packet 属于第几个回波,具体参看表 5 中说明。两个 MSOP Packet 组成一次完整的测量。双回波一次测量总点数为单回波一次测量的两倍。

详细定义如下:

表	5:	MSOP	包中	data	block	定义
---	----	------	----	------	-------	----

data block N (47 Bytes)				
content	offset(byte)	byte	instruction	

•

			该组 Block 里面所有的点相对于包的 timestamp
time_offset	0	1	的时间偏移量,该组点的时间等于
			timestamp+time_offset
			回波序列。单回波模式下,此标志位恒定为0;
return_seq	1	1	双回波模式下,第一回波(距离更近的)用 0x1
			表示,第二回波(距离更远的)用 0x2 表示
ch1 radius	2	2	极坐标系下,通道1的径向点距离值,距离解析
	2	2	分辨率 5mm
ch1 alovation	Л	2	极坐标系下,通道1的点垂直夹角,分辨率
	4	2	0.01°
oh1 ozimuth	6	2	极坐标系下,通道1的点水平夹角,分辨率
cn1_azimutn	0	2	0.01°
ch1_intensity	8	1	通道1的点反射强度值,取值范围0~255
resev.	9	2	预留
			极坐标系下,通道2的径向点距离值,距离解析
ch2_radius	11	2	分辨率 5mm
			极坐标系下,通道2的点垂直夹角,分辨率
ch2_elevation	13	2	0.01°
			极坐标系下,通道2的占水平夹角,分辨率
ch2_azimuth	15	2	0.01°
ch2 intensity	17	1	通道2的占反射强度值,取值范围0~255
resev	18	2	预留
10304.	10	2	现由 招从标系下 通道 3 的经向占距离结 距离解析
ch3_radius	20	2	饭生你示下,通道了的任何点距岗值,距岗解彻 分辨索 5mm
			招从持乏下 通道2的占垂直亚角 公辨索
ch3_elevation	22	2	极坐称东下,通道3的点垂直天用,力 <i>拼平</i>
			4.4.1.2.5.1.通送2.4.1.4.亚立布 八並变
ch3_azimuth	24	2	极坐你杀下,通道3的点小十夹用,分辨举 0.01°
ah Quiata a aita			
	20		
	26	1	通道3的点反射强度值,取值范围0~255
resev.	26 27	1 2	通道3的点反射强度值,取值范围0~255 预留
resev.	26 27 29	1 2 2	 通道3的点反射强度值,取值范围0~255 预留 极坐标系下,通道4的径向点距离值,距离解析
resev.	26 27 29	1 2 2	 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm
ch4_radius	26 27 29 31	1 2 2 2	 通道3的点反射强度值,取值范围0~255 预留 极坐标系下,通道4的径向点距离值,距离解析分辨率5mm 极坐标系下,通道4的点垂直夹角,分辨率
ch4_radius ch4_elevation	26 27 29 31	1 2 2 2	 0.01² 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01°
ch4_radius ch4_elevation	26 27 29 31	1 2 2 2	 i.0.01 i通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01° 极坐标系下,通道 4 的点水平夹角,分辨率
ch4_radius ch4_elevation ch4_azimuth	26 27 29 31 33	1 2 2 2 2 2	 b.01 通道3的点反射强度值,取值范围0~255 预留 极坐标系下,通道4的径向点距离值,距离解析 分辨率5mm 极坐标系下,通道4的点垂直夹角,分辨率 0.01° 极坐标系下,通道4的点水平夹角,分辨率 0.01°
ch4_radius ch4_elevation ch4_azimuth ch4_intensity	26 27 29 31 33 35	1 2 2 2 2 2 1	 J.OT 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01° 极坐标系下,通道 4 的点水平夹角,分辨率 0.01° 通道 4 的点反射强度值,取值范围 0~255
ch4_radius ch4_radius ch4_elevation ch4_azimuth ch4_intensity resev.	26 27 29 31 33 35 36	1 2 2 2 2 2 1 2	 b.01 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01° 极坐标系下,通道 4 的点水平夹角,分辨率 0.01° 通道 4 的点反射强度值,取值范围 0~255 预留
ch4_radius ch4_radius ch4_elevation ch4_azimuth ch4_intensity resev.	26 27 29 31 33 35 36	1 2 2 2 2 2 2 1 2 1 2	 b.01 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01° 极坐标系下,通道 4 的点水平夹角,分辨率 0.01° 通道 4 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 5 的径向点距离值,距离解析
ch4_radius ch4_radius ch4_elevation ch4_azimuth ch4_intensity resev. ch5_radius	26 27 29 31 33 35 36 38	1 2 2 2 2 2 1 2 2 2 2 2 2 2	 b.01 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01° 极坐标系下,通道 4 的点水平夹角,分辨率 0.01° 通道 4 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 5 的径向点距离值,距离解析 分辨率 5mm
ch4_radius ch4_radius ch4_elevation ch4_azimuth ch4_intensity resev. ch5_radius	26 27 29 31 33 35 36 38	1 2 2 2 2 2 1 2 2 1 2 2 2	 b.01 通道 3 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 4 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 4 的点垂直夹角,分辨率 0.01° 极坐标系下,通道 4 的点水平夹角,分辨率 0.01° 通道 4 的点反射强度值,取值范围 0~255 预留 极坐标系下,通道 5 的径向点距离值,距离解析 分辨率 5mm 极坐标系下,通道 5 的点垂直夹角,分辨率

ch5_azimuth	42	2	极坐标系下,通道5的点水平夹角,分辨率 0.01°
ch5_intensity	44	1	通道 5 的点反射强度值,取值范围 0~255
resev.	45	2	预留

N 为任一个 MSOP 包中第 N 个 data block。

time_offset: 第N组 Block 里面所有的点相对于包的 timestamp 的时间偏移量,该 组点的时间等于 timestamp+time_offset。

return_seq:回波序列。单回波模式下,此标志位恒定为0;双回波模式下,第一回 波(距离更近的)用 0x1 表示,第二回波(距离更远的)用 0x2 表示。

n 为第 N 组 data block 中第 n 个通道, n=1, 2, 3, 4, 5, 其包含数据如下:

chn_radius: 极坐标系下,通道 n 的径向点距离值,距离解析分辨率 5mm。

chn_elevation:极坐标系下,通道 n 的点俯仰角,分辨率 0.01°。

chn_azimuth:极坐标系下,通道 n 的点方位角,分辨率 0.01°。

chn_intensity: 通道 n 的点反射强度值,取值范围 0~255。

2.1.2.1 channel data 定义

Channel data 是 9 Bytes,此通道径向距离 2 Bytes、俯仰角 2 Bytes、方位角 2 Bytes、反射强度值 1 Byte、预留 2 Bytes。

详细定义如下:

channel data (9 Bytes)									
chn_ra	adius	chn_ele	evation	chn_az	zimuth	chn_intensity			
(∠ Бу	ies)	(∠ Бу	ies)	(Z D)	nes)	(1 Byte)			
R1 [15:8] R2 [7:0]		E1[15:8]	E2[7:0]	A1[15:8]	A2[7:0]	Intensity[7:0]			
res	V.								
(2 By	tes)								
r1 [15:8]	r2 [7:0]								

表 6: data block 中通道数据定义

以径向距离 radius 计算为例:

chn_radius 是 2 Bytes, 单位是厘米(cm), 分辨率为 0.5 cm。

获取数据包里的某通道 radius 值的十六进制数为: R1 为 0x03, R2 为 0xfc。

0x03 为距离的高位,转换为十进制为 3, 0xfc 为距离的低位,转化为十进制为 252。

因此:此通道的径向距离=R1*256+R2=3*256+252=1020。

根据坐标的分辨率,转化为米: 1020 *0.005=5.10m。

因此,此通道的测距在对应 elevation 和 azimuth 方向上的径向距离是 5.1 米。

XYZ 坐标运算:

通过 Wireshark 抓取 RS-LiDAR-M1 的数据包,如下图所示:

	17.0.002097	192,168	1.200	192,168,1,102	LIDP	1252 6699 + 6699 Len=1210	
	18 0.002243	192,168	.1.200	192,168,1,102	UDP	1252 6699 + 6699 Len=1210	
	19 0.002314	192,168	.1.200	192,168,1,102	UDP	1252 6699 + 6699 Len=1210	
	20 8 882524	197 168	1 288	192 168 1 182	line	1252 6699 + 6699 Lone1210	
Fra	me 1: 1252 byte	s on wire	(10016 bit	s), 1252 bytes ca	ptured (10016 b	its)	
Eth	ernet II. Src:)	(ilinx 00:	01:02 (00:	0a:35:00:01:02).	Dst: WistronI 0	b:3d:77 (54:ee:75:0b:3d:77)	
Int	ernet Protocol	Version 4.	Src: 192.	168.1.200, Dst: 1	92.168.1.102		
Ise	r Datagram Prot	col. Src	Port: 6699	. Dst Port: 6699		Γ	
at.	a (1210 bytes)		-	,		<u> </u>	time offset. 0x00
0	lata: 55aa5aa500	030000040	2000004-09	18000-465-400000	aa	-	time_onset: 0x00
1	Langth: 1210]	000000040		100000000000000000000000000000000000000	o o a		
-	congent azaroj	01 04 0	21		-	-	
0	01 00 18 20 18	20 64 62	20 ac		1 4 4 4 100		return_seq: 0x00
0	00 00 04 02 00	00 04 00	10 33 00	20 25 77 22 53	· · · · · · · · · · · · · · · · · · ·		
à	94 46 24 88 88	89 cl 84	b6 8a d9	28 69 69 59 59 50			
ā	88 88 68 88 88	88 68 87	1b 84 6c	76 e9 4b 00 00	· · · · · · · · · · · · · · · · · · ·		
8	0c 2b 82 f7 6d	3d 8e 00	00 03 00	0a 6d 83 9F 94	· · · · · · · · · · · · · · · · · · ·		
8	ca 33 00 00 00	88 88 88	00 00 00	88 88 88 88 88			elevation · 0v92 0va
0	00 00 00 00 00 00	00 07 la		d5 48 00 00 0c	mv · H-	··· 🔨	elevation. 0x65,0xa
0	3a 82 fa 6d 28	60 00 00	07 00 0a	63 83 9c 94 b5	····m(···· ····c··		
8	32 00 00 00 00	88 69 88	69 66 69	88 88 88 88 88	2		
0	00 00 00 00 00	07 1e 84	6f 76 c0	44 00 00 00 00	•••••• av•0••		r
0	ee ee ee ee ee	80 00 0a	00 0a 55	83 99 94 a2 2b	· · · · · · · · · · · · · · · · · · ·	**	radius: 0x0a 0x77
0	00 00 00 00 00	88 89 89	00 00 00	00 00 00 00 00		-	Taulus. UXUd,UX77
0	00 00 00 00 00 07	22 84 78	76 ad 48	00 00 00 25 83	p v-H	200 D	L
0 A		00 00 00	00 48 65	97 94 00 30 00			
DA I	00 00 00 00 00 00	84 74 76	96 48 49	00 00 00 00 00 00			[
in	5c 03 03 00 00	11 00 00	43 83 05	04 79 36 03 00			animuth 0x04 0xd
	to the state of th	and the second se	THE PARTY NEWS	NAME OF TAXABLE PARTY.	The second se		azimuth: 0X94,0X0

相关参数计算样例

1. time_offset: 数据块时间偏移量 HEX: 0x00 -> DEC: 00 -> 0 µs

2. return_seq: HEX: 0x00 -> 单回波

3. radius: 径向距离 HEX: 0x0a,0x77 -> DEC: 10, 119

-> radius = (10 x256 + 119) x0.005 [m] = 13.395 m

4. elevation: 俯仰角 HEX: 0x83,0xa2 -> DEC: 131,162

-> elevation = ((131 x 256 + 162)-32768) x 0.01[degree] = 9.3°

5. azimuth: 方位角 HEX: 0x94,0xdf -> DEC: 148,223

-> azimuth = ((148 x 256 + 223)-32768) x 0.01[degree] = 53.43°

由下面的解析公式可以解析点云的 XYZ 坐标:

```
X = radius \bullet cos(evelation) \bullet cos(azimuth)
Y = radius \bullet cos(evelation) \bullet sin(azimuth)
Z = radius \bullet sin(evelation)
X = 13.395m \bullet cos (9.3^{\circ}) \bullet cos (53.43^{\circ})
Y = 13.395m \bullet cos (9.3^{\circ}) \bullet sin (53.43^{\circ})
Z = 13.395m \bullet sin (9.3^{\circ})
```

由此得到该通道单回波的一次发射测量得到的点云坐标值 (7.88m,10.62m,2.17m)。

2.1.3 帧尾

帧尾(Tail)长度为3 Bytes,为预留位。

2.2 设备信息输出协议(DIFOP)

设备信息输出协议, Device Info Output Protocol, 简称: DIFOP

I/O 类型:设备输出,电脑读取。

默认端口号为 7788。

DIFOP 是为了将设备序列号(S/N)、固件版本信息、上位机驱动兼容性信息、网络 配置信息、校准信息、运行状态、故障诊断信息定期发送给用户的"仅输出"协议,用户可 以通过读取 **DIFOP** 解读当前使用设备的各种参数的具体信息。

一个完整的 DIFOP Packet 的数据格式结构为同步帧头,数据区,预留。每个数据包共 256 Bytes:包括 8 Bytes 同步帧头 Header, 1Byte 预留位, 247Bytes 的数据区。 数据包的基本结构如下表所示。

的游判分	它早	居州	信自	Offect	长度			
权俗划刀	万 5	周江	百万	Offset 长月 (byternormality) 0 8 8 1 9 1 10 4 110 4 110 4 110 4 110 4 110 4 110 24 12 26 12 26 130 2 131 30 132 2 1332 2 1332 2 1333 34 1334 2 135 34 136 5 136 5 136 5	(byte)			
Header	1	帧头	DIFOP 识别头	息 Offset 识别头 0 留 8 2置值 9 2置值 9 2週 10 目标地址 14 机 MAC 地址 18 端口号 24 端口号 26 起始角度 30 起始角度 32 结束角度 34				
	2	预留	预留	8	1			
	3	帧率设置	帧率设置值	9	1			
			以太网 IP 源地址	10	4			
			以太网 IP 目标地址	14	4			
	4	以太网	以太网 IP 本机 MAC 地址	18	6			
			MSOP 端口号	24	2			
			DIFOP 端口号	26	2			
	5		水平 FOV 起始角度	28	2			
		FOV 设置	水平 FOV 结束角度	30	2			
Data		(暂未启用)	垂直 FOV 起始角度	32	2			
			垂直 FOV 结束角度	34	2			
	7	临末信自	主板 PL 侧固件版本号	36	5			
	1	版平信息	主板 PS 侧固件版本号	41	5			
	9	产品 SN 信息	产品序列号	46	6			
	11	wave_mode	回波模式设置	52	1			
	12	时间信息	时间同步方式设置	53	1			
	12		时间同步状态	54	1			

表 7: DIFOP 包定义

		时间	55	10
13	运行状态	电压、电流、输入输出信号等 状态	65	20
15	故障诊断	故障诊断预留	85	40
17	设备内参	标定参数	125	60
18	预留	预留	185	71

注:

表格中 Header (DIFOP 识别头)为 0xa5,0xff,0x00,0x5a,0x11,0x11,0x55,0x55,可作为包的检查序列。

2. 水平 FOV 的 LSB 为 0.01 度, 最小值 0, 最大值 120°。

3. 垂直 FOV 的 LSB 为 0.01 度, 最小值 0, 最大值 25°。

4. 回波模式设置:回波模式标志位, 0-双回波, 1-N/A, 2-N/A, 3-N/A, 4-最强回波, 5-最后回波, 6-第一回波。

5. 时间同步方式设置: 默认值是 0x02。0x00 表示当前使用雷达内部自己计时, 0x01 表示当前使用 1PPS 进行亚秒在整秒复位模式, 0x02 表示当前使用 PTP 时间同步模式。

6. 时间同步状态:标识时间同步是否成功的状态: 0-不成功, 1-成功。

7. 标定参数:一共 20 个参数,每个参数由 3Bytes 组成,第一个 Byte 用于表示符号(0 为正, 1 为

负), LSB=0.01, 顺序对应 ChannelNum.csv 文件参数前 20 个。

3 LiDAR 接线及工作说明

3.1 Interface box 接线方式

图 2: 雷达设备与上位机直连拓扑图

注:

图 2 中展示的是 Interface Box (AN1) 结构图的接线方式。目前 RS-LiDAR-M1(B3 样件)支持 AN1 和

AN2 两种接口,分别对应以下两种 Interface Box(电源转接盒):

	接线说明	AN1 Interface Box 结构图	AN2 Interface Box 结构图
--	------	-----------------------	-----------------------

3.2 LiDAR 状态机说明

٠

4 时间同步

RS-LiDAR-M1(B3样件)默认固件使用 PTP 1588v2 的时间同步方式。雷达默认只支持 PTPv2,如需要使用 gPTP 时间同步,请联系 RoboSense 技术支持。

4.1 精准时间同步协议(PTP)

PTP(Precision Time Protocol,精确时间协议)是一种时间同步的协议,其本身主要 用于通过网络通讯的形式实现设备之间的高精度时间同步,也可被借用于设备之间的频率 同步。相比现有的各种时间同步机制,PTP 具备以下优势:

1)相比 NTP(Network Time Protocol,网络时间协议),PTP 能够满足更高精度的时间 同步要求,NTP 一般只能达到亚秒级的时间同步精度,而 PTP 则可达到亚微秒级。

2)相比 GPS(Global Positioning System,全球定位系统),PTP 具备更低的建设和维护成本,并且由于可以摆脱对 GPS 的依赖,在国家安全方面也具备特殊的意义。

4.1.1 PTP 接线方式

使用 PTP 同步方式,需要做以下准备,然后按照下图的连接方式进行连接:

1) 一台 PTP Master 授时主机(即插即用,无需额外配置);

2) 以太网交换机;

3) 支持 PTP 协议的设备 (RS-LiDAR-M1 及其他待授时设备);

注:

1.PTP Master 授时设备属于第三方设备, 我司出货时不包含此配件, 需要用户自行采购;

2. 我司设备作为 PTP Slave 设备只获取 PTP Master 发出的时间,不做准确度判断。若解析雷达点云

时间与真实时间出现偏差,请检查 PTP Master 提供的时间是否准确;

3.雷达同步之后, 若 PTP Master 断开连接, 点云数据包中的时间会继续按照雷达内部时钟进行叠加。 雷达断电重启后时间才会被重置。

4.1.2 PTP 模式介绍

```
PTP 支持点对点(Peer to Peer)和端到端(End to End)两种模式。对于 RS-LiDAR-M1
(B3 样件)默认只支持 P2P 模式。
```

P2P(Peer to Peer)模式:采用端延迟机制(Peer Delay Mechanism)

E2E(End to End)模式:采用请求应答机制(Request Response Mechanism)

4.2 使用 Linuxptp 工具简单验证时间同步

将 RS-LiDAR-M1 (B3 样件)电源线和网线与 Interface Box 相连,再与上位机相连。 上位机操作系统(OS)需为 Linux 系统,以下以 Ubuntu 为例。

1. 使用命令\$ifconfig 查看网卡名。如下图所示网卡名为 enp2s0。

	sti@sti	:~\$ ifconfig
	enp2s0	Link encap:Ethernet HWaddr 54:ee:75:f0:7b:9f
		UP BROADCAST MULTICAST MTU:1500 Metric:1
		RX packets:1148564 errors:0 dropped:0 overruns:0 frame:0
		TX packets:2786 errors:0 dropped:0 overruns:0 carrier:0
		collisions:0 txqueuelen:1000
		RX bytes:1436527228 (1.4 GB) TX bytes:309309 (309.3 KB)
	lo	Link encap:Local Loopback
		inet addr:127.0.0.1 Mask:255.0.0.0
		inet6 addr: ::1/128 Scope:Host
		UP LOOPBACK RUNNING MTU:65536 Metric:1
		RX packets:138110 errors:0 dropped:0 overruns:0 frame:0
		TX packets:138110 errors:0 dropped:0 overruns:0 carrier:0
Ì		collisions:0 txqueuelen:1000
		RX bytes:48448646 (48.4 MB) TX bytes:48448646 (48.4 MB)

图 4: 查找网卡名示意图

2. 使用命令\$ethtool -T enp2s0(网卡名),可以查看此网卡是否支持 PTP 硬件。

<pre>sti@sti:~\$ ethtool -T enp2s0</pre>										
Time stamping parameters for enp2s0:										
Capabilities:										
software-transmit	(SOF_TIMESTAMPING_TX_SOFTWARE)									
software-receive	(SOF_TIMESTAMPING_RX_SOFTWARE)									
software-system-clock	(SOF_TIMESTAMPING_SOFTWARE)									
PTP Hardware Clock: none										
Hardware Transmit Timestamp Modes: none										
Hardware Receive Filter Modes	: none									

图 5: 检查 PTP 硬件支持情况示意图

3. 下载并安装 linuxptp 工具。

\$sudo git clone git://git.code.sf.net/p/linuxptp/code linuxptp

\$cd linuxptp

\$sudo make

\$sudo make install

\$reboot

4. ptp4l 命令的使用。

简单同步 RS-LiDAR-M1(B3 样件)使用命令:

\$sudo ptp4l -P -S -4 -m -i enp2s0 (网卡名)

命令选项介绍:

延迟机制选项

- -A 自动模式,自动选择 E2E 延迟机制,当收到对等延迟请求时切换到 P2P。
- -E E2E 模式,请求应答延迟机制(默认)
- -P P2P 模式,端延迟机制

网络传输选项

- -2 IEEE 802.3
- -4 UDP IPV4 (默认)
- -6 UDP IPV6

时间戳选项

- -H 硬件时间戳(默认)
- -S 软件模拟时间戳
- -L 老的硬件时间戳, LEGACY HW 需要配合 PHC 设备使用。

其他选项

- -f [file] 从指定文件 file 中读取配置。 默认情况下不读取任何配置文件。
- -i [dev] 选择 PTP 接口设备,例如 eth0 (可多次指定)必须至少使用此选项或配置文件指 定一个端口。
- -p [dev] 此选项用于在旧 Linux 内核上指定要使用的 PHC 设备(例如/dev/ptp0 时钟设备),默认为 auto,忽略软件/LEGACY HW 时间戳(不推荐使用此选项)
- -s slaveOnly mode,从时钟模式(覆盖配置文件)

- -t 透明时钟模式
- -I [num] 将日志记录级别设置为'num',默认是6
- -m 将消息打印到 stdout
- -q 不打印消息到 syslog
- -v 打印软件版本并退出
- -h 帮助命令

4.3 GPS 时间同步

如需要将 RS-LiDAR-M1(B3 样件)与 GPS 模块同步。首先需要使 GPS 模块给 PTP Master 授时,具体接口与授时方式需要与 PTP Master 提供方明确。除特殊需求外, RoboSense 将不提供相关技术支持。

附录 A RSView

在本附录中将展示如何使用 RSView 获取、可视化、保存和回放 RS-LiDAR-M1(B3 样) 件)数据。

对于从 RS-LiDAR- M1(B3 样件)得到的原始数据,可以使用一些免费工具去检测,例如 Wireshark 和 tcp-dump。但对于可视化这些数据,使用 RSView 是更为便捷和容易 实现的方式,具体的 RSView 版本可以联系 RoboSense 技术人员。

A.1 软件功能

RSView 提供将 RS-LiDAR- M1(B3 样件)数据进行实时可视化的功能。RSView 也能回放保存为 pcap 文件格式的数据,但是还不能支持.pcapng 格式的文件。

RSView 将 RS-LiDAR- M1(B3 样件)得到距离测量值显示为一个点。它能够支持多种自定义颜色来显示数据,例如 XYZ 坐标、径向距离、pitch(Elevation)和 yaw(azimuth)角度等。

RSView 所包含的功能:

- 通过以太网实时显示数据
- 将实时数据记录保存为 PCAP 文件
- 从记录的 PCAP 文件中回放
- 不同类型可视化模式,例如距离、pitch (elevation)和 yaw(azimuth)等等
- 用表格显示点的数据
- 测量距离工具

A.2 安装 RSView

RSView 的安装文件支持 Windows 的 64 位操作系统,安装前不需要安装其他依赖软件。解压 RSView 的压缩包,在/bin 文件夹下得到 RSView.exe 可执行文件。

A.3 设置网路

雷达在出厂时设定的发送电脑的 IP 地址,因此默认情况下需要设定计算机的静态 IP 的地址为 192.168.1.102,子网掩码为 255.255.255.0。此外还需要确保 RSView 没有被防 火墙或第三方安全软件给禁止。

A.4 可视化数据

1. RS-LiDAR- M1(B3 样件)接通电源,并用网线和电脑连接。

2. 右键使用管理员权限运行打开 RSView 软件。

3. 点击 File > Open 并且选择 Sensor Stream (图 A-1)。

0	RSView										
F	ile] Tools Help									
		Open	•	Capture File		Ctrl+O					
		Recent Files	+	۲	Sensor Stream						
		Save As	F	0	Choose Calibration File						
€	9	Export To KiwiViewer		Ì							
)	Save Screenshot									
		Close Data	Ctrl+W								
		Exit	Ctrl+Q								

图 A-1: 打开 RSView 实时数据显示

4. 在弹出的 Sensor Configuration 窗口中, Sensor Calibration 默认包含一个命名为 MEMSCorrectionFile_3V 的雷达参数,选择此参数后点击 OK。RS-LiDAR-M1(B3 样机) 原始点云输出的已经是校准过的点云,所以此参数文件里的值为空。

Sensor Configuration	? ×
Sensor Calibration	
MEMSCorrectionFile_3V	
Add Remove	
Sensor Position	GPS Orientation
X 0.00 🜩 Fitch 0.00 🜩	Pitch 0.00 🜩
Y 0.00 🜩 Roll 2.00 🜩	Roll 0.00 🜩
Z 0.00 🜩 Yaw 0.00 🜩	Heading 0.00 🜩
	OK Cancel

图 A-2: 选择 RS-LiDAR- M1 (B3 样件)参数配置文件

5. 确认 MSOP 和 DIFOP 端口号是否正确: Tools > Data Port Setting

Data Port Setting		?	×
MSOP Port: 6699 New MSOP Port	6699		
DIFOP Port: 7788 New DIFOP Por	7788		
Set			

图 A-3: RSView 雷达端口设置示意图

6. RSView 开始显示实时采集到数据(图 A-4)。可以通过点击 Play 按钮暂停,再点击一次可以继续显示。

图 B-4: RS-LiDAR-M1(B3 样件)点云图像

7. 如没有图像显示请在工具栏 Tool 工具下 Data Port Setting 中查看 MSOP 和 DIFOP 端口 是否配置正确。

A.5 保存 RS-LiDAR- M1(B3 样件)数据为 PCAP 格式

采用 RSView 作为录包工具:

1. 在实时显示数据时点击 Record 按钮(图 A-5)。

🙆 RS	View			1									_ 0	х
File	Tools	Help												
		04	100 E	10 👌		s 🛱 🛱 💽	olid Color 🔹 🔻							
X	Ø		+X 1-X	++YY1	+Z ↑-Z	Relative RAW	- KK 4	1 00	140 45	😒 🥥 TF: 0	🚔 Skip: 0	•	0	×
										Record				

图 A-5: RSView 保存按钮

2. 在弹出的 Choose Output File 对话框中,选择需要保存的路径和保存的文件名后,点击"保存(S)"按钮(图 B-6)。RSView 将开始将数据包文件写入目标 pcap 文件中。(注意: RS-LiDAR- M1(B3 样件)将会产生大量的数据,随着记录时间变长,目标 pcap 文件将会变大。因此最好将记录文件保存到 HDD 或者 SSD 中,而不是保存到较慢的 USB 设备或者用网络保存)。

Choose Output Fil	e						
组织 ▼ 新建文(牛 夹		8== -	• 🔞			
🔣 视频	*	名称	类型	大小 1			
📔 图片		PerfLogs	文件夹				
🖹 文档		퉬 Program Files	文件夹				
📄 迅雷下载		퉬 Program Files (x86)	文件夹				
👌 音乐		퉬 Python27	文件夹				
	E	퉬 Qt	文件夹	E			
🜉 计算机		퉬 temp	文件夹				
🏝 win7 (C:)		퉬 TsdTemp	文件夹				
本地磁盘 (E:)		퉬 window	文件夹	-			
 	-	•	III	F.			
文件名(N):	2017	-07-29-11-43-02-RS-16-Data	.pcap	•			
保存类型(T):	pcap	(*.pcap)		-			
💿 隐藏文件夹			保存(S) 耳	又消			

图 A-6: RSView 保存对话框

3. 再次点击 Record 按钮停止保存 pcap 数据。

采用 Wireshark 作为录包工具:

1. 下载安装 wireshark 软件。

图 A-7: Wireshark 图标

2. 双击启动 wireshark 软件, 启动后选择当前连接雷达的网卡名称双击进去。

效證使用 Wireshark		
打开		
C: Warvikanis strate Declarging (Ling) (Ling		
捕获		
/ / · · · · · · · · · · · · · · · · · ·	•]	
検在 	•	
始政 - ●教授台道書 (第142) 科研订合臣	•	
絵花 未代白は48 (1) NPU (1) (2)		
接手 - + ##21188 第162,149()(2) - - ##3編『		
核年 - + ##21188 图162.149/058	•	
· ★我会计过程数 图 (K) 从学过程		
検査 	-	

图 A-8: Wireshark 启动

3. 看到下图数据则说明和雷达连接正常,红色框内数据分别代表"雷达 IP","PC IP","MSOP 端口号", "DIFOP 包端口号"。

xsq.pc	ap gamme		and the second				18			<u> </u>	-	 	
文件(1)	編編(11) 税图(11)	其转(G) 狮鼓(C) :	分析(1) 约	(计位) 电谱仪) 引	毛线包 工具① 帮助包								
AH:	d 🐵 🎍 🖻 🕱 🕻	9	至 业 三		1								
	*************************************			Launa -									
in the second second		-	1		1								
B4.	1.0.000000	192 168 10 14	-	102 168 10 6	INDR	1200	2369+2369 1 m	1249					
	2 0.000000	103 168 10 14		102.100.10.0	007	1200	2260-2260 1-	-1240					
	2 0.000707	192.168.10.14		192.108.10.0	UDD	1250	2360+2369 Le	1240					
	4 0 0000040	192.160.10.14		192.108.10.6	000	1290	2369+2369 Le	1240					
	5 0 001704	102.100.10.14		102 160 10 6	00/	1200	2260+2260 1=	1240					
	5 0.002764	192.108.10.14		102.100.10.0	UDP	1200	2369-2369 Le	1248					
	7.0.001000	192.168.10.14		192.100.10.0	007	1200	2369-2369 Le	1240					
	7 0.004052 8 0.004702	192.160.10.14		192,100,10.0	UDP	1290	2369+2369 Le	1240					
	0.0.005395	102.160.10.14		102.100.10.0	100	1200	2260-2260 1-	1249					
	10.0 005084	192.168.10.14		192.108.10.0	UDP	1290	2369+2369 Le	1240					
	11 0 005650	192 168 10 14		192 168 10 6	100	1200	2369+2369 10	1248					
	12 0 007314	192.168.10.14		192.168.10.6	UDP	1290	236942369 10	n=1240					
	13.0.007979	192.168.10.14		192, 168, 10, 6	LIDP	1298	2369+2369 Le	n=1248					
	14 0.008664	192, 168, 10, 14		192 158 10.6	LIDP	1298	2369+2369 1 4	n=1248					
	15 8,009325	192,168,10,14		192,168,10,6	UDP	1290	2369+2369 Le	n=1248					
	16.0.009984	192,168,18,14		192, 168, 10, 6	UDP	1298	2369+2369 1	n=1248					
	17 0.010591	192.168.10.14		192,168,10,6	UDP	1290	2369+2369 Le	n=1248					
	18 0.011402	192.168.10.14		192.168.10.6	UDP	1298	8389+8389 Le	en-1248					
	19 0.011406	192,168,10,14		192,168,10,6	UDP	1290	2369+2369 Le	n=1248					
	28 8.012149	192.168.10.14		192.168.10.6	UDP	1290	2369+2369 Le	n=1248					
	21 0.012855	192.168.10.14		192.168.10.6	UDP	1290	2369+2369 Le	en-1248					
	22 0.013519	192.168.10.14		192.168.10.6	UDP	1290	2369-2369 Le	n-1248					
	23 0.014229	192.168.10.14		192.168.10.6	UDP	1290	2369+2369 Le	n=1248					
	24 0.014943	192.168.10.14		192.168.10.6	UDP	1290	2369+2369 Le	n-1248					
	25 0.015678	192.168.10.14		192.168.10.6	UDP	1290	2369+2369 Le	en-1248					
	26 0.016399	192.168.10.14		192,168.10.6	UDP	1290	2369+2369 Le	en=1248					
L Enam	a 1: 1298 butar	on wine (10320	hite) 1	298 butes cant	tured (19339 bits)								
Ethe	coat II. Sec: De	ell 1a:52:53 (0)	8-10-23-1	(a:52:53). Det:	98:fa:9h:8d:3e:ae	(98-fa)	Sh-M-Serae)						
Tote	rnet Protocol V	ension A Sect 1	192 168 1	10 14 Det 193	168 10 6		soloolseloe,						
User	Datagram Proto	col. Sec Port: 1	2369. Det	Port: 2369									
	00 (- 01 04 3-	00 1- 00 1-		0.00 45 00									
0000	90 Ta 90 00 3e	ae 00 10 23 1a	-0 -2 0	0 00 45 00 .	Pro r								
6020	Ra 86 89 41 89	41 84 e8 c6 e3	1 55 aa 0	5 Ba 5a a5 .									
0030	50 a0 00 00 00	00 00 00 00 00	0 00 00 0	0 00 11 01 P									
0840	01 00 09 09 01	6e 01 81 01 00	0 00 00 0	0 00 00 00 .	····								
0850	98 16 d0 17 ff	ee Se Se ff ff	Ba ff f	f 92 ff ff .	·····. ^{AA} ······								
0060	54 ff ff 21 ff	ff 0a ff ff 09	ff ff 0	6 ff ff 06 T	·								
0070	01 eb 96 01 e5	9f 01 e0 7a 01	da 7f 0	1 db 8f 01 .	······ Z								
0000	04 0e 01 d2 84	01 03 29 ff ff	oa tt t	1 92 TT TT .									
0090	91 eh 96 81 e5	9f 81 e8 7a 81	da 7f Ø	1 db 8f 81									
0000	d4 8e 81 d2 84	01 d3 29 ff ee	5e 72 f	f ff 8a ff)^c								
00:0	ff 95 ff ff 63	ff ff 27 ff ff	0a ff f	f 0a ff ff .									
0000	07 ff ff 06 01	ec 95 01 e6 9e	e 01 e0 7	a 01 db 7e .	Z~								
00e0	01 db 8f 01 d4	92 01 d2 83 01	d4 26 f	f ff 8a ff .									
00100	ff 95 ff ff 63	ff ff 27 ff ff	ða ff f	f 0a ff ff .	····C··· ······								
-													

图 A-9: Wireshark 工作

4. 软件左上角找到"文件-保存"。

•

<pre>rslidar32_pcap.pcap</pre>				4 6 1	
文件 (E) 编辑 (E) 视图 (Y)	跳转(G) 捕	获(C) 🔅	分析(A) 统计(S) 电话(Y) 无线	戋(W) 工具(T) 帮助(H)	
打开	Ctrl+O	2 7	ኛ 👲 📃 🗐 🍳 ସ୍ 🔍 🖳		
打开最近		•			
合并 (0)…			Destination	Protocol	Length Info
从 Hex 转储导入(L)…		200	192.168.1.102	UDP	1290 6699→6699 Le
关闭	Ctrl+W	200	192.168.1.102	UDP	1290 6699→6699 Le
/9.75 (c)	C4-145	200	192.168.1.102	UDP	1290 6699→6699 Le
味けど	CULTS	200	192.168.1.102	UDP	1290 6699→6699 Le
· 万仔/\ 惩)…	Ctrl+Shift+2	, 500	192.168.1.102	UDP	1290 6699→6699 Le
文件集合		200	192.168.1.102	UDP	1290 6699→6699 Le
		200	192.168.1.102	UDP	1290 6699→6699 Le
导出特定分组…		200	192.168.1.102	UDP	1290 6699→6699 Le
导出分组解析结果		► <u>2</u> 00	192.168.1.102	UDP	1290 6699→6699 Le
导出分组字节流 (B)…	Ctrl+H	200	192.168.1.102	UDP	1290 6699→6699 Le
导出 PDV 到文件…		200	192.168.1.102	UDP	1290 6699→6699 Le
导出 SSL 会话密钥…		200	192.168.1.102	UDP	1290 6699→6699 Le
导出对象		200	192.168.1.102	UDP	1290 6699→6699 Le
		200	192.168.1.102	UDP	1290 6699→6699 Le
打印 (2)…	Ctrl+P	200	192.168.1.102	UDP	1290 6699→6699 Le
退出	Ctrl+0	200	192.168.1.102	UDP	1290 6699→6699 Le
1, 0.000041	172.100.	1.200	192.168.1.102	UDP	1290 6699→6699 Le
18 0.010247	192.168.	1.200	192.168.1.102	UDP	1290 6699→6699 Le
19 0.010848	192.168.	1.200	192.168.1.102	UDP	1290 6699→6699 Le
20 0.011449	192.168.	1.200	192.168.1.102	UDP	1290 6699→6699 Le
21 0.012035	192.168.	1.200	192.168.1.102	UDP	1290 6699→6699 Le

图 A-10: Wireshark 数据保存

- 保存在 (L): 📃 桌面 - 🕝 🕸 📂 🛄 -G WPS网盘 库 最近使用的项目 双击进入WPS网盘 系统文件夹 Administrator 计算机 系统文件夹 系统文件夹 桌面 网络 32-B23 -系统文件夹 文件夹 我的文档 32-B163(1) 111 文件夹 文件夹 计算机 161184102288 161185300749 ත 文件夹 文件夹 WPS网盘 B241 B278 文件夹 文件夹 BPearl_U盘数据 LMR4081-20190605-R50m 文件夹 文件夹 RS-LiDAR 文件名(11): • 保存(S) 保存类型(I): Wireshark/... . - pcapng (*. pcapng; *. pcapng, gz; *. ntar; *. n 💌 取消 Wireshark/... - pcapng (* ncanng;*.pcapng, gz;*.ntar;*.ntar.gz) Wireshark/tcpdump/... pcap (*.pcap.gz;*.cap.gz;

 #ireshark/tcpdump/...
 pcap (*.pcap:*.pcap.gz;*.cap.gz;*.cap.gz;*.dmp;*.dmp.gz)

 Wireshark - nanosecond
 TTDPCap (*.pcap:*.pcap.gz;*.cap;*.cap.gz;*.dmp;*.dmp.gz)

 Modified tcpdump - libpcap (*.pcap;*.pcap.gz;*.cap;.gz;*.cap.gz;*.dmp;*.dmp.gz)

 Compress with g
 Nokia tcpdump - libpcap (*.pcap;*.pcap.gz;*.cap.gz;*.dmp;*.dmp.gz)

 RedHat 6.1 tcpdump - libpcap (*.pcap;*.pcap.gz;*.cap.gz;*.cap.gz;*.dmp;*.dmp.gz)
- 5. 在弹出的对话框中输入文件名称,数据格式选择.pcap 保存即可。

图 A-11: Wireshark 数据保存

6. 此时可以在指定的文件夹目录下找到对应的文件,此时可以使用我们的 RSView 软件或者驱动去查看点云(RSView 操作请参照产品用户手册)。

VisualSVN-GlobalWinAuthz.ini	2019/5/16 10:14	配置设置	1 KB
🚳 vsvnvars.bat	2013/1/7 9:52	Windows 批处理	1 KB
🔚 RS-LiDAR.pcap	2019/10/30 15:42	Wireshark captu	2 KB

图 A-12 Wireshark 数据保存

A.6 回放 pcap 数据

可以使用 RSView 对 RS-LiDAR- M1(B3 样件)保存的数据 pcap 文件进行回放或者 测试。您可以使用 Play 按钮去播放或者选择数据中个别帧。也可以用鼠标选择 3D 点云 数据中的一部分,然后打开表格进行分析。pcap 文件的保存路径不可以有中文。

1. 点击 File > Open 并且选择 Capture File。

图 A-13 打开 pcap 记录文件

2. 弹出 Open File 对话框,选择一个记录的 pcap 文件并且点击"打开(O)"按钮。

🐵 Open File	11 11 11 11 11 11 11 11 11 11 11 11 11						x
🕞 🕞 🗸 👝 🕨 计算机	▶ 本地磁盘 (E:)			▼ ⁴ 7	搜索 本地磁盘 (E:)		٩
组织 ▼ 新建文件夹					8== •		0
🎍 2345下载 🔺	名称	修改日期	类型	大小			
▶ 下载	🔚 back_lidaer	2018/6/12 星期	Wireshark captu	14,486 KB)		
3 最近访问的位置							
🛆 WPS云文档							
篇 库 🗧							
- 祝坂							
👌 音乐							
🖳 计算机							
							_
文件	名(N): back_lidaer			-	Supported Files (*.inj	o *.txt	•
				(打开(0)	取消	

图 A-14 打开 pcap 记录文件

3. 弹出 Sensor Configuration 对话框,添加并选择正确的 RS-LiDAR- M1(B3 样件)的 配置文件并点击 OK 按钮。

4. 点击 Play 按钮可以播放或者暂停数据。使用 Scrub 滑动工具前后滑动可以选择数据中

不同位置的帧,此工具和 Record 按钮在同一个工具栏内(图 A-15)。

6	RS 🤇	View																	• X
	File	Tool	s He	elp															
******	01,8301 01,1830 01,1830	U	Ø	\$				ę			- 🛱 🛱 🔹 int	tensity	•						
******	X	Ø			+X	1 -×	t+Y →	-Y†	+Z	1 -Z	Relative RAW			5	😒 🌒 TF:) 🌲 Skip: O	÷ -		477 🌲
	+	== T						4					Play		Z	X		5	

图 A-15 RSView Play 按钮和 Scrub 滑动工具

5. 为了得到更为具体的分析,选择一帧您感兴趣的数据并且点击 Spreadsheet 按钮(图 A-

16)。一个侧边栏数据表将会显示在软件中右边,在表中包含了这一帧所有的数据。

图 A-16 RSView 表格工具

6. 可以调整表格每列的宽度,或者排序得到更直观的显示。

Showin	ag Data	▼ Attribu	te: Point Data 🤜	Precision: 3	🕈 F 🔣 🔠 {	} 🖻			
	Point ID	Point_X	Point_Y	Point_Z	distance_m	intensity	laser_id	pitch	yaw
0	0	7.947	10.617	1.888	13.395	45	0	9.300	53.430
1	1	10.905	5.676	2.231	12.495	40	1	12.060	27.680
2	2	0.000	0.000	0.000	0.000	1	2	-327.680	-327.680
3	3	8.250	-3.523	1.498	9.095	75	3	11.320	-23.270
4	4	10.390	-11.478	1.696	15.575	142	4	7.590	-48.030
5	5	7.956	10.549	1.873	13.345	51	0	9.270	53.220
6	6	0.000	0.000	0.000	0.000	1	1	-327.680	-327.680
7	7	0.000	0.000	0.000	0.000	1	2	-327.680	-327.680
8	8	8.233	-3.550	1.499	9.090	72	3	11.330	-23.470
9	9	10.397	-11.571	1.713	15.650	176	4	7.620	-48.240
10	10	7.965	10.481	1.858	13.295	50	0	9.240	53.010
11	11	0.000	0.000	0.000	0.000	1	1	-327.680	-327.680
12	12	0.000	0.000	0.000	0.000	1	2	-327.680	-327.680
13	13	8.237	-3.587	1.506	9.110	68	3	11.350	-23.680
14	14	0.000	0.000	0.000	0.000	1	4	-327.680	-327.680
15	15	7.958	10.401	1.840	13.225	43	0	9.210	52.820
16	16	0.000	0.000	0.000	0.000	1	1	-327.680	-327.680
17	17	0.000	0.000	0.000	0.000	1	2	-327.680	-327.680
18	18	8.243	-3.622	1.512	9.130	72	3	11.360	-23.870

图 A-17 RSView 表格显示

7. 点击 Spreadsheet 中的 Show only selected elements,可以得到所选择点对应的数

据,当然如果没有选择,表格将为空(图 A-18)。

图 A-18 RSView show only elements 工具

8. 点击 Select All Points 工具,这使得您的鼠标变成一个数据点选择工具(图 A-19)。

图 A-19 RSView Select All Points 工具

9. 在 3D 数据显示空间中,使用鼠标画一个长方形框住一些数据点,这些点的数据将会在 Spreadsheet 被选择,并且在图中会变成粉红色(图 A-20)。

图 A-20 RSView List Selected Points

10. 任何被选中的点都可以通过 Spreadsheet 工具栏 output csv data 保存(见图 A-

21)。

Showing Data	▼ Attribute:	Point Data 🔻 Preci	ision: 3 🖨 🖪	? 🔍 🆽 🛄	3

图 A-21 RSView 输出选中点到 csv 文件

附录 B Driver & SDK

B.1 rs driver 的编译与安装

RS Driver 为速腾聚创激光雷达提供跨平台的雷达驱动内核,方便用户二次开发使

用。v1.3.0 的驱动内核及之后的版本已支持 RS-LiDAR-M1(B3 样件)的点云解析及变换。

可以在官方 GitHub 账号上下载 rs_driver 包:

https://github.com/RoboSense-LiDAR/rs_driver

- rs_driver 目前支持下列系统和编译器:
- Windows
 - MSVC (VS2017 & VS2019 己测试)
 - Mingw-w64 (x86_64-8.1.0-posix-seh-rt_v6-rev0 已测试)
- Ubuntu (16.04, 18.04, 20.04)
 - gcc (4.8+)
- B.1.1 依赖库的安装
 - rs_driver 依赖下列的第三方库,在编译之前需要先安装:
 - Boost
 - > Pcap
 - ▶ PCL (非必须,如果不需要可视化工具可忽略)
 - ▶ Eigen3 (非必须,如果不需要内置坐标变换可忽略)

在 Ubuntu 中安装以上依赖库:

\$sudo apt-get install libboost-dev libpcap-dev libpcl-dev libeigen3-dev 在 Windows 中安装以上依赖库:

Boost

Windows 下 需 要 从 源 码 编 译 Boost 库 , 请 参 考 官 方 指 南 (https://www.boost.org/doc/libs/1_67_0/more/getting_started/windows.html)。编译安装 完成之后,将 Boost 的路径添加到系统环境变量 BOOST_ROOT,见下图 B-1。如果使用 MSVC,也可以选择直接下载相应版本的预编译的安装包。

统属性	\times	环境变量	
计算机名 硬件 高级 系统保护 远程		sti 的用户变量(U)	
要进行大多数更改,你必须作为管理员登录。		安量	G.
11-00		Path	C:\Users\sti\AppData\Local\Microsoft\WindowsApps;C\Prog
(1998) 视觉效果。处理器计划,内存使用,以及虚拟内存 (20日本)		TEMP TMP	C\Users\sti\AppData\Local\Temp C\Users\sti\AppData\Local\Temp
用户配置文件 与登录帐户相关的复数设置			新建(N) 編編(E) 動除(D)
设置(E)		系统变量(S)	
		变量	a ^
启动和故障恢复		ComSpec	C:\Windows\system32\cmd.exe
系统启动、系统故障和调试信息		DriverData	C:\Windows\System32\Drivers\DriverData
		NUMBER_OF_PROCESSORS	2
设置(T)		Path PATHEXT PROCESSOR ARCHITECT	C\\Windows_V\ C\\Windows\system32;C\\Windows\C\\Windows\System32\\Wb .COM;EXE;BAT;CMD;VBS;VBE;JS;JSE;WSF;WSH;MSC AMD64
环境变量(N)		>	#FE(W)
确定 取満 应用(A	.)		後定 取消

图 B-1:环境变量添加示意图

Pcap

首先,安装 Pcap 运行库(https://www.winpcap.org/install/bin/WinPcap_4_1_3.exe)。 然后,下载开发者包(https://www.winpcap.org/install/bin/WpdPack_4_1_2.zip)到任意位 置,然后将 WpdPack_4_1_2/WpdPack 的路径添加到环境变量 PATH,见图 B-1。

▶ PCL (非必须,如果不需要可视化工具可忽略)

(1) MSVC

如果使用 MSVC 编译器,可使用 PCL 官方提供的安装包安装。 安装过程中选择 "Add PCL to the system PATH for xxx":

○ PCL-1.1.1AllmOne-msvc2019-win64安装 - ○ × ● PCL Install Options Choses options for installing PCL I.1.1.1.HIMDAnsmsvc2019-win64	
By default FCL 1.11.1 does not add its directory to the system FATM. O Bo not add FCL to the system FATM O Add FCL to the system FATM for all users @ Add FCL to the system FATM for current user	
Create FCL Desktop Icon	
Wullsoft Install System v3.05 く上一步(r) 下一步(y) > 取消(c)]

图 B-2: PCL 设置界面

(2) Mingw-w64

PCL 官方并没有提供 mingw 编译的库,所以需要按照官方教程,从源码编译 PCL 并安装。

B.1.2 使用方式

B.1.2.1 rs_Driver 安装使用

驱动编译以 Linux 环境为例(在 windows 中, rs_driver 暂不支持安装使用),按顺序 执行以下代码,安装驱动: \$cd rs_driver \$mkdir build && cd build \$cmake .. && make -j4

\$sudo make install

B.1.2.2 作为子模块使用

在作为子模块使用时,需要添加如下命令到 CMakeLists.txt 文件中(将 rs_driver 作为 子模块添加到工程内,使用 find_package()指令找到 rs_driver,然后链接相关库)。 add_subdirectory(\${PROJECT_SOURCE_DIR}/rs_driver) find_package(rs_driver REQUIRED) include_directories(\${rs_driver_INCLUDE_DIRS}) target_link_libraries(project \${rs_driver_LIBRARIES})

B.1.3 示例程序 & 可视化工具

B.1.3.1 示例程序

rs_driver 提供了两个示例程序,用户可参考示例程序编写代码调用接口,存放于 rs_driver/demo 中:

demo_online.cpp

demo_pcap.cpp

若希望编译这两个示例程序,执行 CMake 配置时加上参数: \$cmake -DCOMPILE_DEMOS=ON ..

B.1.3.2 可视化工具

rs_driver 提供了一个基于 PCL 的点云可视化工具,存放于 rs_driver/tool 中: rs_driver_viewer.cpp

若希望编译可视化工具,执行 CMake 配置时加上参数: *\$cmake -DCOMPILE_TOOLS=ON ..*

B.1.4 坐标变换

rs_driver 提供了内置的坐标变换功能,可以直接输出经过坐标变换后的点云,节省了 用户对点云进行坐标变换的额外操作耗时。若希望启用此功能,执行 CMake 配置时加上参数:

\$cmake -DENABLE_TRANSFORM=ON ...

B.2 rlidar sdk 的编译与安装

rslidar_sdk 为速腾聚创在 Ubuntu 环境下的雷达驱动软件包,包括了雷达驱动内核, ROS 拓展功能,ROS2 拓展功能,Protobuf-UDP 通信拓展功能。对于没有二次开发需求的 用户,或是想直接使用 ROS 或 ROS2 进行二次开发的用户,可直接使用本软件包,配合 ROS 或 ROS2 自带的 RVIZ 可视化工具即可查看点云。对于有更深一步二次开发需求,想 将雷达驱动集成到自己工程内的客户,请参考雷达驱动内核的相关文档,直接使用内核 rs_driver 进行二次开发。

可以在官方 GitHub 账号上下载 rsliar_sdk.tar.gz 包,可以在官方 GitHub 账号上下载: https://github.com/RoboSense-LiDAR/rslidar_sdk/releases

Assets 3

😚 rslidar_sdk.tar.gz

注意: 下载 source code 将不包含 rs_driver 解析内核, 需要手动下载添加。

B.2.1 依赖库的安装

B.2.1.1 ROS 环境

若需在 ROS 环境下使用雷达驱动,则需安装 ROS 相关依赖库:

Ubuntu 16.04 - ROS kinetic desktop-full

Ubuntu 18.04 - ROS melodic desktop-full

安装方式: 参考 http://wiki.ros.org

如果安装了 ROS kinetic desktop-full 版或 ROS melodic desktop-full 版,那么兼容版本其 他依赖库也应该同时被安装了,所以不需要重新安装它们以避免多个版本冲突引起的问题, 因此,强烈建议安装 desktop-full 版,这将节省大量的时间来逐个安装和配置库。 B.2.1.2 ROS2 环境

若需在 ROS2 环境下使用雷达驱动,则需安装 ROS2 相关依赖库

Ubuntu 16.04 - 不支持

Ubuntu 18.04 - ROS2 Eloquent desktop

安装方式:参考 https://index.ros.org/doc/ros2/Installation/Eloquent/Linux-Install-Debians/ 注意:请避免在同一台电脑上同时安装 ROS 和 ROS2, 这可能会产生冲突! 同时还需要 手动安装 Yaml 库。

B.2.2 编译与运行

rslidar_sdk 可以使用三种不同的编译和运行方式。

B.2.1.1 直接编译

按照如下指令即可编译运行程序。直接编译也可以使用 ROS 相关功能(不包括 ROS2), 但需要在程序启动前手动启动 roscore, 启动后手动打开 rviz 才能看到可视化点云结果。 编译命令如下:

\$cd rslidar_sdk
\$mkdir build && cd build
\$cmake .. && make -j4
\$./rslidar_sdk_node

B.2.1.2 依赖于 ROS-catkin 编译

1. 打开工程内的 CMakeLists.txt 文件,将文件顶部的 set(COMPILE_METHOD ORIGINAL) 改为 set(COMPILE_METHOD CATKIN)。

Compile setup (ORIGINAL,CATKIN,COLCON)

set(COMPILE_METHOD CATKIN)

2. 将 rslidar_sdk 工程目录下的 package_ros1.xml 文件重命名为 package.xml。

3. 新建一个文件夹作为工作空间,然后再新建一个名为 src 的文件夹,将 rslidar_sdk 工程 放入 src 文件夹内。

4. 返回工作空间目录,执行以下命令即可编译&运行(若使用.zsh,将第二句指令替换为 source devel/setup.zsh)。

\$catkin_make

\$source devel/setup.bash
\$roslaunch rslidar sdk start.launch

B.2.1.3 依赖于 ROS2-colcon 编译

1. 打开工程内的 CMakeLists.txt 文件,将文件项部的 set(COMPILE_METHOD ORIGINAL) 改为 set(COMPILE_METHOD COLCON)。

Compile setup (ORIGINAL,CATKIN,COLCON)

set(COMPILE_METHOD COLCON)

2. 将 rslidar_sdk 工程目录下的 package_ros2.xml 文件重命名为 package.xml。

3. 新建一个文件夹作为工作空间, 然后再新建一个名为 src 的文件夹, 将 rslidar_sdk 工程 放入 src 文件夹内。

4. 通过链接下载 ROS2 环境下的雷达 packet 消息定义,将 rslidar_msg 工程也放在刚刚 新建的 src 文件夹内,与 rslidar_sdk 并列。

5. 返回工作空间目录,执行以下命令即可编译&运行(若使用.zsh,将第二句指令替换为 source install/setup.zsh)。

\$colcon build

\$source install/setup.bash

\$ros2 launch rslidar_sdk start.py

B.2.3 参数介绍

本工程只有一份参数文件 config.yaml,储存于 rslidar_sdk/config 文件夹内。整个参数 文件可以被分为两部分,common 部分以及 lidar 部分。 在多雷达情况下,common 部分 的参数设置将会被所有雷达共享,而 lidar 部分需要根据每台雷达实际情况分别进行设置。 注意:参数文件 config.yaml 对缩进有严格的要求!请确保修改参数之后每行开头的缩进仍 保持一致!

B.2.3.1 Common 部分参数

此部分用于设置雷达的消息来源,以及是否将结果发布。

common:	
msg_source: 1	#雷达数据消息来源类型
send_packet_ros: false	
send_point_cloud_ros: false	
send_packet_proto: false	
send_point_cloud_proto: false	
pcap_path: /home/robosense/lidar.pca	#播放离线 PCAP 包时的绝对地址

msg_source:

1-- 连接在线雷达. 更多使用细节请参考在线读取雷达数据发送到 ROS。

2 -- 离线解析 ROS 或 ROS2 的 packet 包。更多使用细节请参考 录制 ROS 数据包&离线 解析 ROS 数据包。

3-- 离线解析 pcap 包。更多使用细节请参考离线解析 Pcap 包发送到 ROS。

4 -- 雷达消息来源为 Protobuf-UDP 的 packet 消息

5-- 雷达消息来源为 Protobuf-UDP 的点云消息。

send_packet_ros:

true -- 雷达 packet 消息将通过 ROS 或 ROS2 发出, false -- 禁止。

由于雷达 ROS packet 消息为速腾聚创自定义 ROS 消息,因此用户无法直接 echo 话题查看消息具体内容。实际上 packet 主要用于录制离线 ROS 包,因为 packet 的体积小于点云。

•

send_point_cloud_ros:

true -- 雷达点云消息将通过 ROS 或 ROS2 发出, false -- 禁止。

点云消息类型为 ROS 官方定义的点云类型 sensor_msgs/PointCloud2,因此用户可以 直接使用 Rviz 查看点云。同时,用户也可以选择录包时直接录制点云,但这样做包的体积 会非常大,因此我们建议离线录制 ROS 包时录制 packet 消息。

send_packet_proto:

true -- 雷达 packet 消息将通过 Protobuf-UDP 发出, false -- 禁止。

send_point_cloud_proto:

true -- 雷达点云消息将通过 Protobuf-UDP 发出, false -- 禁止。

我们建议发送 packet 消息而不是点云,因为点云消息体积过大,对带宽有较高的要求。.

pcap_path:

如果 msg_dource = 3, 请确保此参数设置为正确的 pcap 包的绝对路径。

B.2.3.2 lidar 部分参数

```
本部分需要根据不同的雷达进行设置。
```

```
lidar:
   - driver:
       lidar type: RSM1
       frame id: /rslidar
       msop port: 6699
       difop_port: 7788
       start_angle: 0
       end angle: 360
       min distance: 0.2
       max distance: 200
       use lidar clock: false
     ros:
       ros recv packet topic: /rslidar packets
       ros send packet topic: /rslidar packets
       ros send point cloud topic: /rslidar points
     proto:
       point cloud recv port: 60021
       point cloud send port: 60021
       msop recv port: 60022
       msop send port: 60022
       difop recv port: 60023
       difop send port: 60023
       point cloud send ip: 127.0.0.1
       packet_send_ip: 127.0.0.1
lidar type: 目前支持的雷达型号已在 sdk 文件夹 README 中列出。RS-LiDAR-M1 选择
```

类型 RSM1。

frame_id: 点云消息的 frame_id。

msop_port, difop_port: 点云的 msop 端口号和 difop 端口号。若收不到消息,请优先确 认这两个参数是否配置正确。

start_angle, end_angle: 此参数对 RS-LiDAR-M1 暂未启用,点云消息的起始角度和结束角度,此处设置为软件屏蔽,无法减小每帧点云的体积,只会将区域外的点设置为 NAN 点。起始角和结束角的范围应在 0~360°之间。(起始角可以大于结束角).

min_distance, **max_distance**: 点云显示的最小距离和最大距离,此处设置为软件屏蔽, 无法减小每帧点云的体积,只会将区域外的点设置为 NAN 点。

use_lidar_clock: true -- 使用雷达时间作为消息时间戳; false -- 使用系统时间作为消息时间戳。

B.2.3.3 多雷达示例

在线连接2台RS-LiDAR-M1 雷达,并发送点云到ROS。 注意: lidar 部分参数的缩进 common: #使用在线数据消息 msg_source: 1 send packet ros: false send point cloud ros: true #发出点云 rslidar points 数据 send packet proto: false send_point_cloud_proto: false pcap path: /home/robosense/lidar.pcap lidar: - driver: lidar_type: RSM1 frame id: /rslidar msop port: 6699 difop_port: 7788 start_angle: 0 end angle: 360 min distance: 0.2 max_distance: 200 use lidar clock: false ros: ros recv packet topic: /middle/rslidar packets ros send packet topic: /middle/rslidar packets ros_send_point_cloud_topic: /middle/rslidar_points proto: point cloud recv port: 60021 point cloud send port: 60021 msop recv port: 60022 msop send port: 60022 difop recv port: 60023 difop send port: 60023 point cloud send ip: 127.0.0.1 packet send ip: 127.0.0.1 - driver: lidar type: RSBP

frame id: /rslidar msop_port: 1990 difop port: 1991 start_angle: 0 end_angle: 360 min_distance: 0.2 max distance: 200 use lidar clock: false ros: ros_recv_packet_topic: /left/rslidar_packets ros send packet topic: /left/rslidar packets ros send point cloud topic: /left/rslidar points proto: point_cloud_recv_port: 60024 point cloud send port: 60024 msop recv port: 60025 msop send port: 60025 difop_recv_port: 60026 difop_send_port: 60026 point cloud send ip: 127.0.0.1 packet send ip: 127.0.0.1

B.2.4 坐标转换功能

rslidar_sdk 提供了内置的坐标变换功能,可以直接输出经过坐标变换后的点云,显著 节省了用户对点云进行坐标变换的操作耗时。本节将指导用户如何使用 rslidar_sdk 的内置 坐标变换功能,输出经过坐标变换后的点云。

B.2.4.1 依赖介绍

若希望启用坐标变换功能,需要安装以下依赖:

➢ Eigen3 命令安装方式: \$sudo apt-get install libeigen3-dev

B.2.4.2 编译

若希望启用坐标变换的功能,在编译程序时需要将 ENABLE_TRANSFORM 选项设置为 ON.

1.直接编译
 \$cmake -DENABLE_TRANSFORM=ON ..
 \$make -j4
 2.ROS 编译
 \$catkin make -DENABLE TRANSFORM=ON

2. ROS2 编译

٠

\$colcon build --cmake-args '-DENABLE_TRANSFORM=ON'

B.2.4.3 坐标转换参数设置

坐标变换参数为 lidar 部分的隐藏参数 x, y, z, roll, pitch, yaw, 此处为参数文件的一个 示例, 用户可根据实际情况配置。

common:
msg_source: 1
send_packet_ros: false
send_point_cloud_ros: true
send_packet_proto: false
send_point_cloud_proto: false
pcap_path: /home/robosense/lidar.pcap
lidar:
- driver:
lidar_type: RS128
frame_id: /rslidar
msop_port: 6699
difop_port: 7788
start_angle: 0
end_angle: 360
min_distance: 0.2
max_distance: 200
use_lidar_clock: false
x: 1
y: 0
z: 2.5
roll: 0.1
pitch: 0.2
yaw: 1.57

附录 C MEMS Tool 的使用

此附录将介绍怎样使用 mems_flash 工具修改雷达的 IP 地址, 雷达上位机 IP 地址(在 非广播地址下, 雷达只会给具有此 IP 的上位机发送数据), 获取雷达版本号。

C.1 使用 MEMS Tool 与雷达建立通信

1. 打开小工具

在 windows 下打开小工具所在的文件夹,运行 mems_flash.exe 可执行文件。

_64_bit-Release → MEMS_Comand_Tool_V1.6.1_20060629 v Ö				
名称	修改日期	类型	大小	
platforms	2020/6/29 16:22	文件夹		
🗟 config.ini	2020/6/12 19:25	配置设置		
libgcc_s_seh-1.dll	2020/6/12 16:09	应用程序扩展	7	
🗟 libstdc++-6.dll	2020/6/12 16:09	应用程序扩展	1,39	
🗟 libwinpthread-1.dll	2020/6/12 16:09	应用程序扩展	5	
main.o	2020/6/29 16:10	0 文件		
💌 mems_flash.exe	2020/6/29 16:24	应用程序	13	
memsflash.o	2020/6/29 16:24	0 文件	13	
🔤 moc_memsflash.cpp	2020/6/29 16:10	C++ Source file	10	
📄 moc_memsflash.o	2020/6/29 16:10	O 文件	1	
moc_predefs.h	2020/6/29 16:10	H 文件	1	
myico_res.o	2020/6/29 16:10	0 文件		
🔤 qrc_image.cpp	2020/6/29 16:10	C++ Source file	3.	
grc image.o	2020/6/29 16:10	O 文件		

图 C-1: MEMS Tool 在文件夹中示意图

在 Ubuntu 下,进入小工具文件夹,在文件夹空白处鼠标右键打开选项,点击在终端打开 (open in terminal)。在此路径下打开的终端内输入并执行命令: *\$./mems_flash.sh*

图 C-2: 打开小工具命令示意图

2. 在小工具的 LidarAddress 输入当前雷达 IP: 192.168.1.102 (默认), MSOP 端口号: 6699(默认), 之后鼠标左键点击连接按钮(Connect)。LiDAR 地址和 MSOP 端口号 可以通过 Wireshark 或其它抓包工具查看。

		Address Addres				
		Tine	Source	Destination	Protocol	Length Info
Lideråddress: MSOP port:	rabasansa	84857 14.504953	192.168.1.200	192.168.1.102	UDP	1442 6699 → 6699 Len=1400
	rooosense	84858 14.504953	192.168.1.200	192.168.1.102	UDP	1442 6699 → 6699 Len=1400
192.188.1.200 6899 Connect		84859 14.505143	192.168.1.200	192.168.1.102	UDP	1442 6699 → 6699 Len=1400
		84860 14.505143	192.168.1.200	192.168.1.102	UDP	1442 6699 → 6699 Len=1400
	ZT. robosense	0.000 + F F0F300	*** *** * ***	*** ***	100	

图 C-3: 小工具雷达连接示意图

3. 连接成功后本机 PS 和 PL 版本将会显示。

MEMS TOOLS V1.	5.1_20060629			_		×
LiderAddress:	MSOP port:	Disconect	PS:200f0612 PL:20000500	robc	sens	e
1	2	3	4	Z	I. robose	ense

图 C-4: 固件版本显示示意图

C.2 修改雷达 IP 及端口号

这节内容将介绍如何修改雷达 IP,上位机目的 IP,MSOP 端口号和 DIFOP 端口号。 注意:请不要修改雷达 MAC 地址及 SN。

1. 连接 MEMS Tool 与雷达(按照 C.1 节所述)。

2. 获取当前机器配置(鼠标左键点击 GetPara)。

注意:在每次修改雷达网络配置参数时,都要先获取一次雷达配置参数。

3. 在下图区域改变雷达参数后,鼠标左键点击设置参数(SetPara)。

4. 鼠标左键点击断开连接(Disconnect)后,断电重新上电检查更改是否成功。

MEMS TOOLS For Customer V1.	6.1_20072313		-	×
LidarAddress: MSOP port: 192.168.1.200 6699	PS:20 Disconnect PL:20	00 a0620 r	obose	nse
parameter op	otion area			
Li dar IP 192. 168. 1. 200 MAC	0x00. 0xa. 0x35. 0x0	0.0x01.0x02]	GetPara
TargetIP 192.168.1.102 SN	00000000000 MS03	2 6699 DIFO	P 7788	SetPara
D:/tzhong/workspace1/MEMS806_PCF package/ MEMSVI.6.1_200A0620_20000500.bir	2/ Import	ViewPara	ExportVi	ewPara
fW update finish.		FW Upda	ate	
			ZT. r	obosense

图 C-5: 修改网络配置示意图

C.3 固件升级

雷达升级所需的固件命名为 *MEMSV1.6.1_200A0620_20000500.bin。*工具会检查固件版本的格式,请不要随意改变固件命名。

1. 连接 MEMS Tool 与雷达(按照 C.1 节所述)。

2. 确认当前 PL 和 PS 版本号,不确定升级固件是否匹配,请咨询 RoboSense 相关技术 人员。

3. 鼠标左键点击"FW Update"后,在跳出对话框后选择需要加载升级的 BIN 文件,鼠标左键点击打开(open)开始刷写寄存器。

注意:保持雷达与主机的通信及雷达供电。通信及供电不稳会导致刷写失败,有反厂刷机 的风险。

图 C-6: 固件升级示意图

•

4. 等待大约 1 分钟直到升级成功

MEMS TOOLS For Customer V1.6.1_20072313	– 🗆 X	MEMS TOOLS For Customer V1.6.1_20072313	– 🗆 ×
LiderAddress: MSOP port: FS:200e0701 192.168.1.200 6699 Disconnect FL:20000500	robosense	LiderAddress: MSOP port: PS:200u0701 192.168.1.200 6699 <u>Disconnect</u> PL:20000500	robosense
LidarIP 192.168.1.200 MAC 0x00.0xa.0x35.0x00.0x01.0x0 TargetIP 192.168.1.102 SN 00000000000 MS0P 6699	2 GetPara DIFOP 7788 SetPara	LiderIP 192.168.1.200 MAC 0x00.0xa.0x35.0x00.0x01.0x02 TergetIP 192.168.1.102 SN 00000000000 MSOP 6609 I	GetFara IFOP 7788 SetPara
D:/trhong/workspace1/MEMS806_FCF2/ package/ MEMSV1.6.1_20040620_20000500.bin	ExportViewFara	D:/trhong/workspace1/MEMS806_PCF2/ package/ MEMSV1.6.1_200A0620_20000500.bin	ExportViewPara
waite about 1minute until flash	Update SUCCSS	FW update finish.	Jpdate
Flash ereasing and Writing, Please waiting 1 minute	ZT. robosense		ZT. robosense

图 C-7: 固件升级完成示意图

5. 鼠标左键点击断开连接(Disconnect)后,断电重新上电检查升级是否成功。

附录 D 结构图纸

AN1 接口雷达结构图纸:

•

AN1-Pin 脚定义说明:

•

Definition of connector pin				
Pin Number	Signal Name	Connector Name		
B1	VBAT			
B2	GND			
B3	WakeuP	MOLEX-334824001		
B4				
A1	1000Base T1 P	A contractor 1		
A2	1000Base T1 N	Ampnenol NTBM11V1U01110T		
A3	GND			

AN2 接口雷达结构图纸:

٠

•

AN2-Pin 脚定义说明:

Definition of connector pin				
Pin Number	Signal Name	Connector Name		
B1	GND			
B2	VBAT	LJV C—		
B3	WakeuP	HSPPSNXS24T—A		
B4				
A1	1000Base T1 P			
A2	1000Base T1 N	Amphenol NTHBV11A1001ST		
A3	GND			

•

2 0755-86325830

Smart Sensor, Safer World

深圳市速腾聚创科技有限公司 Shenzhen Suteng Innovation Technology Co., LTD.

Address: 深圳市南山区留仙大道 3370 号南山智园崇文园区 3 栋 10-11 层 10-11/F, Block 3, Chongwen Garden, Nanshan IPark, 3370 Liuxian Avenue, Nanshan District, Shenzhen, China

Web: www.robosense.ai Tel: 0755-8632-5830 Email: service@robosense.cn